Skip to main content
Log in

Synthesis and characterization of cellulose, β-cyclodextrin, silk fibroin-based hydrogel containing copper-doped cobalt ferrite nanospheres and exploration of its biocompatibility

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

A novel multifunctional biocomposite scaffold based on cellulose (Cel) and β-cyclodextrin (β.CD) biopolymers modified with extracted silk fibroin (SF) as well as magnetic copper-doped cobalt ferrite (CuCoFe2O4) nanospheres has been developed. The hybrid scaffold was characterized by FE–SEM, TGA, FT–IR, and EDS techniques to demonstrate the core–shell morphology, thermal stability of the main structure, the chemical bonds as well as the good connections in the composite structure, and the good distribution of the particles in the formed structure, respectively. The Cel-β.CD/SF/CuCoFe2O4 biocomposite shows a cell viability above 84% in addition to 80% after three and seven days, respectively, and low hemolytic effect (below 3%), which confirms a high hemocompatibility of this hydrogel. Further, the antibacterial property of the biocomposite was identified from superficial P. aeruginosa biofilm formation prevention. Thus, developed biocompatible hydrogel shows suitable characteristics for a variety of biomedical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahmadi, D., Zarei, M., Rahimi, M., Khazaie, M., Asemi, Z., Mir, S.M., Sadeghpour, A., Karimian, A., Alemi, F., Rahmati-Yamchi, M.: Preparation and in-vitro evaluation of pH-responsive cationic cyclodextrin coated magnetic nanoparticles for delivery of methotrexate to the Saos-2 bone cancer cells. J. Drug Deliv. Sci. Technol. 57, 101584 (2020)

    Article  CAS  Google Scholar 

  2. Ashour, A., El-Batal, A.I., Maksoud, M.A., El-Sayyad, G.S., Labib, S., Abdeltwab, E., El-Okr, M.: Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology. 40, 141–151 (2018)

    Article  CAS  Google Scholar 

  3. Bae, S.B., Jeong, J.E., Park, S.A., Park, W.H.: Dual-crosslinked silk fibroin hydrogels with elasticity and cytocompatibility for the regeneration of articular cartilage. Polymer 224, 123739 (2021)

    Article  CAS  Google Scholar 

  4. Bilal, M., Rasheed, T., Zhao, Y., Iqbal, H.M.: Agarose-chitosan hydrogel-immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation properties. Int. J. Biol. Macromol. 124, 742–749 (2019)

    Article  CAS  Google Scholar 

  5. Bucciarelli, A., Greco, G., Corridori, I., Pugno, N.M., Motta, A.: A design of experiment rational optimization of the degumming process and its impact on the silk fibroin properties. ACS Biomater. Sci. Eng. 7, 1374–1393 (2021)

    Article  CAS  Google Scholar 

  6. Chenab, K.K., Eivazzadeh-Keihan, R., Maleki, A., Pashazadeh-Panahi, P., Hamblin, M.R., Mokhtarzadeh, A.: Biomedical applications of nanoflares: targeted intracellular fluorescence probes. Nanomed. Nanotechnol. Biol. Med. 17, 342–358 (2019)

    Article  CAS  Google Scholar 

  7. Chouhan, D., Lohe, T., Samudrala, P.K., Mandal, B.B.: In situ forming injectable silk fibroin hydrogel promotes skin regeneration in full thickness burn wounds. Adv. Healthc. Mater. 7, 1801092 (2018)

    Article  Google Scholar 

  8. Eivazzadeh-Keihan, R., Aliabadi, H.A.M., Radinekiyan, F., Sobhani, M., Maleki, A., Madanchi, H., Mahdavi, M., Shalan, A.E.: Investigation of the biological activity, mechanical properties and wound healing application of a novel scaffold based on lignin–agarose hydrogel and silk fibroin embedded zinc chromite nanoparticles. RSC Adv. 11, 17914–17923 (2021)

    Article  CAS  Google Scholar 

  9. Eivazzadeh-Keihan, R., Asgharnasl, S., Bani, M.S., Radinekiyan, F., Maleki, A., Mahdavi, M., Babaniamansour, P., Bahreinizad, H., Shalan, A.E., Lanceros-Méndez, S.: Magnetic copper ferrite nanoparticles functionalized by aromatic polyamide chains for hyperthermia applications. Langmuir 37, 8847–8854 (2021)

