Skip to main content
Log in

Efficient Estimation of Mean in Two-Phase Sampling when Measurement Error and Non-Response are Simultaneously Present

  • Scientific Research Paper
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

In the present paper, we suggest the generalized classes of efficient estimators for finite population mean estimation in two-phase sampling if non-response and measurement errors are simultaneously present. For each generalized class of estimators, the expressions for the bias and mean square error have been derived to compare the performance of the proposed generalized classes of estimators with some modified estimators in two-phase sampling including modified ratio-type estimator, modified exponential-type ratio estimator, and modified generalized estimator. A simulation study based on different simulated populations by changing the correlation between the auxiliary variable and the study variable is carried out to illustrate the performance of the proposed generalized classes of estimators by changing the correlation from low to high. Finally, it is shown that the proposed generalized class of estimators performs better than the aforementioned modified estimators when correlation is moderate or high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cochran WG (1977) Sampling techniques, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  2. Thomsen I (1973) A note on the efficiency of weighting subclass means to reduce the effects of nonresponse when analyzing survey data. Statist Tidskrift 11:278–285

    Google Scholar 

  3. Brick JM (2013) Unit nonresponse and weighting adjustments: A critical review. J Off Statist 29(3):329–353

    Article  Google Scholar 

  4. Olson K, Kennedy C (2006) Examination of the relationship between nonresponse and measurement error in a validation study of alumni. In Proceedings of the Survey Research Methods Section, Seattle, WA, pp 4181–4188.

  5. Hansen MH, Hurwitz WN (1946) The problem of non-response in sample surveys. J AM Stat Assoc 41:517–529

    Article  Google Scholar 

  6. Tabasum R, Khan IA (2004) Double sampling for ratio estimation with non- response. J Indian Soc Agric Stat 58:300–306

    MathSciNet  MATH  Google Scholar 

  7. Tabasum R, Khan IA (2006) Double sampling for ratio estimator for the population mean in presence of non-response. Assam Statist Rev 20:73–83

    Google Scholar 

  8. Riaz S, Diana G, Shabbir J (2014) Improved classes of estimators for population mean in presence of non-response. Pak J Stat 30(1):83–100

    MathSciNet  Google Scholar 

  9. Sanaullah A, Noor-ul-amin M, Hanif M (2015) Generalized exponential-type ratio-cum-ratio and product-cum-product estimators for population mean in the presence of non-response under stratified two-phase random sampling. Pak J Stat 31(1):71–94

    MathSciNet  Google Scholar 

  10. Yaqub M, Shabbir J (2016) Estimation of population distribution function in the presence of non-response. Hacet J Math Stat 47(2):471–511

    MathSciNet  MATH  Google Scholar 

  11. Ahmed S, Shabbir J, Gupta S (2016) Use of scrambled response model in estimating the finite mean in presence of non-response when coefficient of variation is known. Commun Stat Theory Methods 46:8435–8449

    Article  MathSciNet  MATH  Google Scholar 

  12. Riaz S, Darda AM (2016) Some classes of estimators in the presence of non-response using auxiliary attribute. J Stat Theory Pract 5:1271

    Google Scholar 

  13. Muneer S, Shabbir J, Khalil A (2018) A generalized exponential type estimator of population mean in the presence of non-response. Stat Transit New Series 19(2):259–276

    Article  Google Scholar 

  14. Shabbir J, Gupta S, Ahmed S (2018) A generalized class of estimators under two-phase stratified sampling for non-response. Commun Stat Theory Methods 48:3761–3777

    Article  MathSciNet  MATH  Google Scholar 

  15. Sanaullah A, Noor-ul-amin M, Hanif M, Koyuncu N (2018) Generalized exponential-type estimators for population mean taking two auxiliary variables for unknown means in stratified sampling with sub-sampling the non-respondents. Int J Appl Comp Math Sci 4:56

    MathSciNet  MATH  Google Scholar 

  16. Saleem I, Sanaullah A, Hanif M (2018) A generalized class of estimators for estimating population mean in the presence of non-response. J Stat Theory Appl 17(4):32–40

    Article  MathSciNet  Google Scholar 

  17. Hidiroglou, M, Estevao V (2013) Dealing with nonresponse using follow-up. In: Proceedings of the Joint Statistical Meetings-Section on Survey Research Methods, ASA. Alexandria, Virginia, USA: American Statistical Association pp 1478–1489.

