Skip to main content
Log in

Magnon bistability in a hybrid cavity–magnon system

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We have explored the magnon bistability in cavity–magnon system. The stationary solution of the Heisenberg–Langevin equation is obtained numerically and magnon profile is studied as function of different experimentally feasible system parameters. The magnon profile shows an anticlockwise hysteresis loop and the loop area increases with input power. The mean magnon number shows bistable nature. The Kittel mode can transit from one stable state to another stable state near two transition points. The threshold powers of transition and bistable region strongly depend on magnon dissipation rate, photon-magnon coupling strength, and Kerr nonlinear strength. This study confirms that bistable quantum states may supply a platform to describe bistability at macroscopic regime in nonlinear systems. This study may also be used in potential applications in magnetic spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

The used data for this work has been discussed in Sect. “Parameter feasibility”.

References

  1. O.O. Soykal, M.E. Flatte, Strong field interactions between a nanomagnet and a photonic cavity. Phys. Rev. Lett. 104, 077202 (2010)

    Article  ADS  Google Scholar 

  2. H. Huebl et al., High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids. Phys. Rev. Lett. 111, 127003 (2013)

    Article  ADS  Google Scholar 

  3. X. Zhang, C.L. Zou, L. Jiang, H.X. Tang, Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett. 113, 156401 (2014)

    Article  ADS  Google Scholar 

  4. Y. Tabuchi et al., Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. 113, 083603 (2014)

    Article  ADS  Google Scholar 

  5. Y. Tabuchi et al., Quantum Information coherent coupling between ferromagnetic magnon and a superconducting qubit. Science 349, 405 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. L. Bai et al., Spin pumping in electrodynamically coupled magnon-photon systems. Phys. Rev. Lett. 114, 227201 (2015)

    Article  ADS  Google Scholar 

  7. R. Hisatomi et al., Bidirectional conversion between microwave and light via ferromagnetic magnons. Phys. Rev. B 93, 174427 (2016)

    Article  ADS  Google Scholar 

  8. A. Osada et al., Cavity optomagnonics with spin-orbit coupled photons. Phys. Rev. Lett. 116, 223601 (2016)

    Article  ADS  Google Scholar 

  9. X. Zhang, N. Zhu, C.L. Zou, H.X. Tang, Optomagnonic whispering gallery microresonators. Phys. Rev. Lett. 117, 123605 (2016)

    Article  ADS  Google Scholar 

  10. J.A. Haigh, A. Nunnenkamp, A.J. Ramsay, A.J. Farguson, Triple resonant Brillouin light scattering in magneto-optical cavities. Phys. Rev. Lett. 117, 133602 (2016)

    Article  ADS  Google Scholar 

  11. J.A. Haigh et al., Selection rules for cavity enhanced Brillouin light scattering from magnetostatic modes. Phys. Rev. B 97, 214423 (2018)

    Article  ADS  Google Scholar 

  12. A. Osada et al., Brillouin light scattering by magnetic quasivortices in cavity optomagnonics. Phys. Rev. Lett. 120, 133602 (2018)

    Article  ADS  Google Scholar 

  13. J.A. Haigh et al., Magneto-optical coupling in Whispering gallery mode resonators. Phys. Rev. A 92, 063845 (2015)

    Article  ADS  Google Scholar 

  14. S.V. Kusminskiy, H.X. Tang, F. Marquardt, Coupled spin-light dynamics in cavity optomagnonics. Phys. Rev. A 94, 033821 (2016)

    Article  ADS  Google Scholar 

  15. Z.X. Liu, H. Xiong, Magnon laser based on brillouin light scattering. Opt. Lett. 45, 5452 (2020)

    Article  ADS  Google Scholar 

  16. S. Sharma, B.Z. Rameshti, Y.M. Blanter, G.E.W. Bauer, Optical mode matching in cavity optomagnonics. Phys. Rev. B 99, 214423 (2020)

