Skip to main content

Advertisement

Log in

Metal nanoparticles in cancer: from synthesis and metabolism to cellular interactions

  • Review
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Nanotechnology has encouraged new and amended materials (metal nanoparticles) for therapeutic applications with specific prominence in healthcare. Metal nanoparticles (NPs) are versatile nanoscale entities, widely used to diagnose and treat cancer. Evidence suggested that metal NPs can modulate the expression of various intracellular and extra-cellular signaling molecules in the tumor microenvironment. Metal nanoparticles possess anti-cancer activities via apoptosis and cell cycle arrest. In addition, metal NPs inhibit tumor angiogenesis, metastasis and inflammation to stop cancer proliferation. Synergistic applications of metal NPs with existing anti-cancer agents showed improvement in their bioactivity and bioavailability. This review explores the synthetic approaches, pharmacokinetics, and the cellular and molecular interactions of metal NPs in cancer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferlay, J., Shin, H.R., Bray, F., Forman, D., Mathers, C., Parkin, D.M.: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer. 127, 2893–2917 (2010)

    Article  CAS  PubMed  Google Scholar 

  2. Kashyap, D., Garg, V.K., Sandberg, E.N., Goel, N., Bishayee, A.: Oncogenic and tumor suppressive components of the cell cycle in breast cancer progression and prognosis. Pharmaceutics 13, 1–28 (2021)

    Article  Google Scholar 

  3. Kashyap, D., Garg, V.K., Tuli, H.S., Yerer, M.B., Sak, K., Sharma, A.K., Kumar, M., Aggarwal, V., Sandhu, S.S.: Fisetin and quercetin: promising flavonoids with chemopreventive potential. Biomolecules 9, 1–22 (2019)

    Article  CAS  Google Scholar 

  4. Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D.M., Piñeros, M., Znaor, A., Bray, F.: Cancer statistics for the year 2020: an overview. Int. J. Cancer. 149, 778–789 (2021)

    Article  CAS  Google Scholar 

  5. Kashyap, D., Sharma, A., Tuli, H.S., Sak, K., Garg, V.K., Buttar, H.S., Setzer, W.N., Sethi, G.: Apigenin: a natural bioactive flavone-type molecule with promising therapeutic function (2018)

  6. Yadav, P., Jaswal, V., Sharma, A., Kashyap, D., Tuli, H.S., Garg, V.K., Das, S.K., Srinivas, R.: Celastrol as a pentacyclic triterpenoid with chemopreventive properties, https://pubmed.ncbi.nlm.nih.gov/29882724/ (2018)

  7. Kashyap, D., Tuli, H.S., Sak, K., Garg, V.K., Goel, N., Punia, S.: Role of reactive oxygen species in cancer progression. Curr. Pharmacol. Rep. 5, 79–86 (2019)

    Article  CAS  Google Scholar 

  8. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F.: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 71, 209–249 (2021)

    Article  PubMed  Google Scholar 

  9. Kashyap, D., Garg, V.K., Goel, N.: Intrinsic and extrinsic pathways of apoptosis: role in cancer development and prognosis. Elsevier Inc. (2021)

  10. Kashyap, D., Tuli, H.S., Yerer, M.B., Sharma, A., Sak, K., Srivastava, S., Pandey, A., Garg, V.K., Sethi, G., Bishayee, A.: Natural product-based nanoformulations for cancer therapy: opportunities and challenges. Semin. Cancer Biol. 69, 5–23 (2021)

    Article  CAS  PubMed  Google Scholar 

  11. Kashyap, D., Sharma, A., Garg, V., Tuli, H.S., Kumar, G., Kumar, M.: Reactive oxygen species (ROS ): an activator of apoptosis and autophagy in cancer. J. Biol. Chem. Sci. 3, 256–264 (2016)

    Google Scholar 

  12. Kashyap, D., Tuli, H.S., Garg, V.K., Bhatnagar, S., Sharma, A.K.: Ursolic acid and quercetin: promising anticancer phytochemicals with antimetastatic and antiangiogenic potential. 1–7 (2017).

  13. Manu, K.A., Shanmugam, M.K., Li, F., Chen, L., Siveen, K.S., Ahn, K.S., Kumar, A.P., Sethi, G.: Simvastatin sensitizes human gastric cancer xenograft in nude mice to capecitabine by suppressing nuclear factor-kappa B-regulated gene products. J. Mol. Med. 92, 267–276 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. Kirtonia, A., Gala, K., Fernandes, S.G., Pandya, G., Pandey, A.K., Sethi, G., Khattar, E., Garg, M.: Repurposing of drugs: an attractive pharmacological strategy for cancer therapeutics. Semin. Cancer Biol. 68, 258–278 (2021)

    Article  CAS  PubMed  Google Scholar 

  15. Valladares, B.T., Crespo, P.C., Herranz, U.A., Caamaño, A.G.: Adjuvant treatment in lung cancer. J. Clin. Transl. Res. 7, 2 (2021)

    Google Scholar 

  16. Román-Jobacho, A., Hernández-Miguel, M., García-Anaya, M.J., Gómez-Millán, J., Medina-Carmona, J.A., Otero-Romero, A.: Oligometastatic non-small cell lung cancer: current management. J. Clin. Transl. Res. 7(3), 311 (2021)

    PubMed  PubMed Central  Google Scholar 

  17. Luna, J., Sotoca, A., Fernández, P., Miralles, C., Rodríguez, A.: Recent advances in early stage lung cancer. J. Clin. Transl. Res. 7(2), 163 (2021)

    PubMed  PubMed Central  Google Scholar 

  18. Lu, X., Shi, H., Que, Q., Qiu, S.: Research progress in immunotherapy of advanced non-small cell lung cancer. Trends Immunother. 5, 58–64 (2021)

    Article  Google Scholar 

  19. Guo, X., Hu, H., Jin, Q., Li, H., Cheng, Q.: Studies on the proliferation inhibition effects of tua from Actinidia chinensis radix on lung cancer xenografts in nude mice and its preliminary mechanism. Trends Immunother. 5, 14–23 (2021)

    Article  Google Scholar 

  20. Conde, J., Doria, G., Baptista, P.: Noble metal nanoparticles applications in cancer. J. Drug Deliv. 2012, 1–12 (2012)

    Article  Google Scholar 

  21. Tuli, H.S., Sak, K., Gupta, D.S., Kaur, G., Aggarwal, D., Chaturvedi Parashar, N., Choudhary, R., Yerer, M.B., Kaur, J., Kumar, M., Garg, V.K., Sethi, G.: Anti-inflammatory and anticancer properties of birch bark-derived betulin: recent developments. Plants. 10, 2663 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tuli, H.S., Mistry, H., Kaur, G., Aggarwal, D., Garg, V.K., Mittal, S., Yerer, M.B., Sak, K., Khan, M.A.: Gallic acid: a dietary polyphenol that exhibits anti-neoplastic activities by modulating multiple oncogenic targets. Anticancer. Agents Med. Chem. 22, 499–514 (2021)

    Article  Google Scholar 

  23. Singh, A., Goel, N.: Yogita: integrative analysis of multi-genomic data for kidney renal cell carcinoma. Interdiscip. Sci. Comput. Life Sci. 12, 12–23 (2020)

    Article  CAS  Google Scholar 

  24. Zhang, J., Ahn, K.S., Kim, C., Shanmugam, M.K., Siveen, K.S., Arfuso, F., Samym, R.P., Deivasigamanim, A., Lim, L.H.K., Wang, L., Goh, B.C., Kumar, A.P., Hui, K.M., Sethi, G.: Nimbolide-induced oxidative stress abrogates STAT3 signaling cascade and inhibits tumor growth in transgenic adenocarcinoma of mouse prostate model. Antioxid Redox Signal. 24, 575–589 (2016)

    Article  CAS  PubMed  Google Scholar 

  25. Kwang, S.A., Sethi, G., Chaturvedi, M.M., Aggarwal, B.B.: Simvastatin, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, suppresses osteoclastogenesis induced by receptor activator of nuclear factor-κB ligand through modulation of NF-κB pathway. Int. J. Cancer. 123, 1733–1740 (2008)

    Article  Google Scholar 

  26. Rai, M., Ingle, A.P., Birla, S., Yadav, A., Santos, C.A.D.: Strategic role of selected noble metal nanoparticles in medicine. Crit. Rev. Microbiol. 42, 696–719 (2016)

    CAS  PubMed  Google Scholar 

  27. Nasery, M.M., Abadi, B., Poormoghadam, D., Zarrabi, A., Keyhanvar, P., Khanbabaei, H., Ashrafizadeh, M., Mohammadinejad, R., Tavakol, S., Sethi, G.: Curcumin delivery mediated by bio-based nanoparticles: a review. Molecules 25, 689 (2020)

    Article  CAS  Google Scholar 

  28. Yan, J., Yao, Y., Yan, S., Gao, R., Lu, W., He, W.: Chiral protein supraparticles for tumor suppression and synergistic immunotherapy: an enabling strategy for bioactive supramolecular chirality construction. Nano Lett. 20, 5844–5852 (2020)

    Article  CAS  PubMed  Google Scholar 

  29. Guo, S., Li, C., Zhang, Y., Wang, Y., Li, B., Yang, M., Zhang, X., Liu, G.: Experimental evaluation of the lubrication performance of mixtures of castor oil with other vegetable oils in MQL grinding of nickel-based alloy. J. Clean. Prod. 140, 1060–1076 (2017)

    Article  CAS  Google Scholar 

  30. Zhang, J., Li, C., Zhang, Y., Yang, M., Jia, D., Liu, G., Hou, Y., Li, R., Zhang, N., Wu, Q., Cao, H.: Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air. J. Clean. Prod. 193, 236–248 (2018)

    Article  CAS  Google Scholar 

  31. Kuchur, O.A., Tsymbal, S.A., Shestovskaya, M.V., Serov, N.S., Dukhinova, M.S., Shtil, A.A.: Metal-derived nanoparticles in tumor theranostics: potential and limitations. J. Inorg. Biochem. 209, 111117 (2020)