  18. Hidiroglou M, Drew JD, Gray GB (1993) A framework for measuring and reducing nonresponse in surveys. Surv Methodol 19(1):81–84

    Google Scholar 

  19. Aubry P, Guillemain M (2019) Attenuating the nonresponse bias in hunting bag surveys: The multiphase sampling strategy. PLoS One 14(3):e0213670. https://doi.org/10.1371/journal

    Article  Google Scholar 

  20. Singh HP, Karpe N (2010) Estimation of mean, ratio and product using auxiliary information in the presence of measurement errors in sample surveys. J Stat Theory Pract 4(1):111–136

    Article  MathSciNet  MATH  Google Scholar 

  21. Diana T, Giordan M (2012) Finite population variance estimation in presence of measurement error. Commun Stat Theory and Methods 41:402–431

    Article  MathSciNet  MATH  Google Scholar 

  22. Shukla D, Pathak S, Thakur NS (2012) An estimator for mean estimation in presence of measurement error. Res Rev J Off Stat 1(1):1–8

    Google Scholar 

  23. Masood S, Shabbir J (2016) Generalized multi-phase regression-type estimators under the effect of measuemnent error to estimate the population variance. Hacet J Math and Stat 45(4):1297–1306

    MathSciNet  MATH  Google Scholar 

  24. Khalil S, Gupta S, Hanif M (2018) A generalized estimator for finite population mean in the presence of measurement errors in stratified sampling. J Stat Theory Pract 12(2):311–324

    Article  MathSciNet  Google Scholar 

  25. Azeem M (2014) On estimation of population mean in the presence of measurement error and non-response. Unpublished PhD thesis, National College of Business Administration and Economics, Lahore, Pakistan.

  26. Kumar S, Bhougal S, Nataraja NS (2015) Estimation of population mean in the presence of non-response and measurement error. Rev Colomb Estad 38(1):145–161

    Article  MathSciNet  MATH  Google Scholar 

  27. Kumar S (2016) Improved estimation of population mean in presence of non-response and measurement error. J Stat Theory Pract 10(4):707–720

    Article  MathSciNet  MATH  Google Scholar 

  28. Azeem M, Hanif M (2017) Joint influence of measurement error and non-response on estimation of population mean. Commun Stat Theory Methods 46(4):1679–1693

    Article  MathSciNet  MATH  Google Scholar 

  29. Irfan M, Javed M, Lin Z (2018) Optimized estimation for population mean using conventional and non-conventional measures under the joint influence of measurement error and non-response. J Stat Comput Sim 88(12):2385–2403

    Article  MathSciNet  MATH  Google Scholar 

  30. Zahid E, Shabbir J (2018) Estimation of population mean in the presence of measurement error and non-response under stratified random sampling. PLoS One 13(2):e0191572. https://doi.org/10.1371/journal.pone.0191572

    Article  Google Scholar 

  31. Sabir S, Sanaullah A (2019) A note on Kumar (2016): improved estimation of population mean in the presence of measurement error and non-response. J Stat Theory Pract 13:25

    Article  MathSciNet  MATH  Google Scholar 

  32. National Research Council (2013) Nonresponse in social science surveys: A research agenda. In: Tourangeau R, Plewes TJ (eds) Panel on a research agenda for the future of social science data collection, committee on national statistics. Division of behavioral and social sciences and education. The National Academies Press, Washington, DC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamir Sanaullah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: (Description on Different Simulated Populations used for Simulation Results)

X is assumed to follow a normal distribution in each of the three different simulated populations, and Y is simulated using the model \(Y = \beta_{yx} X + e\); further description of population parameters is shown separately for each population.

  • Simulated Population 1:

    \(X \sim N\left( {0.5,\,1} \right)\), \(Y = 0.2041241X + e\), \(e \sim N\left( {0,\,\,1} \right)\), \(U \sim N\left( {0,\,\,9} \right)\), \(V \sim N\left( {0,\,\,9} \right)\), \(\rho_{YX} = 0.20\), \(N = 50000\), \(W_{2} = 30\% ,\,40\% ,\,\,60\%\), and \(k = 2,\,3\).

  • Simulated Population 2:

    \(X \sim N\left( {0.5,\,1} \right)\), \(Y = 0.5773503X + e\), \(e \sim N\left( {0,\,\,1} \right)\), \(U \sim N\left( {0,\,\,9} \right)\), \(V \sim N\left( {0,\,\,9} \right)\), \(\rho_{YX} = 0.50\), \(N = 50000\), \(W_{2} = 30\% ,\,40\% ,\,\,60\%\), and \(k = 2,\,3\).

