Skip to main content
Log in

Wettability and cell spreading enhancement in poly(sulfone) and polyurethane surfaces by UV-assisted treatment for tissue engineering purposes

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

The surface of Poly(sulfone) (PSU) and Polyurethane (PU) films were treated with ultraviolet (UV) light in the presence of oxygen to improve their wettability, adhesion and cell spreading properties. XPS and WCA results illustrated the effective conversion of the PSU and PU surfaces from hydrophobic to hydrophilic with grafting of new oxidized functional groups during the photochemical treatments. Treated films showed a larger number of adhered cells compared to the untreated films and that number of adhered cells was comparable to the number of adhered cells in the control group. The results showed that the cell response does not only depend on the hydrophilicity but on the chemical surface alterations which occur as a result of UV-assisted treatment in the presence of oxygen. Better cell adhesion, spreading and growing on the PSU and PU substrates modified by the present UV methodology confirmed the biocompatibility of the treated surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M Domingos, F Intranuovo, A Gloria, et al., Improved osteoblast cell affinity on plasma-modified 3-D extruded PCL scaffolds, Acta Biomater, 9, 5997 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. MB Rahmany, M Van Dyke, Biomimetic approaches to modulate cellular adhesion in biomaterials: A review, Acta Biomater, 9, 5431 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. DR Kryscio, NA Peppas, Critical review and perspective of macromolecularly imprinted polymers, Acta Biomater, 8, 461 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. CM Chan, TM Ko, H Hiraoka, Polymer surface modification by plasmas and photons, Surf Sci Rep, 24, 1 (1996).

    Article  CAS  Google Scholar 

  5. S Mandl, B Rauschenbach, Improving the biocompatibility of medical implants with plasma immersion ion implantation, Surf Coat Technol, 156, 276 (2002).

    Article  CAS  Google Scholar 

  6. G Mishra, SL McArthur, Plasma polymerization of maleic anhydride: just what are the right deposition conditions?, Langmuir, 26, 9645 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. KS Siow, L Britcher, S Kumar, et al., Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization — A review, Plasma Process Polym, 3, 392 (2006).

    Article  CAS  Google Scholar 

  8. ZG Wang, LS Wan, ZK Xu, Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications: An overview, J Membr Sci, 304, 8 (2007).

    Article  CAS  Google Scholar 

  9. DOH Teare, N Emmison, C Ton-That, et al., Cellular attachment to ultraviolet ozone modified polystyrene surfaces, Langmuir, 16, 2818 (2000).

    Article  CAS  Google Scholar 

  10. R Morent, N De Geyter, T Desmet, et al., Plasma surface modification of biodegradable polymers: A Review, Plasma Process Polym, 8, 171 (2011).

    Article  CAS  Google Scholar 

  11. B Thierry, M Jasieniak, LC de Smet, et al., Reactive epoxy-functionalized thin films by a pulsed plasma polymerization process, Langmuir, 24, 10187 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. D He, H Susanto, M Ulbricht, Photo-irradiation for preparation, modification and stimulation of polymeric membranes, Prog Polym Sci, 34, 62 (2009)

    Article  CAS  Google Scholar 

  13. F Kessler, S Kühn, C Radtke, et al., Controlling the surface wettability of poly(sulfone) films by UV-assisted treatment: benefits in relation to plasma treatment, Polym Int, 62, 310 (2013).

    Article  CAS  Google Scholar 

  14. R Rajajeyaganthan, F Kessler, PH de Mour Leal, et al., Surface modification of synthetic polymers using UV photochemistry in the presence of reactive vapours, Macromol Symp, 299-300, 175 (2011).

    Article  Google Scholar 

  15. DE Weibel, F Kessler, GV da Silva Mota, Selective surface functionalization of polystyrene by inner-shell monochromatic irradiation and oxygen exposure, Poly Chem, 1, 645 (2010).

    Article  CAS  Google Scholar 

  16. DE Weibel, Polymer surface functionalization using plasma, ultraviolet and synchrotron radiation, Compos Interfaces, 17, 127 (2010).

    Article  CAS  Google Scholar 

  17. DE Weibel, AF Michels, F Michels, et al., Ultraviolet-induced surface modification of polyurethane films in the presence of oxygen or acrylic acid vapours, Thin Solid Films, 517, 5489 (2009).

    Article  CAS  Google Scholar 

  18. SH Choi, SY Jung, SM Yoo, et al., Amine-enriched surface modification facilitates expansion, attachment, and maintenance of human cardiac-derived c-kit positive progenitor cells, Int J Cardiol, 168, (2013).

  19. Y Yang, K Kulangara, RT Lam, et al., Effects of topographical and mechanical property alterations induced by oxygen plasma modification on stem cell behavior, ACS Nano, 6, 8591 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. P Thevenot, W Hu, L Tang, et al., Surface chemistry influences implant biocompatibility, Curr Top Med Chem, 8, 270 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. E Renard, G Vergnol, V Langlois, Adhesion and proliferation of human bladder RT112 cells on functionalized polyesters, IRBM, 32, 214 (2011).