    Article  CAS  PubMed  Google Scholar 

  32. Li, J., Ren, H., Zhang, Y.: Metal-based nano-vaccines for cancer immunotherapy. Coord. Chem. Rev. 455, 214345 (2022)

    Article  CAS  Google Scholar 

  33. Zou, Q., Xing, P., Wei, L., Liu, B.: Gene2vec: gene subsequence embedding for prediction of mammalian N6-methyladenosine sites from mRNA. RNA 25, 205–218 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao, R., Xiang, J., Wang, B., Chen, L., Tan, S.: Recent advances in the development of noble metal NPs for cancer therapy. Bioinorg. Chem. Appl. 2022, 2444516 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shariatzadeh, S., Moghimi, N., Khalafi, F., Shafiee, S., Mehrabi, M., Ilkhani, S., Tosan, F., Nakhaei, P., Alizadeh, A., Varma, R.S., Taheri, M.: Metallic nanoparticles for the modulation of tumor microenvironment: a new horizon. Front. Bioeng. Biotechnol. 10, 1867 (2022)

    Article  Google Scholar 

  36. Subhan, M.A., Muzibur Rahman, M.: Recent development in metallic nanoparticles for breast cancer therapy and diagnosis. Chem. Rec. (2022). https://doi.org/10.1002/tcr.202100331

    Article  PubMed  Google Scholar 

  37. Khursheed, R., Dua, K., Vishwas, S., Gulati, M., Jha, N.K., Aldhafeeri, G.M., Alanazi, F.G., Goh, B.H., Gupta, G., Paudel, K.R., Hansbro, P.M., Chellappan, D.K., Singh, S.K.: Biomedical applications of metallic nanoparticles in cancer: current status and future perspectives. Biomed. Pharmacother. 150, 112951 (2022)

    Article  CAS  PubMed  Google Scholar 

  38. Xu, J.J., Zhang, W.C., Guo, Y.W., Chen, X.Y., Zhang, Y.N.: Metal nanoparticles as a promising technology in targeted cancer treatment. Drug Deliv. 29, 664–678 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Evans, E.R., Bugga, P., Asthana, V., Drezek, R.: Metallic nanoparticles for cancer immunotherapy. Mater. Today. 21, 673–685 (2018)

    Article  CAS  Google Scholar 

  40. Tinajero-Díaz, E., Salado-Leza, D., Gonzalez, C., Velázquez, M.M., López, Z., Bravo-Madrigal, J., Knauth, P., Flores-Hernández, F.Y., Herrera-Rodríguez, S.E., Navarro, R.E., Cabrera-Wrooman, A., Krötzsch, E., Carvajal, Z.Y.G., Hernández-Gutiérrez, R.: Green metallic nanoparticles for cancer therapy: evaluation models and cancer applications. Pharmaceutics. 13, 1719 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  41. Desoize, B.: Metals and metal compounds in cancer treatment. Anticancer Res. 24, 1529–1544 (2004)

    CAS  PubMed  Google Scholar 

  42. Chen, X., Li, X., Xie, J., Yang, H., Liu, A.: Non-invasive discrimination of multiple myeloma using label-free serum surface-enhanced Raman scattering spectroscopy in combination with multivariate analysis. Anal. Chim. Acta. 1191, 339296 (2022)

    Article  CAS  PubMed  Google Scholar 

  43. Păduraru, D.N., Ion, D., Niculescu, A.G., Mușat, F., Andronic, O., Grumezescu, A.M., Bolocan, A.: Recent developments in metallic nanomaterials for cancer therapy. Diagnosing and imaging applications. Pharmaceutics. 14, 435 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  44. Niculescu, A.-G., Grumezescu, A.M.: Novel tumor-targeting nanoparticles for cancer treatment—a review. Int. J. Mol. Sci. 23, 5253 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Baig, N., Kammakakam, I., Falath, W., Kammakakam, I.: Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2, 1821–1871 (2021)

    Article  Google Scholar 

  46. Prabakaran, S., Rajan, M.: Biosynthesis of nanoparticles and their roles in numerous areas. In: Comprehensive Analytical Chemistry. pp. 1–47. Elsevier (2021)

  47. Yilmaz, E., Soylak, M.: Functionalized nanomaterials for sample preparation methods. In: Handbook of Nanomaterials in Analytical Chemistry: Modern Trends in Analysis. pp. 375–413. Elsevier (2019)

  48. Chen, L., Huang, Y., Yu, X., Lu, J., Jia, W., Song, J., Liu, L., Wang, Y., Huang, Y., Xie, J., Li, M.: Corynoxine protects dopaminergic neurons through inducing autophagy and diminishing neuroinflammation in rotenone-induced animal models of Parkinson’s disease. Front. Pharmacol. (2021). https://doi.org/10.3389/fphar.2021.642900

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jin, K., Yan, Y., Chen, M., Wang, J., Pan, X., Liu, X., Liu, M., Lou, L., Wang, Y., Ye, J.: Multimodal deep learning with feature level fusion for identification of choroidal neovascularization activity in age-related macular degeneration. Acta Ophthalmol. 100, e512–e520 (2022)

    Article  PubMed  Google Scholar 

  50. Sun, L., Yuan, G., Gao, L., Yang, J., Chhowalla, M., Gharahcheshmeh, M.H., Gleason, K.K., Choi, Y.S., Hong, B.H., Liu, Z.: Chemical vapour deposition. Nat. Rev. Methods Prim. 11(1), 1–20 (2021)

    Google Scholar 

  51. Raizada, P., Sudhaik, A., Patial, S., Hasija, V., Parwaz Khan, A.A., Singh, P., Gautam, S., Kaur, M., Nguyen, V.H.: Engineering nanostructures of CuO-based photocatalysts for water treatment: current progress and future challenges. Arab. J. Chem. 13, 8424–8457 (2020)

    Article  CAS  Google Scholar 

  52. El-Deeb, N.M., Abo-Eleneen, M.A., Awad, O.A., Abo-Shady, A.M.: Arthrospira platensis-mediated green biosynthesis of silver nano-particles as breast cancer controlling agent. in vitro and in vivo safety approaches. Appl. Biochem. Biotechnol. 194, 2183–2203 (2022)

    Article  CAS  PubMed  Google Scholar 

  53. Ko, W.C., Wang, S.J., Hsiao, C.Y., Hung, C.T., Hsu, Y.J., Chang, D.C., Hung, C.F.: Pharmacological role of functionalized gold nanoparticles in disease applications. Molecules 27, 1551 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gao, T., Zhang, Y., Li, C., Wang, Y., An, Q., Liu, B., Said, Z., Sharma, S.: Grindability of carbon fiber reinforced polymer using CNT biological lubricant. Sci. Rep. 11, 1–14 (2021)

    Article  Google Scholar 

  55. Li, B., Li, C., Zhang, Y., Wang, Y., Jia, D., Yang, M.: Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil. Chin. J. Aeronaut. 29, 1084–1095 (2016)

    Article  Google Scholar 

  56. Dhand, C., Dwivedi, N., Loh, X.J., Jie Ying, A.N., Verma, N.K., Beuerman, R.W., Lakshminarayanan, R., Ramakrishna, S.: Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv. 5, 105003–105037 (2015)

    Article  CAS  Google Scholar 

  57. Liu, M., Li, C., Zhang, Y., An, Q., Yang, M., Gao, T., Mao, C., Liu, B., Cao, H., Xu, X., Said, Z.: Cryogenic minimum quantity lubrication machining: from mechanism to application. Front. Mech. Eng. 16(4), 649–697 (2021)

    Article  Google Scholar 

  58. Xin, C.U., Changhe, L.I., Wenfeng, D.I., Yun, C.H., Cong, M.A., Xuefeng, X.U., Bo, L.I., Dazhong, W.A., Li, H.N., Zhang, Y., Zafar, S.A.: Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant: from mechanisms to application. Chin. J. Aeronaut. (2021). https://doi.org/10.1016/j.cja.2021.08.011

    Article  Google Scholar 

  59. Vaseghi, Z., Nematollahzadeh, A., Tavakoli, O.: Green methods for the synthesis of metal nanoparticles using biogenic reducing agents: a review. Rev. Chem. Eng. 34, 529–559 (2018)

    Article  Google Scholar 

  60. Abid, N., Khan, A.M., Shujait, S., Chaudhary, K., Ikram, M., Imran, M., Haider, J., Khan, M., Khan, Q., Maqbool, M.: Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: a review. Adv. Coll. Interface Sci. 300, 102597 (2022)

    Article  CAS  Google Scholar 

  61. Almeida, J.C., Davim, E.J.C., Salvado, I.M.M., Fernandes, M.H.V., Costa, F.M., Rey-García, F., Francisco, L.M., Lopes, A.B.: Red ruby glass from gold nanoparticles obtained by LASiS—a new approach. J. Non. Cryst. Solids. 537, 119987 (2020)

    Article  CAS  Google Scholar 

  62. Yang, L., Wang, Z., Ma, L., Li, A., Xin, J., Wei, R., Lin, H., Wang, R., Chen, Z., Gao, J.: The roles of morphology on the relaxation rates of magnetic nanoparticles. ACS Nano 12, 4605–4614 (2018)

    Article  CAS  PubMed  Google Scholar 

  63. Liu, L., Corma, A.: Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Astruc, D.: Introduction: nanoparticles in catalysis. Chem. Rev. 120, 461–463 (2020)

    Article  CAS  PubMed  Google Scholar 

  65. Behzadi, S., Serpooshan, V., Tao, W., Hamaly, M.A., Alkawareek, M.Y., Dreaden, E.C., Brown, D., Alkilany, A.M., Farokhzad, O.C., Mahmoudi, M.: Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 46, 4218–4244 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Romberg, B., Hennink, W.E., Storm, G.: Sheddable coatings for long-circulating nanoparticles. Pharm. Res. 25, 55–71 (2008)

    Article  CAS  PubMed  Google Scholar 

  67. Gwon, K., Park, J.D., Lee, S., Yu, J.S., Lee, D.N.: Biocompatible core–shell-structured Si-based NiO nanoflowers and their anticancer activity. Pharmaceutics. 14, 268 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lin, Z., Monteiro-Riviere, N.A., Riviere, J.E.: Pharmacokinetics of metallic nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7, 189–217 (2015)

    Article  CAS  PubMed  Google Scholar 

  69. Park, K., Park, E.J., Chun, I.K., Choi, K., Lee, S.H., Yoon, J., Lee, B.C.: Bioavailability and toxicokinetics of citrate-coated silver nanoparticles in rats. Arch. Pharm. Res. 34, 153–158 (2011)