  • Simulated Population 3:

    \(X \sim N\left( {0.5,\,1} \right)\), \(Y = 0.9801961X + e\), \(e \sim N\left( {0,\,\,1} \right)\), \(U \sim N\left( {0,\,\,9} \right)\), \(V \sim N\left( {0,\,\,9} \right)\), \(\rho_{YX} = 0.70\), \(N = 50000\), \(W_{2} = 30\% ,\,40\% ,\,\,60\%\), and \(k = 2,\,3\).

Appendix B

See Appendix Tables

Table 1 Theoretical MSE (in braces) values, and empirical MSE values of all estimators using correlation \(\rho_{yx}\) = 0.70

1

Table 2 Theoretical MSE (in braces) values, and empirical MSE values of all estimators using correlation \(\rho_{yx}\) = 0.50

2

Table 3 Theoretical MSE (in braces) values, and empirical MSE values of all estimators using correlation \(\rho_{yx}\) = 0.20

3

Appendix C

In order for derivations of different variances, covariance and MSEs assuming the joint presence of non-response and measurement error, some of the important derivations and expectations are reproduced following the Azeem [24], Cochran [1], and Hansen and Hurwitz [5].

Let us consider \(W_{Y}^{*} = \sum\limits_{i = 1}^{n} {\left( {Y_{i}^{{*^{\prime\prime}}} - \overline{Y}} \right)}\), \(W_{X}^{*} = \sum\limits_{i = 1}^{n} {\left( {X_{i}^{{*^{\prime\prime}}} - \overline{X}} \right)}\), \(W_{X} = \sum\limits_{i = 1}^{n} {\left( {X^{\prime}_{i} - \overline{X}} \right)}\), \(W_{U}^{*} = \sum\limits_{i = 1}^{n} {U_{i}^{*} }\), and \(W_{V}^{*} = \sum\limits_{i = 1}^{n} {V_{i}^{*} }\).

Further, we consider.

\(e_{0}^{*} = \frac{1}{{n\overline{Y}}}\left( {W_{Y}^{*} + W_{U}^{*} } \right)\), or alternatively \(e_{0}^{*} = \frac{{\overline{y}^{{*^{\prime\prime}}} - \overline{Y}}}{{\overline{Y}}}\),

\(e_{1}^{*} = \frac{1}{{n\overline{X}}}\left( {W_{X}^{*} + W_{V}^{*} } \right)\), or alternatively \(e_{1}^{*} = \frac{{\overline{x}^{{*^{\prime\prime}}} - \overline{X}}}{{\overline{X}}}\),

and \(e^{\prime}_{1} = \frac{{W_{X} }}{{n^{\prime}\overline{X}}}\), or alternatively \(e^{\prime}_{1} = \frac{{\overline{x}^{\prime} - \overline{X}}}{{\overline{X}}}\).

Now consider, \(W_{Y}^{*} + W_{U}^{*} = \sum\limits_{i = 1}^{n} {\left( {Y_{i}^{{*^{\prime\prime}}} - \overline{Y}} \right)} + \sum\limits_{i = 1}^{n} {U_{i}^{*} }\),

\(W_{Y}^{*} + W_{U}^{*} = \sum\limits_{i = 1}^{n} {\left( {Y_{i}^{{*^{\prime\prime}}} - \overline{Y}} \right)} + \sum\limits_{i = 1}^{n} {\left( {y_{i}^{{*^{\prime\prime}}} - Y_{i}^{{*^{\prime\prime}}} } \right)}\),

Or alternatively.

\(\frac{{W_{Y}^{*} + W_{U}^{*} }}{n} = \frac{1}{n}\sum\limits_{i = 1}^{n} {y_{i}^{{*^{\prime\prime}}} } - \overline{Y}\).

Now we divide the n into three components, \(n_{1}\) (respondents of the first attempt), \(r\)(selected for the interview) and \(n_{2} - r\)(not selected for the interview) such that \(n = n_{1} + (n_{2} - r) + r\). Therefore, we rewrite the previous expression as.