    Article  Google Scholar 

  22. GS Brar, RS Toor, Dental stem cells: dentinogenic, osteogenic, and neurogenic differentiation and its clinical cell based therapies, Indian J Dent Res, 23, 393 (2012)

    Article  PubMed  Google Scholar 

  23. I Kerkis, AI Caplan, Stem cells in dental pulp of deciduous teeth, Tissue Eng Part B Rev, 18, 129 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. C Wetzel, J Schoenfelder, W Schwarz, et al., Surface modification of polyurethane and silicone for therapeutic medical technics by means of electron beam, Surf Coat Technol, 205, 1618 (2010)

    Article  CAS  Google Scholar 

  25. JP Santerre, K Woodhouse, G Laroche, et al., Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials, Biomaterials, 26, 7457 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. ML Steen, L Hymas, ED Havey, et al., Low temperature plasma treatment of asymmetric polysulfone membranes for permanent hydrophilic surface modification, J Membr Sci, 188, 97 (2001).

    Article  CAS  Google Scholar 

  27. R Wang, W Chen, F Meng, et al., Unprecedented Access to Functional Biodegradable Polymers and Coatings, Macromolecules, 44, 6009 (2011).

    Article  CAS  Google Scholar 

  28. L Bernardi, SB Luisi, R Fernandes, et al., The isolation of stem cells from human deciduous teeth pulp is related to the physiological process of resorption, J Endod, 37, 973 (2011).

    Article  PubMed  Google Scholar 

  29. D Steffens, M Lersch, A Rosa, et al., A new biomaterial of nanofibers with the microalga spirulina as Scaffolds to cultivate with stem cells for use in tissue engineering, J Biomed Nanotechnol, 9, 710 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. A Kurella, NB Dahotre, Review paper: surface modification for bioimplants: the role of laser surface engineering, J Biomater Appl, 20, 5 (2005).

    Article  PubMed  Google Scholar 

  31. P Sangsanoh, O Suwantong, A Neamnark, et al., In vitro biocompatibility of electrospun and solvent-cast chitosan substrata towards Schwann, osteoblast, keratinocyte and fibroblast cells, Eur Polym J, 46, 428 (2010).

    Article  CAS  Google Scholar 

  32. M Zelzer, R Majani, JW Bradley, et al., Investigation of cell-surface interactions using chemical gradients formed from plasma polymers, Biomaterials, 29, 172 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. M Zelzer, MR Alexander, NA Russell, et al., Hippocampal cell response to substrates with surface chemistry gradients, Acta Biomater, 7, 4120 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. G Zanatta, M Rudisile, M Camassola, et al., Mesenchymal stem cell adherence on poly(D, L-lactide-co-glycolide) nanofibers scaffold is integrin-beta 1 receptor dependent, J Biomed Nanotechnol, 8, 211 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Y Inoue, T Nakanishi, K Ishihara, Adhesion force of proteins against hydrophilic polymer brush surfaces, React Funct Polym, 71, 350 (2011).

    Article  CAS  Google Scholar 

  36. WP Daley, SB Peters, Larsen M, et al., Extracellular matrix dynamics in development and regenerative medicine, J Cell Sci, 121, 255 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. T Jacobs, H Declercq, N De Geyter, et al., Plasma surface modification of polylactic acid to promote interaction with fibroblasts, J Mater Sci Mater Med, 24, 469 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. KN Chua, C Chai, PC Lee, et al., Functional nanofiber scaffolds with different spacers modulate adhesion and expansion of cryopreserved umbilical cord blood hematopoietic stem/progenitor cells, Exp Hematol, 35, 771 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. KN Chua, C Chai, PC Lee, et al., Surface-aminated electrospun nanofibers enhance adhesion and expansion of human umbilical cord blood hematopoietic stem/progenitor cells, Biomaterials, 27, 6043 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. KL Menzies, L Jones, The impact of contact angle on the biocompatibility of biomaterials, Optom Vis Sci, 87, 387 (2010).

    PubMed  Google Scholar 

  41. KM Evans-Nguyen, LR Tolles, OV Gorkun, et al., Interactions of thrombin with fibrinogen adsorbed on methyl-, hydroxyl-, amine-, and carboxyl-terminated self-assembled monolayers, Biochemistry, 44, 15561 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. J Benesch, S Svedhem, SC Syensson, et al., Protein adsorption to oligo(ethylene glycol) self-assembled monolayers: experiments with fibrinogen, heparinized plasma, and serum, J Biomater Sci Polym Ed, 12, 581 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. VA Tegoulia, W Rao, AT Kalambur, et al., Surface properties, fibrinogen adsorption, and cellular interactions of a novel phosphorylcholine-containing self-assembled monolayer on gold, Langmuir, 17, 4396 (2001).

    Article  CAS  Google Scholar 

  44. MCL Martins, BD Ratner, MA Barbosa, et al., Protein adsorption on mixtures of hydroxyl- and methyl-terminated alkanethiols self-assembled monolayers, J Biomed Mater Res A, 67, 158 (2003).

    Article  PubMed  Google Scholar 

  45. J Yang, Y Mei, AL Hook, et al., Polymer surface functionalities that control human embryoid body cell adhesion revealed by high throughput surface characterization of combinatorial material microarrays, Biomaterials, 31, 8827 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Felipe Kessler or Daniela Steffens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessler, F., Steffens, D., Lando, G.A. et al. Wettability and cell spreading enhancement in poly(sulfone) and polyurethane surfaces by UV-assisted treatment for tissue engineering purposes. Tissue Eng Regen Med 11, 23–31 (2014). https://doi.org/10.1007/s13770-013-1117-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-013-1117-6

Key words

Navigation