    Article  CAS  PubMed  Google Scholar 

  70. Mathur, P., Jha, S., Ramteke, S., Jain, N.K.: Pharmaceutical aspects of silver nanoparticles. Artif. Cells Nanomed. Biotechnol. 46, 115–126 (2018)

    Article  CAS  PubMed  Google Scholar 

  71. Samberg, M.E., Oldenburg, S.J., Monteiro-Riviere, N.A.: Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ. Health Perspect. 118, 407–413 (2010)

    Article  CAS  PubMed  Google Scholar 

  72. Larese, F.F., D’Agostin, F., Crosera, M., Adami, G., Renzi, N., Bovenzi, M., Maina, G.: Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 255, 33–37 (2009)

    Article  CAS  PubMed  Google Scholar 

  73. Lankveld, D.P.K., Oomen, A.G., Krystek, P., Neigh, A., Troost-de Jong, A., Noorlander, C.W., Van Eijkeren, J.C.H., Geertsma, R.E., De Jong, W.H.: The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 31, 8350–8361 (2010)

    Article  CAS  PubMed  Google Scholar 

  74. Dziendzikowska, K., Gromadzka-Ostrowska, J., Lankoff, A., Oczkowski, M., Krawczyńska, A., Chwastowska, J., Sadowska-Bratek, M., Chajduk, E., Wojewódzka, M., Dušinská, M., Kruszewski, M.: Time-dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. J. Appl. Toxicol. 32, 920–928 (2012)

    Article  CAS  PubMed  Google Scholar 

  75. Kim, Y.S., Kim, J.S., Cho, H.S., Rha, D.S., Kim, J.M., Park, J.D., Choi, B.S., Lim, R., Chang, H.K., Chung, Y.H., Kwon, I.H., Jeong, J., Han, B.S., Yu, I.J.: Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal. Toxicol. 20, 575–583 (2008)

    Article  CAS  PubMed  Google Scholar 

  76. Loeschner, K., Hadrup, N., Qvortrup, K., Larsen, A., Gao, X., Vogel, U., Mortensen, A., Lam, H.R., Larsen, E.H.: Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part. Fibre Toxicol. 8, 18 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Park, E.J., Bae, E., Yi, J., Kim, Y., Choi, K., Lee, S.H., Yoon, J., Lee, B.C., Park, K.: Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ. Toxicol. Pharmacol. 30, 162–168 (2010)

    Article  CAS  PubMed  Google Scholar 

  78. Kim, Y.S., Song, M.Y., Park, J.D., Song, K.S., Ryu, H.R., Chung, Y.H., Chang, H.K., Lee, J.H., Oh, K.H., Kelman, B.J., Hwang, I.K., Yu, I.J.: Subchronic oral toxicity of silver nanoparticles. Part. Fibre Toxicol. (2010). https://doi.org/10.1186/1743-8977-7-20

    Article  PubMed  PubMed Central  Google Scholar 

  79. Tang, J., Xiong, L., Wang, S., Wang, J., Liu, L., Li, J., Wan, Z., Xi, T.: Influence of silver nanoparticles on neurons and blood-brain barrier via subcutaneous injection in rats. Appl. Surf. Sci. 255, 502–504 (2008)

    Article  CAS  Google Scholar 

  80. Van Der Zande, M., Vandebriel, R.J., Van Doren, E., Kramer, E., Herrera Rivera, Z., Serrano-Rojero, C.S., Gremmer, E.R., Mast, J., Peters, R.J.B., Hollman, P.C.H., Hendriksen, P.J.M., Marvin, H.J.P., Peijnenburg, A.A.C.M., Bouwmeester, H.: Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6, 7427–7442 (2012)

    Article  PubMed  Google Scholar 

  81. Kim, Y.S., Song, M.Y., Park, J.D., Song, K.S., Ryu, H.R., Chung, Y.H., Chang, H.K., Lee, J.H., Oh, K.H., Kelman, B.J., Hwang, I.K., Yu, I.J.: Subchronic oral toxicity of silver nanoparticles. Part. Fibre Toxicol. 7, 20 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  82. Liu, J., Wang, Z., Liu, F.D., Kane, A.B., Hurt, R.H.: Chemical transformations of nanosilver in biological environments. ACS Nano 6, 9887–9899 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee, Y., Kim, P., Yoon, J., Lee, B., Choi, K., Kil, K.H., Park, K.: Serum kinetics, distribution and excretion of silver in rabbits following 28 days after a single intravenous injection of silver nanoparticles. Nanotoxicology 7, 1120–1130 (2013)

    Article  CAS  PubMed  Google Scholar 

  84. Yang, M., Li, C., Zhang, Y., Jia, D., Li, R., Hou, Y., Cao, H., Wang, J.: Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions. Ceram. Int. 45, 14908–14920 (2019)

    Article  CAS  Google Scholar 

  85. Libutti, S.K., Paciotti, G.F., Byrnes, A.A., Alexander, H.R., Gannon, W.E., Walker, M., Seidel, G.D., Yuldasheva, N., Tamarkin, L.: Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin. Cancer Res. 16, 6139–6149 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. NU-0129 in Treating Patients With Recurrent Glioblastoma or Gliosarcoma Undergoing Surgery—Full Text View—ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT03020017

  87. ClinicalTrials.gov: National Library of Medicine (US): Pilot Study of AuroLase(tm) Therapy in Refractory and/or Recurrent Tumors of the Head and Neck - Full Text View - ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT00848042

  88. Magnetic Nanoparticle Thermoablation-Retention and Maintenance in the Prostate:A Phase 0 Study in Men - Full Text View - ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02033447.

  89. Schleh, C., Semmler-Behnke, M., Lipka, J., Wenk, A., Hirn, S., Schäffler, M., Schmid, G., Simon, U., Kreyling, W.G.: Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology 6, 36–46 (2012)

    Article  CAS  PubMed  Google Scholar 

  90. Janer, G., Mas del Molino, E., Fernández-Rosas, E., Fernández, A., Vázquez-Campos, S.: Cell uptake and oral absorption of titanium dioxide nanoparticles. Toxicol. Lett. 228, 103–110 (2014)

    Article  CAS  PubMed  Google Scholar 

  91. Cho, W.S., Cho, M., Jeong, J., Choi, M., Cho, H.Y., Han, B.S., Kim, S.H., Kim, H.O., Lim, Y.T., Chung, B.H., Jeong, J.: Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol. 236, 16–24 (2009)

    Article  CAS  PubMed  Google Scholar 

  92. Sonavane, G., Tomoda, K., Sano, A., Ohshima, H., Terada, H., Makino, K.: In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size. Colloids Surfaces B Biointerfaces. 65, 1–10 (2008)

    Article  CAS  PubMed  Google Scholar 

  93. De Jong, W.H., Hagens, W.I., Krystek, P., Burger, M.C., Sips, A.J.A.M., Geertsma, R.E.: Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29, 1912–1919 (2008)

    Article  PubMed  Google Scholar 

  94. Takeda, K., Suzuki, K.I., Ishihara, A., Kubo-Irie, M., Fujimoto, R., Tabata, M., Oshio, S., Nihei, Y., Ihara, T., Sugamata, M.: Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. J. Heal. Sci. 55, 95–102 (2009)

    Article  CAS  Google Scholar 

  95. Bourrinet, P., Bengele, H.H., Bonnemain, B., Dencausse, A., Idee, J.M., Jacobs, P.M., Lewis, J.M.: Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest. Radiol. 41, 313–324 (2006)

    Article  CAS  PubMed  Google Scholar 

  96. Liu, C., Ho, P.C.L., Wong, F.C., Sethi, G., Wang, L.Z., Goh, B.C.: Garcinol: Current status of its anti-oxidative, anti-inflammatory and anti-cancer effects. Cancer Lett. 362, 8–14 (2015)

    Article  CAS  PubMed  Google Scholar 

  97. Patel, S.M., Nagulapalli Venkata, K.C., Bhattacharyya, P., Sethi, G., Bishayee, A.: Potential of neem (Azadirachta indica L.) for prevention and treatment of oncologic diseases. Semin. Cancer Biol. 40–41, 100–115 (2016)

    Article  PubMed  Google Scholar 

  98. Kirtonia, A., Sethi, G., Garg, M.: The multifaceted role of reactive oxygen species in tumorigenesis. Cell. Mol. Life Sci. 77, 4459–4483 (2020)

    Article  CAS  PubMed  Google Scholar 

  99. Kim, C., Lee, S.G., Yang, W.M., Arfuso, F., Um, J.Y., Kumar, A.P., Bian, J., Sethi, G., Ahn, K.S.: Formononetin-induced oxidative stress abrogates the activation of STAT3/5 signaling axis and suppresses the tumor growth in multiple myeloma preclinical model. Cancer Lett. 431, 123–141 (2018)

    Article  CAS  PubMed  Google Scholar 

  100. Manu, K.A., Shanmugam, M.K., Ramachandran, L., Li, F., Fong, C.W., Kumar, A.P., Tan, P., Sethi, G.: First evidence that γ-tocotrienol inhibits the growth of human gastric cancer and chemosensitizes it to capecitabine in a xenograft mouse model through the modulation of NF-κB pathway. Clin. Cancer Res. 18, 2220–2229 (2012)

    Article  CAS  PubMed  Google Scholar 

  101. Manu, K.A., Shanmugam, M.K., Ramachandran, L., Li, F., Siveen, K.S., Chinnathambi, A., Zayed, M.E., Alharbi, S.A., Arfuso, F., Kumar, A.P., Ahn, K.S., Sethi, G.: Isorhamnetin augments the anti-tumor effect of capecitabine through the negative regulation of NF-κB signaling cascade in gastric cancer. Cancer Lett. 363, 28–36 (2015)

    Article  CAS  PubMed  Google Scholar 

  102. Ahmadian, E., Dizaj, S.M., Rahimpour, E., Hasanzadeh, A., Eftekhari, A., HosainZadegan, H., Halajzadeh, J., Ahmadian, H.: Effect of silver nanoparticles in the induction of apoptosis on human hepatocellular carcinoma (HepG2) cell line. Mater. Sci. Eng. C. 93, 465–471 (2018)

    Article  CAS  Google Scholar 

  103. Acharya, D., Satapathy, S., Somu, P., Parida, U.K., Mishra, G.: Apoptotic effect and anticancer activity of biosynthesized silver nanoparticles from marine algae Chaetomorpha linum extract against human colon cancer Cell HCT-116. Biol. Trace Elem. Res. 199, 1812–1822 (2021)