\(\frac{{W_{Y}^{*} + W_{U}^{*} }}{n} = \frac{1}{n}\left( {n_{1} \frac{{\sum\limits_{i = 1}^{{n_{1} }} {y_{i}^{{*^{\prime\prime}}} } }}{{n_{1} }} + \left( {n_{2} - r} \right)\frac{{\sum\limits_{{i = n_{1} + 1}}^{{n_{1} + n_{2} - r}} {y_{i}^{{*^{\prime\prime}}} } }}{{n_{2} - r}} + r\frac{{\sum\limits_{{i = n_{1} + n_{2} - r + 1}}^{n} {y_{i}^{{*^{\prime\prime}}} } }}{r}} \right) - \overline{Y}\).

\(\frac{{W_{Y}^{*} + W_{U}^{*} }}{n} = \frac{1}{n}\left( {n_{1} \overline{y}_{{\left( {n_{1} } \right)}}^{{*^{\prime\prime}}} + \left( {n_{2} - r} \right)\overline{y}_{{\left( {n_{2} - r} \right)}}^{{*^{\prime\prime}}} + r\overline{y}_{\left( r \right)}^{{*^{\prime\prime}}} } \right) - \overline{Y}\).

Or alternatively can be given by.

\(\frac{{W_{Y}^{*} + W_{U}^{*} }}{n} = \frac{1}{n}\left( {n_{1} \overline{y}_{{\left( {n_{1} } \right)}}^{{*^{\prime\prime}}} + \left( {n_{2} - r} \right)\overline{y}_{\left( r \right)}^{{*^{\prime\prime}}} + r\overline{y}_{\left( r \right)}^{{*^{\prime\prime}}} } \right) - \overline{Y}\), since \(\overline{y}_{\left( r \right)}^{{*^{\prime\prime}}}\) and \(\overline{y}_{{\left( {n_{2} - r} \right)}}^{{*^{\prime\prime}}}\) are the unbiased estimators for the same population of non-respondents, i.e.\(E\left( {\overline{y}_{\left( r \right)}^{{*^{\prime\prime}}} } \right) = E\left( {\overline{y}_{{\left( {n_{2} - r} \right)}}^{{*^{\prime\prime}}} } \right) = \overline{Y}_{2}\). For more details, see Azeem [25], Hansen and Hurwitz [5], and Cochran [1].

\(\frac{{W_{Y}^{*} + W_{U}^{*} }}{n} = \frac{1}{n}\left( {n_{1} \overline{y}_{{\left( {n_{1} } \right)}}^{{*^{\prime\prime}}} + n_{2} \overline{y}_{\left( r \right)}^{{*^{\prime\prime}}} } \right) - \overline{Y}\).

\(\frac{{W_{Y}^{*} + W_{U}^{*} }}{n} = \overline{y}^{{*^{\prime\prime}}} - \overline{Y}\).

$$ {\text{Or}}\;{\text{alternatively}}\,\overline{y}^{{*^{\prime\prime}}} = \frac{{n_{1} \overline{y}_{{\left( {n_{1} } \right)}}^{{*^{\prime\prime}}} + n_{2} \overline{y}_{\left( r \right)}^{{*^{\prime\prime}}} }}{n} = \overline{Y} + \frac{{W_{Y}^{*} + W_{U}^{*} }}{n} $$
(C-1)

In order to show \(\overline{y}^{{*^{\prime\prime}}}\) is an unbiased estimator, take expectations of \(\overline{y}^{{*^{\prime\prime}}}\),

\(E\left( {\overline{y}^{{*^{\prime\prime}}} } \right) = E\left( {\frac{{n_{1} \overline{y}_{{\left( {n_{1} } \right)}}^{{*^{\prime\prime}}} + n_{2} \overline{y}_{\left( r \right)}^{{*^{\prime\prime}}} }}{n}} \right)\),

Or alternatively we consider.

\(E_{1} E_{2} \left( {\overline{y}^{{*^{\prime\prime}}} } \right) = E_{1} E_{2} \left( {\frac{{n_{1} \overline{y}_{{\left( {n_{1} } \right)}}^{{*^{\prime\prime}}} + n_{2} \overline{y}_{\left( r \right)}^{{*^{\prime\prime}}} }}{n}} \right)\),

\(= E_{1} \left( {\frac{{n_{1} \overline{y}_{{\left( {n_{1} } \right)}}^{*\prime \prime } + E_{2} \left( {n_{2} \overline{y}_{\left( r \right)}^{*\prime \prime } } \right)}}{n}} \right)\),

\(= E_{1} \left( {\frac{{n_{1} \overline{y}_{{\left( {n_{1} } \right)}}^{*\prime \prime } + n_{2} \overline{y}_{{\left( {n_{2} } \right)}}^{*\prime \prime } }}{n}} \right)\),\(\because E_{2} \left( {\overline{y}_{\left( r \right)}^{{*^{\prime\prime}}} } \right) = \overline{y}_{{\left( {n_{2} } \right)}}^{{*^{\prime\prime}}}\).

or.