    Article  CAS  Google Scholar 

  10. Eivazzadeh-Keihan, R., Chenab, K.K., Taheri-Ledari, R., Mosafer, J., Hashemi, S.M., Mokhtarzadeh, A., Maleki, A., Hamblin, M.R.: Recent advances in the application of mesoporous silica-based nanomaterials for bone tissue engineering. Mater. Sci. Eng. C. 107, 110267 (2020)

    Article  CAS  Google Scholar 

  11. Eivazzadeh-Keihan, R., Khalili, F., Aliabadi, H.A.M., Maleki, A., Madanchi, H., Ziabari, E.Z., Bani, M.S.: Alginate hydrogel-polyvinyl alcohol/silk fibroin/magnesium hydroxide nanorods: a novel scaffold with biological and antibacterial activity and improved mechanical properties. Int. J. Biol. Macromol. 162, 1959–1971 (2020)

    Article  CAS  Google Scholar 

  12. Eivazzadeh-Keihan, R., Pashazadeh-Panahi, P., Baradaran, B., Maleki, A., Hejazi, M., Mokhtarzadeh, A., de la Guardia, M.: Recent advances on nanomaterial based electrochemical and optical aptasensors for detection of cancer biomarkers. Trends Analyt. Chem. 100, 103–115 (2018)

    Article  CAS  Google Scholar 

  13. Eivazzadeh-Keihan, R., Radinekiyan, F., Aliabadi, H.A.M., Sukhtezari, S., Tahmasebi, B., Maleki, A., Madanchi, H.: Chitosan hydrogel/silk fibroin/Mg (OH) 2 nanobiocomposite as a novel scaffold with antimicrobial activity and improved mechanical properties. Sci. Rep. 11, 1–13 (2021)

    Article  Google Scholar 

  14. Eivazzadeh-Keihan, R., Radinekiyan, F., Madanchi, H., Aliabadi, H.A.M., Maleki, A.: Graphene oxide/alginate/silk fibroin composite as a novel bionanostructure with improved blood compatibility, less toxicity and enhanced mechanical properties. Carbohydr. Polym. 248, 116802 (2020)

    Article  CAS  Google Scholar 

  15. Eivazzadeh-Keihan, R., Radinekiyan, F., Maleki, A., Bani, M.S., Hajizadeh, Z., Asgharnasl, S.: A novel biocompatible core-shell magnetic nanocomposite based on cross-linked chitosan hydrogels for in vitro hyperthermia of cancer therapy. Int. J. Biol. Macromol. 140, 407–414 (2019)

    Article  CAS  Google Scholar 

  16. Ha, S.-W., Tonelli, A.E., Hudson, S.M.: Structural studies of bombyx m ori silk fibroin during regeneration from solutions and wet fiber spinning. Biomacromol 6, 1722–1731 (2005)

    Article  CAS  Google Scholar 

  17. Haney, E.F., Trimble, M.J., Cheng, J.T., Vallé, Q., Hancock, R.E.: Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides. Biomolecules 8, 29 (2018)

    Article  Google Scholar 

  18. He, S., Shi, D., Han, Z., Dong, Z., Xie, Y., Zhang, F., Zeng, W., Yi, Q.: Heparinized silk fibroin hydrogels loading FGF1 promote the wound healing in rats with full-thickness skin excision. Biomed. Eng. Online. 18, 1–12 (2019)

    Article  CAS  Google Scholar 

  19. Hernández-González, A.C., Téllez-Jurado, L., Rodríguez-Lorenzo, L.M.: Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review. Carbohydr. Polym. 229, 115514 (2020)

    Article  Google Scholar 

  20. Hu, W., Wang, Z., Xiao, Y., Zhang, S., Wang, J.: Advances in crosslinking strategies of biomedical hydrogels. Biomater. Sci. 7, 843–855 (2019)

    Article  CAS  Google Scholar 

  21. Huang, H., Mao, L., Li, Z., Liu, Y., Fan, S., Jin, Y., Xie, J.: Multifunctional polypyrrole-silver coated layered double hydroxides embedded into a biodegradable polymer matrix for enhanced antibacterial and gas barrier properties. J. Bioresour. Bioproduct. (JB&B). 4, 231–241 (2019)

    CAS  Google Scholar 

  22. Huang, W., Wang, Y., Huang, Z., Wang, X., Chen, L., Zhang, Y., Zhang, L.: On-demand dissolvable selfhealing hydrogel based on carboxymethyl chitosan and cellulose nanocrystal for deep partial thickness burn wound healing. ACS Appl. Mater. Interfaces. 10, 41076–41088 (2018)