    Article  CAS  PubMed  Google Scholar 

  104. Quan, J.H., Gao, F.F., Chu, J.Q., Cha, G.H., Yuk, J.M., Wu, W., Lee, Y.H.: Silver nanoparticles induce apoptosis via NOX4-derived mitochondrial reactive oxygen species and endoplasmic reticulum stress in colorectal cancer cells. Nanomedicine 16, 1357–1375 (2021)

    Article  CAS  PubMed  Google Scholar 

  105. Akter, M., Atique Ullah, A.K.M., Banik, S., Sikder, M.T., Hosokawa, T., Saito, T., Kurasaki, M.: Green synthesized silver nanoparticles-mediated cytotoxic effect in colorectal cancer cells: NF-κB signal induced apoptosis through autophagy. Biol. Trace Elem. Res. 199, 3272–3286 (2021)

    Article  CAS  PubMed  Google Scholar 

  106. Mohd Faheem, M., Bhagat, M., Sharma, P., Anand, R.: Induction of p53 mediated mitochondrial apoptosis and cell cycle arrest in human breast cancer cells by plant mediated synthesis of silver nanoparticles from Bergenia ligulata (Whole plant). Int. J. Pharm. 619, 121710 (2022)

    Article  CAS  PubMed  Google Scholar 

  107. Alamer, A., Ali, D., Alarifi, S., Alkahtane, A., Al-Zharani, M., Abdel-Daim, M.M., Albasher, G., Almeer, R., Al-Sultan, N.K., Almalik, A., Alhasan, A.H., Stournaras, C., Hasnain, S., Alkahtani, S.: Bismuth oxide nanoparticles induce oxidative stress and apoptosis in human breast cancer cells. Environ. Sci. Pollut. Res. 28, 7379–7389 (2021)

    Article  CAS  Google Scholar 

  108. Khan, M.J., Ahmad, A., Khan, M.A., Siddiqui, S.: Zinc oxide nanoparticle induces apoptosis in human epidermoid carcinoma cells through reactive oxygen species and DNA degradation. Biol. Trace Elem. Res. 199, 2172–2181 (2021)

    Article  CAS  PubMed  Google Scholar 

  109. Bai, D.P., Zhang, X.F., Zhang, G.L., Huang, Y.F., Gurunathan, S.: Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells. Int. J. Nanomed. 12, 6521–6535 (2017)

    Article  CAS  Google Scholar 

  110. Wang, Y., Zhang, Y., Guo, Y., Lu, J., Veeraraghavan, V.P., Mohan, S.K., Wang, C., Yu, X.: Synthesis of Zinc oxide nanoparticles from Marsdenia tenacissima inhibits the cell proliferation and induces apoptosis in laryngeal cancer cells (Hep-2). J. Photochem. Photobiol. B Biol. 201, 111624 (2019)

    Article  CAS  Google Scholar 

  111. Akhtar, M.J., Ahamed, M., Kumar, S., Majeed Khan, M.A., Ahmad, J., Alrokayan, S.A.: Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int. J. Nanomed. 7, 845–857 (2012)

    CAS  Google Scholar 

  112. Mahdizadeh, R., Homayouni-Tabrizi, M., Neamati, A., Seyedi, S.M.R., TavakkolAfshari, H.S.: Green synthesized-zinc oxide nanoparticles, the strong apoptosis inducer as an exclusive antitumor agent in murine breast tumor model and human breast cancer cell lines (MCF7). J. Cell. Biochem. 120, 17984–17993 (2019)

    Article  CAS  PubMed  Google Scholar 

  113. Li, Z., He, J., Li, B., Zhang, J., He, K., Duan, X., Huang, R., Wu, Z., Xiang, G.: Titanium dioxide nanoparticles induce endoplasmic reticulum stress-mediated apoptotic cell death in liver cancer cells. J. Int. Med. Res. 48, 300060520903652 (2020)

    CAS  PubMed  Google Scholar 

  114. Shi, Y., Wang, F., He, J., Yadav, S., Wang, H.: Titanium dioxide nanoparticles cause apoptosis in BEAS-2B cells through the caspase 8/t-Bid-independent mitochondrial pathway. Toxicol. Lett. 196, 21–27 (2010)

    Article  CAS  PubMed  Google Scholar 

  115. Cheng, G., Guo, W., Han, L., Chen, E., Kong, L., Wang, L., Ai, W., Song, N., Li, H., Chen, H.: Cerium oxide nanoparticles induce cytotoxicity in human hepatoma SMMC-7721 cells via oxidative stress and the activation of MAPK signaling pathways. Toxicol. Vitr. 27, 1082–1088 (2013)

    Article  CAS  Google Scholar 

  116. Al-zharani, M., Qurtam, A.A., Daoush, W.M., Eisa, M.H., Aljarba, N.H., Alkahtani, S., Nasr, F.A.: Antitumor effect of copper nanoparticles on human breast and colon malignancies. Environ. Sci. Pollut. Res. 28, 1587–1595 (2021)

    Article  CAS  Google Scholar 

  117. Ke, Y., Al Aboody, M.S., Alturaiki, W., Alsagaby, S.A., Alfaiz, F.A., Veeraraghavan, V.P., Mickymaray, S.: Photosynthesized gold nanoparticles from Catharanthus roseus induces caspase-mediated apoptosis in cervical cancer cells (HeLa). Artif. Cells Nanomed. Biotechnol. 47, 1938–1946 (2019)

    Article  CAS  PubMed  Google Scholar 

  118. Singh, S.P., Mishra, A., Shyanti, R.K., Singh, R.P., Acharya, A.: Silver nanoparticles synthesized using Carica papaya leaf extract (AgNPs-PLE) causes cell cycle arrest and apoptosis in human prostate (DU145) cancer cells. Biol. Trace Elem. Res. 199, 1316–1331 (2021)

    Article  CAS  PubMed  Google Scholar 

  119. Noorbazargan, H., Amintehrani, S., Dolatabadi, A., Mashayekhi, A., Khayam, N., Moulavi, P., Naghizadeh, M., Mirzaie, A., Mirzaeirad, F., Kavousi, M.: Anti-cancer & anti-metastasis properties of bioorganic-capped silver nanoparticles fabricated from Juniperus chinensis extract against lung cancer cells. AMB Express 11, 61 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Patel, P., Kansara, K., Senapati, V.A., Shanker, R., Dhawan, A., Kumar, A.: Cell cycle dependent cellular uptake of zinc oxide nanoparticles in human epidermal cells. Mutagenesis 31, 481–490 (2016)

    Article  CAS  PubMed  Google Scholar 

  121. Ranjan, S., Dasgupta, N., Mishra, D., Ramalingam, C.: Involvement of Bcl-2 activation and G1 cell cycle arrest in colon cancer cells induced by titanium dioxide nanoparticles synthesized by microwave-assisted hybrid approach. Front. Bioeng. Biotechnol. 8, 606 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kansara, K., Patel, P., Shah, D., Shukla, R.K., Singh, S., Kumar, A., Dhawan, A.: TiO2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells. Environ. Mol. Mutagen. 56, 204–217 (2015)

    Article  CAS  PubMed  Google Scholar 

  123. Ramalingam, V., Revathidevi, S., Shanmuganayagam, T., Muthulakshmi, L., Rajaram, R.: Biogenic gold nanoparticles induce cell cycle arrest through oxidative stress and sensitize mitochondrial membranes in A549 lung cancer cells. RSC Adv. 6, 20598–20608 (2016)

    Article  CAS  Google Scholar 

  124. Lee, D.G., Go, E.B., Lee, M., Pak, P.J., Kim, J.S., Chung, N.: Gold nanoparticles conjugated with resveratrol induce cell cycle arrest in MCF-7 cell lines. Appl. Biol. Chem. 62, 1–6 (2019)

    Google Scholar 

  125. Abdel-Ghany, S., Mahfouz, M., Ashraf, N., Sabit, H., Cevik, E., El-Zawahri, M.: Gold nanoparticles induce G2/M cell cycle arrest and enhance the expression of E-cadherin in breast cancer cells. Inorg. Nano-Metal Chem. 50, 926–932 (2020)

    Article  CAS  Google Scholar 

  126. Yi, J., Minikes, A.M., Jiang, X.: Aiming at cancer in vivo: ferroptosis-inducer delivered by nanoparticles. Cell Chem. Biol. 26, 621–622 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li, Y., Wei, X., Tao, F., Deng, C., Lv, C., Chen, C., Cheng, Y.: The potential application of nanomaterials for ferroptosis-based cancer therapy. Biomed. Mater. (2021). https://doi.org/10.1088/1748-605X/ac058a

    Article  PubMed  Google Scholar 

  128. Stockwell, B.R., Jiang, X., Gu, W.: Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol. 30, 478–490 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Xie, Y., Hou, W., Song, X., Yu, Y., Huang, J., Sun, X., Kang, R., Tang, D.: Ferroptosis: process and function. Cell Death Differ. 23, 369–379 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhao, Y., Zhao, W., Lim, Y.C., Liu, T.: Salinomycin-loaded gold nanoparticles for treating cancer stem cells by ferroptosis-induced cell death. Mol. Pharm. 16, 2532–2539 (2019)

    Article  CAS  PubMed  Google Scholar 

  131. Cheng, J., Zhu, Y., Xing, X., Xiao, J., Chen, H., Zhang, H., Wang, D., Zhang, Y., Zhang, G., Wu, Z., Liu, Y.: Manganese-deposited iron oxide promotes tumor-responsive ferroptosis that synergizes the apoptosis of cisplatin. Theranostics. 11, 5418–5429 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yihui, Y., Liwen, R., Hong, Y., Binbin, G., Wan, L., Yumin, W., Hongquan, W., Guanhua, D., Bo Tang, J.W.: Research progress on anti-angiogenesis drugs in hepatocellular carcinoma. Cancer Plus. (2021). https://doi.org/10.18063/cp.v3i2.319

    Article  Google Scholar 

  133. Garg, V.K., Kashyap, D., Tuli, H.S.: Targeting telomerase and topoisomerase-II by natural moieties: an anti-cancer approach. Nov. Approach Cancer Study. 1, 3–4 (2018)