\(= E_{1} \left( {w_{1} \overline{y}_{{\left( {n_{1} } \right)}}^{*\prime \prime } + w_{2} \overline{y}_{{\left( {n_{2} } \right)}}^{*\prime \prime } } \right)\), where \(w_{1} = \frac{{n_{1} }}{n}\), and \(w_{2} = \frac{{n_{2} }}{n}\).

\(E\left( {\overline{y}^{{*^{\prime\prime}}} } \right) = W_{1} \overline{Y}_{1} + W_{2} \overline{Y}_{2}\),

Hence \(E(\overline{y}^{*\prime \prime } ) = \frac{{\sum\limits_{i = 1}^{N} {Y_{i} } }}{N} = \overline{Y}\), and \(\overline{y}^{*}\) is an unbiased estimator of \(\overline{Y}\). Now in order to get an expression for variance of \(\overline{y}^{*}\), we proceed as

$$ Var\left( {\overline{y}^{*\prime \prime } } \right) = E\left( {\overline{y}^{*\prime \prime } - \overline{Y}} \right)^{2} = E\left( {\frac{{n_{1} \overline{y}_{{\left( {n_{1} } \right)}}^{*\prime \prime } + n_{2} \overline{y}_{\left( r \right)}^{*\prime \prime } }}{n} - \overline{Y}} \right)^{2} $$
(C-2)

or.

\(Var\left( {\overline{y}^{*\prime \prime } } \right) = \frac{1}{{n^{2} }}E\left( {n_{1} \overline{y}_{{\left( {n_{1} } \right)}}^{*\prime \prime } + n_{2} \overline{y}_{\left( r \right)}^{*\prime \prime } - n\overline{Y}} \right)^{2}\).

Since \(\overline{y}\prime \prime = \frac{1}{n}\left( {n_{1} \overline{y}_{{\left( {n_{1} } \right)}}^{*\prime \prime } + n_{2} \overline{y}_{{\left( {n_{2} } \right)}}^{*\prime \prime } } \right)\) therefore alternatively we can consider \(n_{1} \overline{y}_{{\left( {n_{1} } \right)}}^{*} = n\overline{y} - n_{2} \overline{y}_{{\left( {n_{2} } \right)}}^{*}\), see Cochran [1]. Now.

\(= \frac{1}{{n^{2} }}E\left( {\left( {n\overline{y}\prime \prime - n_{2} \overline{y}_{{\left( {n_{2} } \right)}}^{*\prime \prime } } \right) + n_{2} \overline{y}_{\left( r \right)}^{*\prime \prime } - n\overline{Y}} \right)^{2}\),

or

$$ Var\left( {\overline{y}^{*\prime \prime } } \right) = \frac{1}{{n^{2} }}E_{1} E_{2} \left( {n\left( {\overline{y}\prime \prime - \overline{Y}} \right) + n_{2} \left( {\overline{y}_{\left( r \right)}^{*\prime } - \overline{y}_{{\left( {n_{2} } \right)}}^{*\prime \prime } } \right)} \right)^{2} $$
(C-3)

Eq. (C-3) is given by

$$ Var(\overline{y}^{*\prime \prime } ) = \left( {E_{1} \left( {\overline{y}\prime \prime - \overline{Y}} \right)^{2} + E_{1} \left( {\frac{{n_{2} }}{n}} \right)^{2} E_{2} \left( {\overline{y}_{\left( r \right)}^{*\prime \prime } - \overline{y}_{{\left( {n_{2} } \right)}}^{*\prime } } \right)^{2} } \right) $$
(C-4)

because \(E_{1} \frac{{n_{2} }}{n}\left( {\overline{y}\prime \prime - \overline{Y}} \right)E_{2} \left( {\overline{y}_{\left( r \right)}^{*\prime \prime } - \overline{y}_{{\left( {n_{2} } \right)}}^{*\prime \prime } } \right) = 0\).

From Eq. (C-4), we consider.