    Article  CAS  Google Scholar 

  23. Ijaz, M., Zafar, M., Islam, A., Afsheen, S., Iqbal, T.: A review on antibacterial properties of biologically synthesized zinc oxide nanostructures. J. Inorg. Organomet. Polym. Mater. 30, 2815–2826 (2020)

    Article  CAS  Google Scholar 

  24. Johari, N., Moroni, L., Samadikuchaksaraei, A.: Tuning the conformation and mechanical properties of silk fibroin hydrogels. Eur. Polym. J. 134, 109842 (2020)

    Article  CAS  Google Scholar 

  25. Kamel, R., El-Wakil, N.A., Abdelkhalek, A.A., Elkasabgy, N.A.: Nanofibrillated cellulose/cyclodextrin based 3D scaffolds loaded with raloxifene hydrochloride for bone regeneration. Int. J. Biol. Macromol. 156, 704–716 (2020)

    Article  CAS  Google Scholar 

  26. Kaniewska, K., Karbarz, M., Katz, E.: Nanocomposite hydrogel films and coatings–Features and applications. Appl. Mater. Today. 20, 100776 (2020)

    Article  Google Scholar 

  27. Koopmans, C., Ritter, H.: Color change of N-isopropylacrylamide copolymer bearing reichardts dye as optical sensor for lower critical solution temperature and for host− guest interaction with β- cyclodextrin. J. Am. Chem. Soc. 129, 3502–3503 (2007)

    Article  CAS  Google Scholar 

  28. Kundu, A., Hasnain, M.S., Nayak, A.K.: Chitosan-based hydrogels in drug delivery. In: Chitosan in Drug Delivery. pp. 361–387. Elsevier (2022).

  29. Liu, F., Chen, C., Qian, J.: Film-like bacterial cellulose/cyclodextrin oligomer composites with controllable structure for the removal of various persistent organic pollutants from water. J. Hazard. Mater. 405, 124122 (2021)

    Article  CAS  Google Scholar 

  30. Liu, S., Luo, W., Huang, H.: Characterization and behavior of composite hydrogel prepared from bamboo shoot cellulose and β-cyclodextrin. Int. J. Biol. Macromol. 89, 527–534 (2016)

    Article  CAS  Google Scholar 

  31. Mahinroosta, M., Farsangi, Z.J., Allahverdi, A., Shakoori, Z.: Hydrogels as intelligent materials: a brief review of synthesis, properties and applications. Mater. Today Chem. 8, 42–55 (2018)

    Article  CAS  Google Scholar 

  32. Palantöken, S., Bethke, K., Zivanovic, V., Kalinka, G., Kneipp, J., Rademann, K.: Cellulose hydrogels physically crosslinked by glycine: Synthesis, characterization, thermal and mechanical properties. J. Appl. Polym. Sci. 137, 48380 (2020)

    Article  Google Scholar 

  33. Polat, T.G., Duman, O., Tunc, S.: Agar/κ-carrageenan/montmorillonite nanocomposite hydrogels for wound dressing applications. Int. J. Biol. Macromol. 164, 4591–4602 (2020)

    Article  CAS  Google Scholar 

  34. Qin, Y., Chen, L.-L., Pu, W., Liu, P., Liu, S.-X., Li, Y., Liu, X.-L., Lu, Z.-X., Zheng, L.-Y., Cao, Q.-E.: A hydrogel directly assembled from a copper metal–organic polyhedron for antimicrobial application. ChemComm. 55, 2206–2209 (2019)

    CAS  Google Scholar 

  35. Rahmani Del Bakhshayesh, A., Annabi, N., Khalilov, R., Akbarzadeh, A., Samiei, M., Alizadeh, E., Alizadeh-Ghodsi, M., Davaran, S., Montaseri, A.: Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artif. Cells Nanomed. Biotechnol. 46, 691–705 (2018)

    Article  CAS  Google Scholar 

  36. Rasoulzadeh, M., Namazi, H.: Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. Carbohydr. Polym. 168, 320–326 (2017)

    Article  CAS  Google Scholar 

  37. Rastogi, S., Kandasubramanian, B.: Processing trends of silk fibers: Silk degumming, regeneration and physical functionalization. J. Text. Inst. 111, 1794–1810 (2020)

    Article  CAS  Google Scholar 

  38. Ren, E., Zhang, C., Li, D., Pang, X., Liu, G.: Leveraging metal oxide nanoparticles for bacteria tracing and eradicating. View. 1, 20200052 (2020)

    Article  Google Scholar 

  39. Salleh, K.M., Zakaria, S., Sajab, M.S., Gan, S., Kaco, H.: Superabsorbent hydrogel from oil palm empty fruit bunch cellulose and sodium carboxymethylcellulose. Int. J. Biol. Macromol. 131, 50–59 (2019)