    Google Scholar 

  134. Kashyap, D., Tuli, H.S., Garg, V.K., Goel, N., Bishayee, A.: Oncogenic and tumor-suppressive roles of microRNAs with special reference to apoptosis: molecular mechanisms and therapeutic potential. Mol. Diagn Ther. (2018). https://doi.org/10.1007/s40291-018-0316-1

    Article  PubMed  Google Scholar 

  135. Lee, J.H., Chiang, S.Y., Nam, D., Chung, W.S., Lee, J., Na, Y.S., Sethi, G., Ahn, K.S.: Capillarisin inhibits constitutive and inducible STAT3 activation through induction of SHP-1 and SHP-2 tyrosine phosphatases. Cancer Lett. 345, 140–148 (2014)

    Article  CAS  PubMed  Google Scholar 

  136. Kim, S.M., Lee, J.H., Sethi, G., Kim, C., Baek, S.H., Nam, D., Chung, W.S., Kim, S.H., Shim, B.S., Ahn, K.S.: Bergamottin, a natural furanocoumarin obtained from grapefruit juice induces chemosensitization and apoptosis through the inhibition of STAT3 signaling pathway in tumor cells. Cancer Lett. 354, 153–163 (2014)

    Article  CAS  PubMed  Google Scholar 

  137. Lee, W.S., Yang, H., Chon, H.J., Kim, C.: Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp. Mol. Med. 52, 1475–1485 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yu, D.H., Lu, Q., Xie, J., Fang, C., Chen, H.Z.: Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature. Biomaterials 31, 2278–2292 (2010)

    Article  CAS  PubMed  Google Scholar 

  139. Kanwar, J.R., Mahidhara, G., Kanwar, R.K.: Antiangiogenic therapy using nanotechnological-based delivery system. Drug Discov. Today. 16, 188–202 (2011)

    Article  CAS  PubMed  Google Scholar 

  140. Shanmugam, M.K., Ahn, K.S., Hsu, A., Woo, C.C., Yuan, Y., Tan, K.H.B., Chinnathambi, A., Alahmadi, T.A., Alharbi, S.A., Koh, A.P.F., Arfuso, F., Huang, R.Y.J., Lim, L.H.K., Sethi, G., Kumar, A.P.: Thymoquinone inhibits bone metastasis of breast cancer cells through abrogation of the CXCR4 signaling axis. Front. Pharmacol. 9, 1294 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lee, J.H., Kim, C., Kim, S.H., Sethi, G., Ahn, K.S.: Farnesol inhibits tumor growth and enhances the anticancer effects of bortezomib in multiple myeloma xenograft mouse model through the modulation of STAT3 signaling pathway. Cancer Lett. 360, 280–293 (2015)

    Article  CAS  PubMed  Google Scholar 

  142. Sethi, G., Ahn, K.S., Sandur, S.K., Lin, X., Chaturvedi, M.M., Aggarwal, B.B.: Indirubin enhances tumor necrosis factor-induced apoptosis through modulation of nuclear factor-kappa B signaling pathway. J Biol Chem. 281, 23425–23435 (2006)

    Article  CAS  PubMed  Google Scholar 

  143. Tuli, H.S., Kashyap, D., Bedi, S.K., Kumar, P., Kumar, G., Sandhu, S.S.: Molecular aspects of metal oxide nanoparticle (MO-NPs) mediated pharmacological effects. Life Sci. 143, 71–79 (2015)

    Article  CAS  PubMed  Google Scholar 

  144. Majumder, S., Dahiya, U.R., Yadav, S., Sharma, P., Ghosh, D., Rao, G.K., Rawat, V., Kumar, G., Kumar, A., Srivastava, C.M.: Zinc oxide nanoparticles functionalized on hydrogel grafted silk fibroin fabrics as efficient composite dressing. Biomolecules 10, 710 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kovács, D., Igaz, N., Marton, A., Rónavári, A., Bélteky, P., Bodai, L., Spengler, G., Tiszlavicz, L., Rázga, Z., Hegyi, P., Vizler, C., Boros, I.M., Kónya, Z., Kiricsi, M.: Core-shell nanoparticles suppress metastasis and modify the tumour-supportive activity of cancer-associated fibroblasts. J. Nanobiotechnol. 18, 18 (2020)

    Article  Google Scholar 

  146. Shandiz, S.A.S., Sharifian, F., Behboodi, S., Ghodratpour, F., Baghbani-Arani, F.: Evaluation of metastasis suppressor genes expression and in vitro anti-cancer effects of zinc oxide nanoparticles in human breast cancer cell lines mcf-7 and t47d. Avicenna J. Med. Biotechnol. 13, 9–14 (2020)

    Google Scholar 

  147. Katifelis, H., Mukha, I., Bouziotis, P., Vityuk, N., Tsoukalas, C., Lazaris, A.C., Lyberopoulou, A., Theodoropoulos, G.E., Efstathopoulos, E.P., Gazouli, M.: Ag/Au bimetallic nanoparticles inhibit tumor growth and prevent metastasis in a mouse model. Int. J. Nanomed. 15, 6019–6032 (2020)

    Article  CAS  Google Scholar 

  148. Wang, Y., Yang, F., Zhang, H.X., Zi, X.Y., Pan, X.H., Chen, F., Luo, W.D., Li, J.X., Zhu, H.Y., Hu, Y.P.: Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria. Cell Death Dis. 4, e783 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Song, H., Wang, W., Zhao, P., Qi, Z., Zhao, S.: Cuprous oxide nanoparticles inhibit angiogenesis via down regulation of VEGFR2 expression. Nanoscale 6, 3206–3216 (2014)

    Article  CAS  PubMed  Google Scholar 

  150. Bhattacharya, R., Mukherjee, P.: Biological properties of “naked” metal nanoparticles. Adv. Drug Deliv. Rev. 60, 1289–1306 (2008)

    Article  CAS  PubMed  Google Scholar 

  151. Arvizo, R.R., Rana, S., Miranda, O.R., Bhattacharya, R., Rotello, V.M., Mukherjee, P.: Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomed. Nanotechnol. Biol. Med. 7, 580–587 (2011)

    Article  CAS  Google Scholar 

  152. Giri, S., Karakoti, A., Graham, R.P., Maguire, J.L., Reilly, C.M., Seal, S., Rattan, R., Shridhar, V.: Nanoceria: a rare-earth nanoparticle as a novel anti-angiogenic therapeutic agent in ovarian cancer. PLoS ONE 8, e54578 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Satapathy, S.R., Nayak, A., Siddharth, S., Das, S., Nayak, D., Kundu, C.N.: Metallic gold and bioactive quinacrine hybrid nanoparticles inhibit oral cancer stem cell and angiogenesis by deregulating inflammatory cytokines in p53 dependent manner. Nanomed. Nanotechnol. Biol. Med. 14, 883–896 (2018)

    Article  CAS  Google Scholar 

  154. Balkwill, F., Mantovani, A.: Inflammation and cancer: back to Virchow? Lancet (Lond. Engl). 357, 539–545 (2001)

    Article  CAS  Google Scholar 

  155. Korniluk, A., Koper, O., Kemona, H., Dymicka-Piekarska, V.: From inflammation to cancer. Ir. J. Med. Sci. 186, 57–62 (2017)

    Article  CAS  PubMed  Google Scholar 

  156. Tuli, H.S., Sak, K., Gupta, D.S., Kaur, G., Aggarwal, D., Parashar, N.C., Choudhary, R., Yerer, M.B., Kaur, J., Kumar, M., Garg, V.K., Sethi, G.: Anti-inflammatory and anticancer properties of birch bark-derived betulin: recent developments. Plants. 10, 2663 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Grivennikov, S.I., Greten, F.R., Karin, M.: Immunity, inflammation, and cancer. Cell 140, 883–899 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gonda, T.A., Tu, S., Wang, T.C.: Chronic inflammation, the tumor microenvironment and carcinogenesis. Cell Cycle 8, 2005–2013 (2009)

    Article  CAS  PubMed  Google Scholar 

  159. Landskron, G., De La Fuente, M., Thuwajit, P., Thuwajit, C., Hermoso, M.A.: Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res. 2014, 149185 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  160. Ilinskaya, A.N., Dobrovolskaia, M.A.: Understanding the immunogenicity and antigenicity of nanomaterials: past, present and future. Toxicol. Appl. Pharmacol. 299, 70–77 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Shah, A., Dobrovolskaia, M.A.: Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: therapeutic benefits, toxicity, mechanistic insights, and translational considerations. Nanomedicine 14, 977–990 (2018)

    Article  CAS  PubMed  Google Scholar 

  162. Ignacio, R.M.C., Kim, C.S., Kim, S.K.: Immunotoxicity of metal oxide nanoparticle: zinc oxide. Mol. Cell. Toxicol. 10, 237–244 (2014)

    Article  CAS  Google Scholar 

  163. Lappas, C.M.: The immunomodulatory effects of titanium dioxide and silver nanoparticles. Food Chem. Toxicol. 85, 78–83 (2015)

    Article  CAS  PubMed  Google Scholar 

  164. Klippstein, R., Fernandez-Montesinos, R., Castillo, P.M., Zaderenko, A.P., Pozo, D.: Silver nanoparticles interactions with the immune system: implications for health and disease. Silver Nanopart. 85, 309–324 (2010)

    Google Scholar 

  165. Galbiati, V., Cornaghi, L., Gianazza, E., Potenza, M.A., Donetti, E., Marinovich, M., Corsini, E.: In vitro assessment of silver nanoparticles immunotoxicity. Food Chem. Toxicol. 112, 363–374 (2018)

    Article  CAS  PubMed  Google Scholar 

  166. Chen, L., Liu, J., Zhang, Y., Zhang, G., Kang, Y., Chen, A., Feng, X., Shao, L.: The toxicity of silica nanoparticles to the immune system. Nanomedicine 13, 1939–1962 (2018)

    Article  PubMed  Google Scholar 

  167. Zolnik, B.S., González-Fernández, Á., Sadrieh, N., Dobrovolskaia, M.A.: Minireview: nanoparticles and the immune system. Endocrinology 151, 458–465 (2010)