    Article  ADS  Google Scholar 

  17. S.P. Wolski, D. Lachance-Quirion, Y. Tabuchi, S. Kono, A. Noguchi, K. Usami, Y. Nakamura, Dissipation-based quantum sensing of magnons with a superconducting qubit. Phys. Rev. Lett. 125, 117701 (2020)

    Article  ADS  Google Scholar 

  18. D. Lachance-Quirion, S.P. Wolski, Y. Tabuchi, S. Kono, K. Usami, Y. Nakamura, Entanglement-based single-shot detection of a single magnon with a superconducting qubit. Science 367, 425 (2020)

    Article  ADS  Google Scholar 

  19. N.J. Lambert, A. Rueda, F. Sedlmeir, H.G.L. Schwefel, Coherent conversion between microwave and optical photons–an overview of physical implementations. Adv. Quantum Technol. 3, 1900077 (2020)

    Article  Google Scholar 

  20. L. Bai, M. Harder, P. Hyde, Z. Zhang, C.-M. Hu, Y.P. Chen, J.Q. Xiao, Cavity mediated manipulation of distant spin currents using a cavity-magnon-polariton. Phys. Rev. Lett. 118, 217201 (2017)

    Article  ADS  Google Scholar 

  21. P.-C. Xu, J.W. Rao, Y.S. Gui, X. Jin, C.-M. Hu, Cavity-mediated dissipative coupling of distant magnetic moments: theory and experiment. Phys. Rev. B 100, 094415 (2019)

    Article  ADS  Google Scholar 

  22. X. Zhang, C.-L. Zou, N. Zhu, F. Marquardt, L. Jiang, H.X. Tang, Magnon dark modes and gradient memory. Nat. Commun. 6, 8914 (2015)

    Article  ADS  Google Scholar 

  23. P.A. Pantazopoulos, K.L. Tsakmakidis, E. Almpanis, G.P. Zouros, N. Stefanou, High-efficiency triple-resonant inelastic light scattering in planar optomagnonic cavities. N. J. Phys. 21, 095001 (2019)

    Article  Google Scholar 

  24. D. Zhang, X.-Q. Luo, Y.-P. Wang, T.-F. Li, J.Q. You, Observation of the exceptional point in cavity magnon-polaritons. Nat. Commun. 8, 1368 (2017)

    Article  ADS  Google Scholar 

  25. X. Zhang, K. Ding, X. Zhou, J. Xu, D. Jin, Experimental observation of an exceptional surface in synthetic dimensions with magnon polaritons. Phys. Rev. Lett. 123, 237202 (2019)

    Article  ADS  Google Scholar 

  26. G.-Q. Zhang, J.Q. You, Higher-order exceptional point in a cavity magnonics system. Phys. Rev. B 99, 054404 (2019)

    Article  ADS  Google Scholar 

  27. B.M. Yao, T. Yu, X. Zhang, W. Lu, Y.S. Gui, C.-M. Hu, Y.M. Blanter, The microscopic origin of magnon-photon level attraction by traveling waves: Theory and experiment. Phys. Rev. B 100, 214426 (2019)

    Article  ADS  Google Scholar 

  28. I. Boventer, C. Dörflinger, T. Wolz, R. Macêdo, R. Lebrun, M. Kläui, M. Weides, Control of the coupling strength and line width of a cavity magnon-polariton. Phys. Rev. Res. 2, 013154 (2020)

    Article  Google Scholar 

  29. D. Zhang et al., Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere. NJP Quant. Inf. 1(1), 15014 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. D. Lachance-Quirion et al., Hybrid quantum systems based on magnonics. Appl. Phys. Express 12, 070101 (2019)

    Article  ADS  Google Scholar 

  31. N. Kostylev, M. Goryachev, M.E. Tobar, Superstrong coupling of a microwave cavity to yttrium iron garnet magnons. App. Phys. Lett. 108, 062402 (2016)