\(E_{1} \left( {\frac{{n_{2} }}{n}} \right)^{2} E_{2} \left( {\overline{y}_{\left( r \right)}^{*\prime \prime } - \overline{y}_{{\left( {n_{2} } \right)}}^{*\prime \prime } } \right)^{2}\) = \(E_{1} \left( {\frac{{n_{2} }}{n}} \right)^{2} \frac{{n_{2} - r}}{{n_{2} - 1}}\frac{{s_{Y\left( 2 \right)}^{2} + s_{U\left( 2 \right)}^{2} }}{r}\),

or.

 = \(E_{1} \left( {\frac{{n_{2} }}{n}} \right)^{2} \frac{{n_{2} - r}}{{n_{2} - 1}}\frac{{n_{2} - 1}}{{n_{2} }}\frac{{S_{Y\left( 2 \right)}^{2} + S_{U\left( 2 \right)}^{2} }}{r}\) since \(\left( {s_{Y\left( 2 \right)}^{2} + s_{U\left( 2 \right)}^{2} } \right) = \frac{{n_{2} - 1}}{{n_{2} }}\left( {S_{Y\left( 2 \right)}^{2} + S_{U\left( 2 \right)}^{2} } \right)\).

\(= E_{1} \left( {\frac{{n_{2} }}{{n^{2} }}} \right)\frac{{n_{2} - r}}{r}\left( {S_{Y\left( 2 \right)}^{2} + S_{U\left( 2 \right)}^{2} } \right)\),since \(k = \frac{{n_{2} }}{r}\).

\(= \frac{{nN_{2} }}{{n^{2} N}}(k - 1)\left( {S_{Y\left( 2 \right)}^{2} + S_{U\left( 2 \right)}^{2} } \right)\),where \(E_{1} (n_{2} ) = \frac{{nN_{2} }}{N}\).

$$ E_{1} \left( {\frac{{n_{2} }}{n}} \right)^{2} E_{2} \left( {\overline{y}_{\left( r \right)}^{*\prime \prime } - \overline{y}_{{\left( {n_{2} } \right)}}^{*\prime \prime } } \right)^{2} = \frac{{W_{2} (k - 1)}}{n}\left( {S_{Y\left( 2 \right)}^{2} + S_{U\left( 2 \right)}^{2} } \right) = \theta^{*} \left( {S_{Y\left( 2 \right)}^{2} + S_{U\left( 2 \right)}^{2} } \right) $$
(C-5)

From Eq. (C-4), we consider

$$ E_{1} \left( {y^{\prime \prime } - \overline{Y}} \right)^{2} = \frac{N - n}{N}\frac{{\left( {S_{Y}^{2} + S_{U}^{2} } \right)}}{n} = \left( {\frac{1}{n} - \frac{1}{N}} \right)\left( {S_{Y}^{2} + S_{U}^{2} } \right) = \lambda^{\prime \prime } \left( {S_{Y}^{2} + S_{U}^{2} } \right) $$
(C-6)

Now, substituting Eq. (C-5) and Eq. (C-6) in Eq. (C-4) the variance of \(\overline{y}^{*\prime \prime }\) is given by.

\({\text{Var}}(\overline{y}^{*\prime \prime } ) = \left( {\lambda^{\prime \prime } \left( {S_{Y}^{2} + S_{U}^{2} } \right) + \theta^{*} \left( {S_{Y\left( 2 \right)}^{2} + S_{U\left( 2 \right)}^{2} } \right)} \right)\).

Or alternatively can be given by.

\(E\left( {e_{0}^{*} } \right)^{2} = E_{1} E_{2} \left( {\frac{{\overline{y}^{*\prime \prime } - \overline{Y}}}{{\overline{Y}}}} \right)^{2} = E_{1} E_{2} \left( {\frac{{W_{Y}^{*} + W_{U}^{*} }}{{\overline{Y}n}}} \right)^{2}\),

or also can be given by

$$ E\left( {e_{0}^{*} } \right)^{2} = \frac{1}{{\overline{Y}^{2} }}Var(\overline{y}^{*\prime \prime } ) = V_{02}^{\prime \prime } $$
(C-7)

Similarly, one can get.

\(Var(\overline{x}^{*\prime \prime } ) = \lambda^{\prime \prime } \left( {S_{X}^{2} + S_{V}^{2} } \right) + \theta^{*} \left( {S_{X\left( 2 \right)}^{2} + S_{V\left( 2 \right)}^{2} } \right)\),

alternatively is given by.