    Article  CAS  PubMed  Google Scholar 

  168. Dykman, L.A., Khlebtsov, N.G.: Immunological properties of gold nanoparticles. Chem. Sci. 8, 1719–1735 (2017)

    Article  CAS  PubMed  Google Scholar 

  169. Cruse, J.M., Lewis, R.E.: Illustrated Dictionary of Immunology. CRC Press (2009)

  170. Mohammapdour, R., Ghandehari, H.: Mechanisms of immune response to inorganic nanoparticles and their degradation products. Adv. Drug Deliv. Rev. 180, 114022 (2022)

    Article  CAS  PubMed  Google Scholar 

  171. Carrouel, F., Viennot, S., Ottolenghi, L., Gaillard, C., Bourgeois, D.: Nanoparticles as anti-microbial, anti-inflammatory, and remineralizing agents in oral care cosmetics: a review of the current situation. Nanomater. (Basel Switzerl.) 10, 140 (2020)

    Article  CAS  Google Scholar 

  172. Mishra, S., Verma, S.S., Rai, V., Awasthee, N., Chava, S., Hui, K.M., Kumar, A.P., Challagundla, K.B., Sethi, G., Gupta, S.C.: Long non-coding RNAs are emerging targets of phytochemicals for cancer and other chronic diseases. Cell. Mol. Life Sci. 76, 1947–1966 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Sawhney, M., Rohatgi, N., Kaur, J., Shishodia, S., Sethi, G., Gupta, S.D., Deo, S.V.S., Shukla, N.K., Aggarwal, B.B., Ralhan, R.: Expression of NF-κB parallels COX-2 expression in oral precancer and cancer: association with smokeless tobacco. Int. J. Cancer. 120, 2545–2556 (2007)

    Article  CAS  PubMed  Google Scholar 

  174. Multhoff, G., Molls, M., Radons, J.: Chronic inflammation in cancer development. Front. Immunol. 2, 98 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  175. Li, F., Shanmugam, M.K., Siveen, K.S., Wang, F., Ong, T.H., Loo, S.Y., Swamy, M.M.M., Mandal, S., Kumar, A.P., Goh, B.C., Kundu, T., Ahn, K.S., Wang, L.Z., Hui, K.M., Sethi, G.: Garcinol sensitizes human head and neck carcinoma to cisplatin in a xenograft mouse model despite downregulation of proliferative biomarkers. Oncotarget 6, 5147–5163 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  176. Shanmugam, M.K., Manu, K.A., Ong, T.H., Ramachandran, L., Surana, R., Bist, P., Lim, L.H.K., Prem Kumar, A., Hui, K.M., Sethi, G.: Inhibition of CXCR4/CXCL12 signaling axis by ursolic acid leads to suppression of metastasis in transgenic adenocarcinoma of mouse prostate model. Int. J. Cancer. 129, 1552–1563 (2011)

    Article  CAS  PubMed  Google Scholar 

  177. Revell, P.: The biological effect of nanoparticles. Nanotechnol. Perceptions. 2, 283–298 (2006)

    Google Scholar 

  178. Ngobili, T.A., Daniele, M.A.: Nanoparticles and direct immunosuppression. Exp. Biol. Med. (Maywood) 241, 1064–1073 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Petanidis, S., Kioseoglou, E., Salifoglou, A.: Metallodrugs in targeted cancer therapeutics: aiming at chemoresistance-related patterns and immunosuppressive tumor networks. Curr. Med. Chem. 26, 607–623 (2017)

    Article  Google Scholar 

  180. Agarwal, H., Nakara, A., Shanmugam, V.K.: Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: a review. Biomed. Pharmacother. 109, 2561–2572 (2019)

    Article  CAS  PubMed  Google Scholar 

  181. Luo, Y.H., Chang, L.W., Lin, P.: Metal-based nanoparticles and the immune system: activation, inflammation, and potential applications. Biomed. Res. Int. 2015, 143720 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  182. Gustafson, H.H., Holt-Casper, D., Grainger, D.W., Ghandehari, H.: Nanoparticle uptake: the phagocyte problem. Nano Today 10, 487–510 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kuhn, D.A., Vanhecke, D., Michen, B., Blank, F., Gehr, P., Petri-Fink, A., Rothen-Rutishauser, B.: Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J. Nanotechnol. 5, 1625–1636 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  184. Li, Y., Monteiro-Riviere, N.A.: Mechanisms of cell uptake, inflammatory potential and protein corona effects with gold nanoparticles. Nanomedicine 11, 3185–3203 (2016)

    Article  CAS  PubMed  Google Scholar 

  185. Bahadar, H., Maqbool, F., Niaz, K., Abdollahi, M.: Toxicity of nanoparticles and an overview of current experimental models. Iran. Biomed. J. 20, 1–11 (2016)

    PubMed  PubMed Central  Google Scholar 

  186. Gunawan, C., Lim, M., Marquis, C.P., Amal, R.: Nanoparticle-protein corona complexes govern the biological fates and functions of nanoparticles. J. Mater. Chem. B. 2, 2060–2083 (2014)

    Article  CAS  PubMed  Google Scholar 

  187. Walkey, C.D., Chan, W.C.W.: Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 41, 2780–2799 (2012)

    Article  CAS  PubMed  Google Scholar 

  188. Vinluan, R.D., Zheng, J.: Serum protein adsorption and excretion pathways of metal nanoparticles. Nanomed. (Lond). 10, 2781–2794 (2015)

    Article  CAS  Google Scholar 

  189. Schwartz-Albiez, R., Monteiro, R.C., Rodriguez, M., Binder, C.J., Shoenfeld, Y.: Natural antibodies, intravenous immunoglobulin and their role in autoimmunity, cancer and inflammation. Clin. Exp. Immunol. 158, 43–50 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Aschermann, S., Lux, A., Baerenwaldt, A., Biburger, M., Nimmerjahn, F.: The other side of immunoglobulin G: suppressor of inflammation. Clin. Exp. Immunol. 160, 161–167 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Muñoz, L.E., Bilyy, R., Biermann, M.H.C., Kienhöfer, D., Maueröder, C., Hahn, J., Brauner, J.M., Weidner, D., Chen, J., Scharin-Mehlmann, M., Janko, C., Friedrich, R.P., Mielenz, D., Dumych, T., Lootsik, M.D., Schauer, C., Schett, G., Hoffmann, M., Zhao, Y., Herrmann, M.: Nanoparticles size-dependently initiate self-limiting NETosis-driven inflammation. Proc. Natl. Acad. Sci. USA 113, E5856–E5865 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  192. Rahman, M., Laurent, S., Tawil, N., Yahia, L.H., Mahmoudi, M.: Nanoparticle and protein corona. In: Protein-nanoparticle interactions (pp. 21-44). Springer, Berlin, Heidelberg (2013)

  193. James, L.R.A., Xu, Z.Q., Sluyter, R., Hawksworth, E.L., Kelso, C., Lai, B., Paterson, D.J., De Jonge, M.D., Dixon, N.E., Beck, J.L., Ralph, S.F., Dillon, C.T.: An investigation into the interactions of gold nanoparticles and anti-arthritic drugs with macrophages, and their reactivity towards thioredoxin reductase. J. Inorg. Biochem. 142, 28–38 (2015)

    Article  CAS  PubMed  Google Scholar 

  194. Thakor, A.S., Jokerst, J., Zavaleta, C., Massoud, T.F., Gambhir, S.S.: Gold nanoparticles: a revival in precious metal administration to patients (2011). https://pubmed.ncbi.nlm.nih.gov/21846107/

  195. Sumbayev, V.V., Yasinska, I.M., Garcia, C.P., Gilliland, D., Lall, G.S., Gibbs, B.F., Bonsall, D.R., Varani, L., Rossi, F., Calzolai, L.: Gold nanoparticles downregulate interleukin-1β-induced pro-inflammatory responses. Small 9, 472–477 (2013)

    Article  CAS  PubMed  Google Scholar 

  196. Chen, H., Dorrigan, A., Saad, S., Hare, D.J., Cortie, M.B., Valenzuela, S.M.: In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice. PLoS ONE 8, e58208 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Huang, K., Ma, H., Liu, J., Huo, S., Kumar, A., Wei, T., Zhang, X., Jin, S., Gan, Y., Wang, P.C., He, S., Zhang, X., Liang, X.J.: Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano 6, 4483–4493 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Fernández, T.D., Pearson, J.R., Leal, M.P., Torres, M.J., Blanca, M., Mayorga, C., Le Guével, X.: Intracellular accumulation and immunological properties of fluorescent gold nanoclusters in human dendritic cells. Biomaterials 43, 1–12 (2015)

    Article  PubMed  Google Scholar 

  199. Goodman, C.M., McCusker, C.D., Yilmaz, T., Rotello, V.M.: Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug. Chem. 15, 897–900 (2004)

    Article  CAS  PubMed  Google Scholar 

  200. Liptrott, N.J., Kendall, E., Nieves, D.J., Farrell, J., Rannard, S., Fernig, D.G., Owen, A.: Partial mitigation of gold nanoparticle interactions with human lymphocytes by surface functionalization with a ’mixed matrix. Nanomedicine 9, 2467–2479 (2014)

    Article  CAS  PubMed  Google Scholar 

  201. Deng, Z.J., Liang, M., Monteiro, M., Toth, I., Minchin, R.F.: Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat. Nanotechnol. 6, 39–44 (2011)

    Article  CAS  PubMed  Google Scholar 

  202. Fytianos, K., Rodriguez-Lorenzo, L., Clift, M.J.D., Blank, F., Vanhecke, D., von Garnier, C., Petri-Fink, A., Rothen-Rutishauser, B.: Uptake efficiency of surface modified gold nanoparticles does not correlate with functional changes and cytokine secretion in human dendritic cells in vitro. Nanomed. Nanotechnol. Biol. Med. 11, 633–644 (2015)

    Article  CAS  Google Scholar 

  203. Sheikpranbabu, S., Kalishwaralal, K., Venkataraman, D., Eom, S.H., Park, J., Gurunathan, S.: Silver nanoparticles inhibit VEGF-and IL-1β-induced vascular permeability via Src dependent pathway in porcine retinal endothelial cells. J. Nanobiotechnol. 7, 8 (2009)

    Article  Google Scholar 

  204. Yang, T., Yao, Q., Cao, F., Liu, Q., Liu, B., Wang, X.H.: Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: Insight into the cytotoxicity and antiangiogenesis. Int. J. Nanomed. 11, 6679–6692 (2016)