    Article  ADS  Google Scholar 

  32. E. Almpanis, G.P. Zouros, P.A. Pantazopoulos, K.L. Tsakmakidis, N. Papanikolaou, N. Stefanou, Spherical optomagnonic microresonators: triple-resonant photon transitions between Zeeman-split Mie modes. Phys. Rev. B 101, 054412 (2020)

    Article  ADS  Google Scholar 

  33. S.N. Huai, Y.L. Liu, J. Zhang, L. Yang, Y.X. Liu, Enhanced sideband responses in a PT-symmetric like cavity magnomechanical system. Phys. Rev. A 99, 043803 (2019)

    Article  ADS  Google Scholar 

  34. N. Zhu et al., Magnon-photon strong coupling for tunable microwave circulators. Phys. Rev. A 101, 043842 (2020)

    Article  ADS  Google Scholar 

  35. C. Kong, X.-M. Bao, J.B. Liu, H. Xiong, Magnon-mediated nonreciprocal microwave transmission based on quantum interference. Opt. Express. 29, 25477 (2021)

    Article  ADS  Google Scholar 

  36. Y.-P. Wang et al., Bistability of cavity magnon polaritons. Phys. Rev. Lett. 120, 057202 (2018)

    Article  ADS  Google Scholar 

  37. C. Jiang et al., Controllable optical bistability based on photons and phonons in a two mode optomechanical system. Phys. Rev. A. 88, 055801 (2013)

    Article  ADS  Google Scholar 

  38. L. Jiang et al., Optical bistability and four-wave mixing in a hybrid optomechanical system. Phys. Lett. A. 381, 3289 (2017)

    Article  ADS  Google Scholar 

  39. K. Mukherjee, A. Samanta, P.C. Jana, Controllable optical bistability based on rotation in semiconductor micro-cavity. J. Non. Opt. Phys. Mat. 31, 2150012 (2021)

    Article  Google Scholar 

  40. S. Li et al., Optical bistability via an external control field in all-fibre ring cavity. Sci. Rep. 7, 8992 (2017)

    Article  ADS  Google Scholar 

  41. C. Jiang, X. Bian, Y. Cui, G. Chen, Optical bistability and dynamics in an optomechanical system with a two-level atom. J. Opt. Am. B 33, 10 (2016)

    Article  Google Scholar 

  42. G. Yuan et al., Theoretical and experimental studies on bistability in semiconductor ring lasers with two optical injections. IEEE J. S. T. Quant. Ele. 14, 3 (2008)

    Google Scholar 

  43. A. Baas, JPh. Karr, H. Eleuch, E. Giacobino, Optical bistability in semiconductor microcavities. Phys. Rev. A 69, 023809 (2004)

    Article  ADS  Google Scholar 

  44. K. Mukherjee, P.C. Jana, Controlled optical bistability in parity-time symmetry micro-cavities: Possibilty of all optical switching. Physica E: Low-Dimens. Syst. Nanostruct. 117, 113780 (2019)

    Article  Google Scholar 

  45. C. Kong, H. Xiong, Y. Wu, Magnon-Induced nonreciprocity based on the Magnon Kerr effect. Phys. Rev. App. 12, 034001 (2019)

    Article  Google Scholar 

  46. Z.-B. Yang et al., Bistability of squeezing and entanglement in cavity magnonics. Phys. Rev. Res. 3, 023126 (2021)

    Article  Google Scholar 

  47. G.-Q. Zhang, Y.-P. Wang, J.Q. You, Theory of the magnon Kerr effect in cavity magnonics. Science China. 62, 987511 (2019)

    Google Scholar 

  48. I. Rotter, J.P. Bird, A review of progress in the physics of open quantum systems: theory and experiment. Rep. Prog. Phys. 78, 114001 (2015)

    Article  ADS  Google Scholar 

  49. H. Eleuch, I. Rotter, Open quantum systems with loss and gain. Int J Theor Phys 54, 3877 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. H. Eleuch, I. Rotter, Gain and loss in open quantum systems. Phys. Rev. A. 95, 062109 (2017)