\(E\left( {e_{1}^{*} } \right)^{2} = E_{1} E_{2} \left( {\frac{{\overline{x}^{*\prime \prime } - \overline{X}}}{{\overline{X}}}} \right)^{2} = E_{1} E_{2} \left( {\frac{{W_{X}^{*} + W_{V}^{*} }}{{\overline{X}n}}} \right)^{2}\),

$$ E\left( {e_{1}^{*} } \right)^{2} = \frac{1}{{\overline{X}^{2} }}Var(\overline{x}^{{*^{\prime\prime}}} ) = V_{02}^{\prime \prime } $$
(C-8)

Similarly

$$ E\left( {e_{0}^{*} e_{1}^{*} } \right) = E_{1} E_{2} \left( {\frac{{\overline{x}^{*\prime \prime } - \overline{X}}}{{\overline{X}}}} \right)\left( {\frac{{\overline{y}^{*\prime \prime } - \overline{Y}}}{{\overline{Y}}}} \right) = \frac{1}{{\overline{X}\overline{Y}}}Cov(\overline{x}^{*\prime \prime } ,\overline{y}^{*\prime \prime } ) = V\prime \prime_{11} $$
(C-9)

where \(Cov(\overline{x}^{*\prime \prime } ,\overline{y}^{*\prime \prime } ) = \lambda \prime \prime S_{YX} + \theta^{*} S_{YX(2)}\).

Similarly.

\(E\left( {e^{\prime}_{1} } \right)^{2} = E^{\prime}\left( {\frac{{\overline{x}^{\prime} - \overline{X}}}{{\overline{X}}}} \right)^{2} = E^{\prime}\left( {\frac{{W_{X} }}{{\overline{X}n}}} \right)^{2} = \frac{1}{{\overline{X}^{2} }}Var(\overline{x}^{\prime}) = \frac{1}{{\overline{X}^{2} }}\lambda^{\prime}S_{X}^{2} = V^{\prime}_{20}\),

and

$$ E\left( {e^{\prime}_{1} e_{1}^{*} } \right) = E^{\prime}E_{1} E_{2} \left( {\frac{{\overline{x}^{\prime} - \overline{X}}}{{\overline{X}}}} \right)\left( {\frac{{\overline{x}^{{*^{\prime\prime}}} - \overline{X}}}{{\overline{X}}}} \right) = \frac{1}{{\overline{X}^{2} }}Var(\overline{x}^{\prime}) = V^{\prime}_{20} $$
(C-10)

and

$$ E\left( {e^{\prime}_{1} e_{0}^{*} } \right) = E^{\prime}E_{1} E_{2} \left( {\frac{{\overline{x}^{\prime} - \overline{X}}}{{\overline{X}}}} \right)\left( {\frac{{\overline{y}^{{*^{\prime\prime}}} - \overline{Y}}}{{\overline{Y}}}} \right) = \frac{1}{{\overline{X}\overline{Y}}}Cov(\overline{x}^{\prime},\overline{y}^{{*^{\prime\prime}}} ) = V^{\prime}_{11} $$
(C-11)

When non-response and measurement errors are present only on study variable, we get Eq. (C-1)-( C-11) given below.

Let us consider \(W_{Y}^{*} = \sum\limits_{i = 1}^{n} {\left( {Y_{i}^{{*^{\prime\prime}}} - \overline{Y}} \right)}\), \(W_{X} = \sum\limits_{i = 1}^{n} {\left( {X_{i} - \overline{X}} \right)}\), \(W_{X} = \sum\limits_{i = 1}^{n} {\left( {X^{\prime}_{i} - \overline{X}} \right)}\), and \(W_{U}^{*} = \sum\limits_{i = 1}^{n} {U_{i}^{*} }\).

Further we consider.

\(e_{0}^{*} = \frac{1}{{n\overline{Y}}}\left( {W_{Y}^{*} + W_{U}^{*} } \right)\), or alternatively \(e_{0}^{*} = \frac{{\overline{y}^{{*^{\prime\prime}}} - \overline{Y}}}{{\overline{Y}}}\),

\(e_{1} = \frac{{W_{X} }}{{n\overline{X}}}\), or alternatively \(e_{1} = \frac{{\overline{x} - \overline{X}}}{{\overline{X}}}\),

and \(e^{\prime}_{1} = \frac{{W_{X} }}{{n^{\prime}\overline{X}}}\), or alternatively \(e^{\prime}_{1} = \frac{{\overline{x}^{\prime} - \overline{X}}}{{\overline{X}}}\).