    Article  CAS  Google Scholar 

  205. Franková, J., Pivodová, V., Vágnerová, H., Juráňová, J., Ulrichová, J.: Effects of silver nanoparticles on primary cell cultures of fibroblasts and keratinocytes in a wound-healing model. J. Appl. Biomater. Funct. Mater. 14, e137–e142 (2016)

    PubMed  Google Scholar 

  206. Kim, M.H., Seo, J.H., Kim, H.M., Jeong, H.J.: Aluminum-doped zinc oxide nanoparticles attenuate the TSLP levels via suppressing caspase-1 in activated mast cells. J. Biomater. Appl. 30, 1407–1416 (2016)

    Article  CAS  PubMed  Google Scholar 

  207. Nagajyothi, P.C., Cha, S.J., Yang, I.J., Sreekanth, T.V.M., Kim, K.J., Shin, H.M.: Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. J. Photochem. Photobiol. B Biol. 146, 10–17 (2015)

    Article  CAS  Google Scholar 

  208. Kim, M.H., Jeong, H.J.: Zinc oxide nanoparticles suppress LPS-Induced NF-κB activation by inducing A20, a negative regulator of NF-κB, in RAW 264.7 macrophages. J. Nanosci. Nanotechnol. 15, 6509–6515 (2015)

    Article  CAS  PubMed  Google Scholar 

  209. Seisenbaeva, G.A., Fromell, K., Vinogradov, V.V., Terekhov, A.N., Pakhomov, A.V., Nilsson, B., Ekdahl, K.N., Vinogradov, V.V., Kessler, V.G.: Dispersion of TiO2 nanoparticles improves burn wound healing and tissue regeneration through specific interaction with blood serum proteins. Sci. Rep. 7, 15448 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  210. Palai, P.K., Mondal, A., Chakraborti, C.K., Banerjee, I., Pal, K.: Green synthesized amino-PEGylated silver decorated graphene nanoplatform as a tumor-targeted controlled drug delivery system. SN Appl. Sci. 1, 1–18 (2019)

    Article  Google Scholar 

  211. Benyettou, F., Rezgui, R., Ravaux, F., Jaber, T., Blumer, K., Jouiad, M., Motte, L., Olsen, J.C., Platas-Iglesias, C., Magzoub, M., Trabolsi, A.: Synthesis of silver nanoparticles for the dual delivery of doxorubicin and alendronate to cancer cells. J. Mater. Chem. B. 3, 7237–7245 (2015)

    Article  CAS  PubMed  Google Scholar 

  212. Patra, S., Mukherjee, S., Barui, A.K., Ganguly, A., Sreedhar, B., Patra, C.R.: Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater. Sci. Eng. C. 53, 298–309 (2015)

    Article  CAS  Google Scholar 

  213. Fan, T., Li, M., Wu, X., Li, M., Wu, Y.: Preparation of thermoresponsive and pH-sensitivity polymer magnetic hydrogel nanospheres as anticancer drug carriers. Coll. Surf. B Biointerfaces. 88, 593–600 (2011)

    Article  CAS  Google Scholar 

  214. Shi, J., Wang, L., Zhang, J., Ma, R., Gao, J., Liu, Y., Zhang, C., Zhang, Z.: A tumor-targeting near-infrared laser-triggered drug delivery system based on GO@Ag nanoparticles for chemo-photothermal therapy and X-ray imaging. Biomaterials 35, 5847–5861 (2014)

    Article  CAS  PubMed  Google Scholar 

  215. Sack, M., Alili, L., Karaman, E., Das, S., Gupta, A., Seal, S., Brenneisen, P.: Combination of conventional chemotherapeutics with redox-active cerium oxide nanoparticles—a novel aspect in cancer therapy. Mol. Cancer Ther. 13, 1740–1749 (2014)

    Article  CAS  PubMed  Google Scholar 

  216. Wu, S., Zhao, X., Cui, Z., Zhao, C., Wang, Y., Du, L., Li, Y.: Cytotoxicity of graphene oxide and graphene oxide loaded with doxorubicin on human multiple myeloma cells. Int. J. Nanomed. 9, 1413–1421 (2014)

    Google Scholar 

  217. Zhou, Z.H., Liang, S.Y., Zhao, T.C., Chen, X.Z., Cao, X.K., Qi, M., Huang, Y.Y., Ju, W.T., Yang, M., Zhu, D.W., Pang, Y.C., Zhong, L.P.: Overcoming chemotherapy resistance using pH-sensitive hollow MnO2 nanoshells that target the hypoxic tumor microenvironment of metastasized oral squamous cell carcinoma. J. Nanobiotechnol. 19, 157 (2021)

    Article  CAS  Google Scholar 

  218. Dhar, S., Daniel, W.L., Giljohann, D.A., Mirkin, C.A., Lippard, S.J.: Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for platinum(IV) warheads. J. Am. Chem. Soc. 131, 14652–14653 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Alamzadeh, Z., Beik, J., Mirrahimi, M., Shakeri-Zadeh, A., Ebrahimi, F., Komeili, A., Ghalandari, B., Ghaznavi, H., Kamrava, S.K., Moustakis, C.: Gold nanoparticles promote a multimodal synergistic cancer therapy strategy by co-delivery of thermo-chemo-radio therapy. Eur. J. Pharm. Sci. 145, 105235 (2020)

    Article  CAS  PubMed  Google Scholar 

  220. Zhang, W., Qiao, I., Wang, X., Senthilkumar, R., Wang, F., Chen, B.: Inducing cell cycle arrest and apoptosis by dimercaptosuccinic acid modified Fe3O4 magnetic nanoparticles combined with nontoxic concentration of bortezomib and gambogic acid in rpmi-8226 cells. Int. J. Nanomed. 10, 3275–3289 (2015)

    CAS  Google Scholar 

  221. Urandur, S., Banala, V.T., Shukla, R.P., Gautam, S., Marwaha, D., Rai, N., Sharma, M., Sharma, S., Ramarao, P., Mishra, P.R.: Theranostic lyotropic liquid crystalline nanostructures for selective breast cancer imaging and therapy. Acta Biomater. 113, 522–540 (2020)

    Article  CAS  PubMed  Google Scholar 

  222. El Hallal, R., Lyu, N., Wang, Y.: Effect of cetuximab-conjugated gold nanoparticles on the cytotoxicity and phenotypic evolution of colorectal cancer cells. Molecules 26, 567 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  223. Ding, Y., Zhou, Y.Y., Chen, H., Geng, D.D., Wu, D.Y., Hong, J., Shen, W.B., Hang, T.J., Zhang, C.: The performance of thiol-terminated PEG-paclitaxel-conjugated gold nanoparticles. Biomaterials 34, 10217–10227 (2013)

    Article  CAS  PubMed  Google Scholar 

  224. Li, Y., Guo, M., Lin, Z., Zhao, M., Xiao, M., Wang, C., Xu, T., Chen, T., Zhu, B.: Polyethylenimine-functionalized silver nanoparticle-based co-delivery of paclitaxel to induce HepG2 cell apoptosis. Int. J. Nanomed. 11, 6693–6702 (2016)

    Article  CAS  Google Scholar 

  225. Xing, L., Yang, C.X., Zhao, D., Shen, L.J., Zhou, T.J., Bi, Y.Y., Huang, Z.J., Wei, Q., Li, L., Li, F., Jiang, H.L.: A carrier-free anti-inflammatory platinum (II) self-delivered nanoprodrug for enhanced breast cancer therapy. J. Control. Release. 331, 460–471 (2021)

    Article  CAS  PubMed  Google Scholar 

  226. Brown, S.D., Nativo, P., Smith, J.A., Stirling, D., Edwards, P.R., Venugopal, B., Flint, D.J., Plumb, J.A., Graham, D., Wheate, N.J.: Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J. Am. Chem. Soc. 132, 4678–4684 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Chen, Y.H., Tsai, C.Y., Huang, P.Y., Chang, M.Y., Cheng, P.C., Chou, C.H., Chen, D.H., Wang, C.R., Shiau, A.L., Wu, C.L.: Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol. Pharm. 4, 713–722 (2007)

    Article  CAS  PubMed  Google Scholar 

  228. Thapa, R.K., Kim, J.H., Jeong, J.H., Shin, B.S., Choi, H.G., Yong, C.S., Kim, J.O.: Silver nanoparticle-embedded graphene oxide-methotrexate for targeted cancer treatment. Coll. Surf. B Biointerfaces. 153, 95–103 (2017)

    Article  CAS  Google Scholar 

  229. Rozalen, M., Sánchez-Polo, M., Fernández-Perales, M., Widmann, T.J., Rivera-Utrilla, J.: Synthesis of controlled-size silver nanoparticles for the administration of methotrexate drug and its activity in colon and lung cancer cells. RSC Adv. 10, 10646–10660 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Sadat Shandiz, S.A., ShafieeArdestani, M., Shahbazzadeh, D., Assadi, A., Ahangari Cohan, R., Asgary, V., Salehi, S.: Novel imatinib-loaded silver nanoparticles for enhanced apoptosis of human breast cancer MCF-7 cells. Artif. Cells Nanomed. Biotechnol. 45, 1082–1091 (2017)

    Article  CAS  Google Scholar 

  231. Karuppaiah, A., Siram, K., Selvaraj, D., Ramasamy, M., Babu, D., Sankar, V.: Synergistic and enhanced anticancer effect of a facile surface modified non-cytotoxic silver nanoparticle conjugated with gemcitabine in metastatic breast cancer cells. Mater. Today Commun. 23, 100884 (2020)

    Article  CAS  Google Scholar 

  232. Ding, J., Chen, G., Chen, G., Guo, M.: One-pot synthesis of epirubicin-capped silver nanoparticles and their anticancer activity against hep G2 cells. Pharmaceutics. 11, 123 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Ramezani, T., Nabiuni, M., Baharara, J., Parivar, K., Namvar, F.: Sensitization of resistance ovarian cancer cells to cisplatin by biogenic synthesized silver nanoparticles through p53 activation. Iran. J. Pharm. Res. 18, 222–231 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Samra, Y.A., Abdelghany, A.M., Zaghloul, R.A.: Polydatin gold nanoparticles potentiate antitumor effect of doxorubicin in Ehrlich ascites carcinoma-bearing mice. J. Biochem. Mol. Toxicol. 35, e22869 (2021)