    Article  CAS  Google Scholar 

  40. Sharma, S., Tiwari, S.: A review on biomacromolecular hydrogel classification and its applications. Int. J. Biol. Macromol. 162, 737–747 (2020)

    Article  CAS  Google Scholar 

  41. Patwa, R., Soundararajan, N., Mulchandani, N., Bhasney, S.M., Shah, M., Kumar, S., Kumar, A., Katiyar, V.: Silk nano-discs: a natural material for cancer therapy. Biopolymers 109, e23231 (2018)

    Article  Google Scholar 

  42. Shen, Y., Wang, H., Liu, Z., Li, W., Liu, Y., Li, J., Wei, H., Han, H.: Fabrication of a water-retaining, slow-release fertilizer based on nanocomposite double-network hydrogels via ion-crosslinking and free radical polymerization. J. Ind. Eng. Chem. 93, 375–382 (2021)

    Article  CAS  Google Scholar 

  43. Shi, Q., Luo, X., Huang, Z., Midgley, A.C., Wang, B., Liu, R., Zhi, D., Wei, T., Zhou, X., Qiao, M.: Cobaltmediated multi-functional dressings promote bacteria-infected wound healing. Acta Biomater. 86, 465–479 (2019)

    Article  CAS  Google Scholar 

  44. Shitrit, Y., Bianco-Peled, H.: Insights into the formation mechanisms and properties of pectin hydrogel physically cross-linked with chitosan nanogels. Carbohydr. Polym. 269, 118274 (2021)

    Article  CAS  Google Scholar 

  45. Alikhanzadeh-Arani, S., Almasi-Kashi, M., Sargazi, S., Rahdar, A., Arshad, R., Baino, F.: CoNiZn and CoNiFe nanoparticles: synthesis, physical characterization, and in vitro cytotoxicity evaluations. Appl. Sci. 11, 5339 (2021)

    Article  CAS  Google Scholar 

  46. Sun, C., Zeng, X., Zheng, S., Wang, Y., Li, Z., Zhang, H., Nie, L., Zhang, Y., Zhao, Y., Yang, X.: Bioadhesive catechol-modified chitosan wound healing hydrogel dressings through glow discharge plasma technique. Chem. Eng. J. 427, 130843 (2022)

    Article  CAS  Google Scholar 

  47. Sun, X., Luo, C., Luo, F.: Preparation and properties of self-healable and conductive PVA-agar hydrogel with ultra-high mechanical strength. Eur. Polym. J. 124, 109465 (2020)

    Article  CAS  Google Scholar 

  48. Taheri-Ledari, R., Esmaeili, M.S., Varzi, Z., Eivazzadeh-Keihan, R., Maleki, A., Shalan, A.E.: Facile route to synthesize Fe 3 O 4@ acacia–SO 3 H nanocomposite as a heterogeneous magnetic system for catalytic applications. RSC Adv. 10, 40055–40067 (2020)

    Article  CAS  Google Scholar 

  49. Hasani, K., Peyghami, A., Moharrami, A., Vosoughi, M., Dargahi, A.: The efficacy of sono-electro- Fenton process for removal of Cefixime antibiotic from aqueous solutions by response surface methodology (RSM) and evaluation of toxicity of effluent by microorganisms. Arab. J. Chem. 13, 6122–6139 (2020)

    Article  CAS  Google Scholar 

  50. Zavareh, H.S., Pourmadadi, M., Moradi, A., Yazdian, F., Omidi, M.: Chitosan/carbon quantum dot/aptamer complex as a potential anticancer drug delivery system towards the release of 5-fluorouracil. Int. J. Biol. Macromol. 165, 1422–1430 (2020)

    Article  CAS  Google Scholar 

  51. Tao, G., Wang, Y., Cai, R., Chang, H., Song, K., Zuo, H., Zhao, P., Xia, Q., He, H.: Design and performance of sericin/poly (vinyl alcohol) hydrogel as a drug delivery carrier for potential wound dressing application. Mater. Sci. Eng. C. 101, 341–351 (2019)

    Article  CAS  Google Scholar 

  52. Tufani, A., Qureshi, A., Niazi, J.H.: Iron oxide nanoparticles based magnetic luminescent quantum dots (MQDs) synthesis and biomedical/biological applications: a review. Mater. Sci. Eng. C. 118, 111545 (2021)