Now consider, \(W_{Y}^{*} + W_{U}^{*} = \sum\limits_{i = 1}^{n} {\left( {Y_{i}^{{*^{\prime\prime}}} - \overline{Y}} \right)} + \sum\limits_{i = 1}^{n} {U_{i}^{*} }\),

\(W_{Y}^{*} + W_{U}^{*} = \sum\limits_{i = 1}^{n} {\left( {Y_{i}^{{*^{\prime\prime}}} - \overline{Y}} \right)} + \sum\limits_{i = 1}^{n} {\left( {y_{i}^{{*^{\prime\prime}}} - Y_{i}^{{*^{\prime\prime}}} } \right)}\),

Or alternatively.

\(\frac{{W_{Y}^{*} + W_{U}^{*} }}{n} = \frac{1}{n}\sum\limits_{i = 1}^{n} {y_{i}^{{*^{\prime\prime}}} } - \overline{Y}\).

Now we get.

\(Var(\overline{x}) = \lambda^{\prime \prime } S_{X}^{2}\),

alternatively is given by

$$ E\left( {e_{1} } \right)^{2} = E_{1} E_{2} \left( {\frac{{\overline{x} - \overline{X}}}{{\overline{X}}}} \right)^{2} = E_{1} E_{2} \left( {\frac{{W_{X} }}{{\overline{X}n}}} \right)^{2} = \frac{1}{{\overline{X}^{2} }}Var(\overline{x}) = V_{20} $$
(C-12)

Similarly

$$ E\left( {e_{0}^{*} e_{1} } \right) = E_{1} E_{2} \left( {\frac{{\overline{x} - \overline{X}}}{{\overline{X}}}} \right)\left( {\frac{{\overline{y}^{{*^{\prime\prime}}} - \overline{Y}}}{{\overline{Y}}}} \right) = \frac{1}{{\overline{X}\overline{Y}}}Cov(\overline{x},\overline{y}^{{*^{\prime\prime}}} ) = V^{\prime\prime}_{11} $$
(C-13)

where \({\text{Cov}}(\overline{x}^{*\prime \prime } ,\overline{y}^{*\prime \prime } ) = \lambda^{\prime \prime } S_{YX} + \theta^{*} S_{YX(2)}\).

Similarly.

\(E\left( {e^{\prime}_{1} } \right)^{2} = E^{\prime}\left( {\frac{{\overline{x}^{\prime} - \overline{X}}}{{\overline{X}}}} \right)^{2} = E^{\prime}\left( {\frac{{W_{X} }}{{\overline{X}n}}} \right)^{2} = \frac{1}{{\overline{X}^{2} }}Var(\overline{x}^{\prime}) = \frac{1}{{\overline{X}^{2} }}\lambda^{\prime}S_{X}^{2} = V^{\prime}_{20}\),

and

$$ E\left( {e^{\prime}_{1} e_{1}^{*} } \right) = E^{\prime}E_{1} E_{2} \left( {\frac{{\overline{x}^{\prime} - \overline{X}}}{{\overline{X}}}} \right)\left( {\frac{{\overline{x}^{{*^{\prime\prime}}} - \overline{X}}}{{\overline{X}}}} \right) = \frac{1}{{\overline{X}^{2} }}Var(\overline{x}^{\prime}) = V^{\prime}_{20} $$
(C-14)

and

$$ E\left( {e^{\prime}_{1} e_{0}^{*} } \right) = E^{\prime}E_{1} E_{2} \left( {\frac{{\overline{x}^{\prime} - \overline{X}}}{{\overline{X}}}} \right)\left( {\frac{{\overline{y}^{{*^{\prime\prime}}} - \overline{Y}}}{{\overline{Y}}}} \right) = \frac{1}{{\overline{X}\overline{Y}}}Cov(\overline{x}^{\prime},\overline{y}^{{*^{\prime\prime}}} ) = V^{\prime}_{11} $$
(C-15)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabir, S., Sanaullah, A. Efficient Estimation of Mean in Two-Phase Sampling when Measurement Error and Non-Response are Simultaneously Present. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 92, 633–646 (2022). https://doi.org/10.1007/s40010-022-00776-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-022-00776-x

Keywords

Navigation