    Article  ADS  MATH  Google Scholar 

  51. H. Eleuch, I. Rotter, Nearby states in non-Hermitian quantum systems I: two states. Eur. Phys. J. D 69, 229 (2015)

    Article  ADS  Google Scholar 

  52. H. Gibbs, Optical bistability: controlling light with light (Academic, New York, 1985)

    Google Scholar 

  53. N. Peyghambarian, H.M. Gibbs, Optical bistability for optical signal processing and computing. Opt. Eng. 24, 68 (1985)

    Article  ADS  Google Scholar 

  54. Q. Mao, J.W. Lit, L-band fibre laser with wide tuning range based on dual wavelength optical bistability in linear overlapping grating cavities. IEEE J. Quant. Electron 39, 1252 (2003)

    Article  ADS  Google Scholar 

  55. A. Faraon et al., Integrated quantum optical networks based on quantum dots and photonic crystals. New J. Phys. 13, 055025 (2011)

    Article  ADS  Google Scholar 

  56. E.A. Sete, H. Eleuch, Controllable nonlinear effects in an optomechanical resonator containing a quantum well. Phys. Rev. A. 85, 043824 (2012)

    Article  ADS  Google Scholar 

  57. M. Gao et al., Self-sustained oscillation and dynamical multistability of optomechanical systems in the extremely-large-amplitude regime. Phys. Rev. A. 91, 013833 (2015)

    Article  ADS  Google Scholar 

  58. V. Kubytskyi, S.A. Biehs, P. Ben-Abdallah, Phys. Rev. Lett. 113, 074301 (2014)

    Article  ADS  Google Scholar 

  59. S.R.K. Rodriguez et al., Probing a dissipative phase transition via dynamical optical hysteresis. Phys. Rev. Lett. 118, 247402 (2017)

    Article  ADS  Google Scholar 

  60. C. Kittel, On the theory of ferromagnetic resonance absorption. Phys. Rev. 73, 155 (1948)

    Article  ADS  Google Scholar 

  61. X. Zhang, C.L. Zou, L. Jiang, H.X. Tang, Cavity magnomechanics. Sci. Adv. 2, e1501286 (2016)

    Article  ADS  Google Scholar 

  62. T. Holstein, H. Primakoff, Field dependence of the intrinsic domain magnetisation of a ferromagnet. Phys. Rev. 58, 1098 (1940)

    Article  ADS  MATH  Google Scholar 

  63. S. Blundell, Magnetism in condensed matter (Oxford University Press, Oxford, 2001)

    Google Scholar 

  64. Z. Zhang, M.O. Scully, G.S. Agarwal, Quantum entanglement between two magnon modes via Kerr nonlinearity driven far from equilibrium. Phys. Rev. Res. 1, 023021 (2019)

    Article  Google Scholar 

  65. C. Kong et al., Magnetically controllable slow light based on magnetostrictive forces. Opt. Exp. 27, 5544 (2019)

    Article  Google Scholar 

  66. Y. Wei et al., Quantitative analysis of magnon induced second-order sideband generation. IEEE Access. 4, 2929912 (2016)

    Google Scholar 

  67. M. Wang et al., Magnon Chaos in PT-aymmetric cavity Magnomechanics. IEEE Photonics J. 11, 5300108 (2019)

    Google Scholar 

  68. M.-S. Ding, L. Zheng, C. Li, Phonon laser in a cavity magnomechanical system. Sci. Rep. 9, 15723 (2019)

    Article  ADS  Google Scholar 

  69. B. Wang et al., Magnon-induced transparency and amplification in PT-symmetric cavity-magnon system. Opt. Exp. 26, 20248 (2018)

    Article  Google Scholar 

  70. V. Cherepanov, I. Kolokolov, V. Lvov, The Saga of YIG: spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet. Phys. Rep. 229, 81 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kousik Mukherjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, K., Jana, P.C. Magnon bistability in a hybrid cavity–magnon system. J. Korean Phys. Soc. 82, 356–363 (2023). https://doi.org/10.1007/s40042-022-00677-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00677-7

Keywords

Navigation