    Article  CAS  Google Scholar 

  53. Yang, Y., Liang, Y., Chen, J., Duan, X., Guo, B.: Mussel-inspired adhesive antioxidant antibacterial hemostatic composite hydrogel wound dressing via photo-polymerization for infected skin wound healing. Bioact. Mater. 8, 341–354 (2022)

    Article  CAS  Google Scholar 

  54. Ye, D., Yang, P., Lei, X., Zhang, D., Li, L., Chang, C., Sun, P., Zhang, L.: Robust anisotropic cellulose hydrogels fabricated via strong self-aggregation forces for cardiomyocytes unidirectional growth. Chem. Mater. 30, 5175–5183 (2018)

    Article  CAS  Google Scholar 

  55. Zhang, H., Liu, Y., Chen, C., Cui, W., Zhang, C., Ye, F., Zhao, Y.: Responsive drug-delivery microcarriers based on the silk fibroin inverse opal scaffolds for controllable drug release. Appl. Mater. Today. 19, 100540 (2020)

    Article  Google Scholar 

  56. Balavijayalakshmi, J., Suriyanarayanan, N., Jayapraksah, R.: Influence of copper on the magnetic properties of cobalt ferrite nano particles. Mater. Lett. 81, 52–54 (2012)

    Article  CAS  Google Scholar 

  57. Rajabi, S., Nasiri, A., Hashemi, M.: Enhanced activation of persulfate by CuCoFe2O4@ MC/AC as a novel nanomagnetic heterogeneous catalyst with ultrasonic for metronidazole degradation. Chemosphere 286, 131872 (2022)

    Article  CAS  Google Scholar 

  58. Keshk, S.M.A.S., Hamdy, M.S.: Preparation and physicochemical characterization of zinc oxide/sodium cellulose composite for food packaging. Turk. J. Chem. 43, 94–105 (2019)

    Article  Google Scholar 

  59. Kaur, K., Jindal, R., Jindal, D.: Synthesis, characterization and studies on host-guest interactions of inclusion complexes of metformin hydrochloride with β–cyclodextrin. J. Mol. Liq. 282, 162–168 (2019)

    Article  CAS  Google Scholar 

  60. Minoura, N., et al.: Attachment and growth of fibroblast cells on silk fibroin. Biochem. Biophys. Res. Commun. 208, 511–516 (1995)

    Article  CAS  Google Scholar 

  61. Zhang, X., Pan, Z.: Microstructure transitions and dry-wet spinnability of silk fibroin protein from waste silk quilt. Polymers 11, 1622 (2019)

    Article  CAS  Google Scholar 

  62. Moraes, M.A.D., Nogueira, G.M., Weska, R.F., Beppu, M.M.: Preparation and characterization of insoluble silk fibroin/chitosan blend films. Polymers 2, 719–727 (2010)

    Article  Google Scholar 

  63. Zhang, L., Zhou, J., Zhang, L.: Structure and properties of β-cyclodextrin/cellulose hydrogels prepared in NaOH/urea aqueous solution. Carbohydr. polym. 94, 386–393 (2013)

    Article  CAS  Google Scholar 

  64. Zhang, X., Ma, X., Hou, T., Guo, K., Yin, J., Wang, Z., Shu, L., He, M., Yao, J.: Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels. Angew. Chem. Int. Ed. 58, 7366–7370 (2019)

    Article  CAS  Google Scholar 

  65. Zuluaga-Vélez, A., Cómbita-Merchán, D.F., Buitrago-Sierra, R., Santa, J.F., Aguilar-Fernández, E., Sepúlveda-Arias, J.C.: Silk fibroin hydrogels from the Colombian silkworm Bombyx mori L: Evaluation of physicochemical properties. PLoS ONE 14, e0213303 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the partial support from the Research Council of the Iran University of Science and Technology. This work is upon research funded by Iran National Science Foundation (INSF) under project No. 99032872. The authors thank funding from the Spanish State Research Agency (AEI) through the project PID2019-106099RB-C43/AEI/10.13039/501100011033 and from the Basque Government Industry Department under the ELKARTEK program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Maleki, Mohammad Mahdavi, Ahmed Esmail Shalan or Senentxu Lanceros-Méndez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 368 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eivazzadeh-Keihan, R., Ganjali, F., Aliabadi, H.A.M. et al. Synthesis and characterization of cellulose, β-cyclodextrin, silk fibroin-based hydrogel containing copper-doped cobalt ferrite nanospheres and exploration of its biocompatibility. J Nanostruct Chem 13, 103–113 (2023). https://doi.org/10.1007/s40097-022-00481-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-022-00481-6

Keywords

Navigation