    Article  CAS  PubMed  Google Scholar 

  235. Tran, S., DeGiovanni, P., Piel, B., Rai, P.: Cancer nanomedicine: a review of recent success in drug delivery. Clin. Transl. Med. 6, 44 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  236. Jain, K.K.: Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Rev. Mol. Diagn. 3, 153–161 (2003)

    Article  CAS  PubMed  Google Scholar 

  237. Baptista, P.V.: Nanodiagnostics: leaving the research lab to enter the clinics? Diagnosis. 1, 305–309 (2014)

    Article  PubMed  Google Scholar 

  238. Alharbi, K.K., Al-sheikh, Y.A.: Role and implications of nanodiagnostics in the changing trends of clinical diagnosis. Saudi J. Biol. Sci. 21, 109–117 (2014)

    Article  PubMed  Google Scholar 

  239. Jabir, N.R., Anwar, K., Firoz, C.K., Oves, M., Kamal, M.A., Tabrez, S.: An overview on the current status of cancer nanomedicines. Curr. Med. Res. Opin. 34, 911–921 (2018)

    Article  CAS  PubMed  Google Scholar 

  240. Radich, J.P., Dai, H., Mao, M., Oehler, V., Schelter, J., Druker, B., Sawyers, C., Shah, N., Stock, W., Willman, C.L., Friend, S., Linsley, P.S.: Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc. Natl. Acad. Sci. USA 103, 2794–2799 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Waldherr, C., Mellinghoff, I.K., Tran, C., Halpern, B.S., Rozengurt, N., Safaei, A., Weber, W.A., Stout, D., Satyamurthy, N., Barrio, J., Phelps, M.E., Silverman, D.H., Sawyers, C.L., Czernin, J.: Monitoring antiproliferative responses to kinase inhibitor therapy in mice with 3′-deoxy-3′-18F-fluorothymidine PET. J. Nucl. Med. 46, 114–120 (2005)

    CAS  PubMed  Google Scholar 

  242. Huang, F., Reeves, K., Han, X., Fairchild, C., Platero, S., Wong, T.W., Lee, F., Shaw, P., Clark, E.: Identification of candidate molecular markers predicting sensitivity in solid tumors to dasatinib: rationale for patient selection. Cancer Res. 67, 2226–2238 (2007)

    Article  CAS  PubMed  Google Scholar 

  243. Heath, J.R., Davis, M.E.: Nanotechnology and cancer. Annu. Rev. Med. 59, 251–265 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Oldenburg, A.L., Toublan, F.J.-J., Suslick, K.S., Wei, A., Boppart, S.A.: Magnetomotive contrast for in vivo optical coherence tomography. Opt. Express. 13, 6597 (2005)

    Article  PubMed  Google Scholar 

  245. Yu, Z., Gao, L., Chen, K., Zhang, W., Zhang, Q., Li, Q., Hu, K.: Nanoparticles: a new approach to upgrade cancer diagnosis and treatment. Nanoscale Res. Lett. 16, 88 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Ito, A., Shinkai, M., Honda, H., Kobayashi, T.: Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng. 100, 1–11 (2005)

    Article  CAS  PubMed  Google Scholar 

  247. Estelrich, J., Sánchez-Martín, M.J., Busquets, M.A.: Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int. J. Nanomed. 10, 1727–1741 (2015)

    CAS  Google Scholar 

  248. Laconte, L., Nitin, N., Bao, G.: Magnetic nanoparticle probes. Mater. Today. 8, 32–38 (2005)

    Article  Google Scholar 

  249. Liu, H., Zhu, J., Zhao, J., Zhang, G., Shi, X.: Targeted dendrimer-stabilized gold nanoparticles for computed tomography imaging of cancer cells. J. Control. Release. 172, e37–e38 (2013)

    Article  CAS  Google Scholar 

  250. Aminabad, N.S., Farshbaf, M., Akbarzadeh, A.: Recent advances of gold nanoparticles in biomedical applications: state of the art. Cell Biochem. Biophys. 77, 123–137 (2019)

    Article  CAS  PubMed  Google Scholar 

  251. Nejati, K., Dadashpour, M., Gharibi, T., Mellatyar, H., Akbarzadeh, A.: Biomedical applications of functionalized gold nanoparticles: a review. J. Clust. Sci. (2022). https://doi.org/10.1007/s10876-020-01955-9

    Article  Google Scholar 

  252. Beik, J., Khademi, S., Attaran, N., Sarkar, S., Shakeri-Zadeh, A., Ghaznavi, H., Ghadiri, H.: A nanotechnology-based strategy to increase the efficiency of cancer diagnosis and therapy: folate-conjugated gold nanoparticles. Curr. Med. Chem. 24, 4399–4416 (2017)

    Article  CAS  PubMed  Google Scholar 

  253. Khademi, S., Sarkar, S., Shakeri-Zadeh, A., Attaran, N., Kharrazi, S., Ay, M.R., Azimian, H., Ghadiri, H.: Corrigendum to “Targeted gold nanoparticles enable molecular CT imaging of head and neck cancer: an in vivo study” [Int. J. Biochem. Cell Biol. 114 (2019) 105554]. Int. J. Biochem. Cell Biol. 120, 105695 (2020)

    Article  CAS  PubMed  Google Scholar 

  254. Hong, S., Leroueil, P.R., Majoros, I.J., Orr, B.G., Baker, J.R., Banaszak Holl, M.M.: The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem. Biol. 14, 107–115 (2007)

    Article  CAS  PubMed  Google Scholar 

  255. Bartlett, D.W., Davis, M.E.: Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. Bioconjug. Chem. 18, 456–468 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Shi, S., Vissapragada, R., Abi Jaoude, J., Huang, C., Mittal, A., Liu, E., Zhong, J., Kumar, V.: Evolving role of biomaterials in diagnostic and therapeutic radiation oncology. Bioact. Mater. 5, 233–240 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  257. Zhang, T., Lip, H., He, C., Cai, P., Wang, Z., Henderson, J.T., Rauth, A.M., Wu, X.Y.: Multitargeted nanoparticles deliver synergistic drugs across the blood-brain barrier to brain metastases of triple negative breast cancer cells and tumor-associated macrophages. Adv. Healthc. Mater. 8, e1900543 (2019)

    Article  PubMed  Google Scholar 

  258. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., Beeregowda, K.N.: Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7, 60–72 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  259. Jan, A.T., Azam, M., Siddiqui, K., Ali, A., Choi, I., Haq, Q.M.R.: Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci. 16, 29592–29630 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Medici, S., Peana, M., Pelucelli, A., Zoroddu, M.A.: An updated overview on metal nanoparticles toxicity. Semin. Cancer Biol. 76, 17–26 (2021)

    Article  CAS  PubMed  Google Scholar 

  261. Pan, Y., Neuss, S., Leifert, A., Fischler, M., Wen, F., Simon, U., Schmid, G., Brandau, W., Jahnen-Dechent, W.: Size-dependent cytotoxicity of gold nanoparticles. Small 3, 1941–1949 (2007)

    Article  CAS  PubMed  Google Scholar 

  262. Sharma, A., Goyal, A.K., Rath, G.: Recent advances in metal nanoparticles in cancer therapy. J. Drug Target. 26, 617–632 (2018)

    Article  CAS  PubMed  Google Scholar 

  263. Chia, S.L., Leong, D.T.: Reducing ZnO nanoparticles toxicity through silica coating. Heliyon. 2, e00177 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  264. Pérez-Campaña, C., Gómez-Vallejo, V., Puigivila, M., Martín, A., Calvo-Fernández, T., Moya, S.E., Ziolo, R.F., Reese, T., Llop, J.: Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles. ACS Nano 7, 3498–3505 (2013)

    Article  PubMed  Google Scholar 

  265. Bailly, A.L., Correard, F., Popov, A., Tselikov, G., Chaspoul, F., Appay, R., Al-Kattan, A., Kabashin, A.V., Braguer, D., Esteve, M.A.: In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Sci. Rep. 9, 12890 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  266. Leavens, T.L., Monteiro-Riviere, N.A., Inman, A.O., Brooks, J.D., Oldenburg, S.J., Riviere, J.E.: In vitro biodistribution of silver nanoparticles in isolated perfused porcine skin flaps. J. Appl. Toxicol. 32, 913–919 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Xue, Y., Zhang, S., Huang, Y., Zhang, T., Liu, X., Hu, Y., Zhang, Z., Tang, M.: Acute toxic effects and gender-related biokinetics of silver nanoparticles following an intravenous injection in mice. J. Appl. Toxicol. 32, 890–899 (2012)

    Article  CAS  PubMed  Google Scholar 

  268. Glazer, E.S., Zhu, C., Hamir, A.N., Borne, A., Thompson, C.S., Curley, S.A.: Biodistribution and acute toxicity of naked gold nanoparticles in a rabbit hepatic tumor model. Nanotoxicology 5, 459–468 (2011)

    Article  CAS  PubMed  Google Scholar 

  269. Lankveld, D.P.K., Rayavarapu, R.G., Krystek, P., Oomen, A.G., Verharen, H.W., Van Leeuwen, T.G., De Jong, W.H., Manohar, S.: Blood clearance and tissue distribution of PEGylated and non-PEGylated gold nanorods after intravenous administration in rats. Nanomedicine 6, 339–349 (2011)

    Article  CAS  PubMed  Google Scholar 

  270. Arvizo, R.R., Miranda, O.R., Moyano, D.F., Walden, C.A., Giri, K., Bhattacharya, R., Robertson, J.D., Rotello, V.M., Reid, J.M., Mukherjee, P.: Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. PLoS ONE 6, e24374 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Schleh, C., Holzwarth, U., Hirn, S., Wenk, A., Simonelli, F., Schäffler, M., Möller, W., Gibson, N., Kreyling, W.G.: Biodistribution of inhaled gold nanoparticles in mice and the influence of surfactant protein D. J. Aerosol Med. Pulm. Drug Deliv. 26, 24–30 (2013)

    Article  CAS  PubMed  Google Scholar 

  272. El-Sayed, M.A., Shabaka, A.A., El-Shabrawy, O.A., Yassin, N.A., Mahmoud, S.S., El-Shenawy, S.M., Al-Ashqar, E., Eisa, W.H., Farag, N.M., El-Shaer, M.A., Salah, N., Al-Abd, A.M.: Tissue distribution and efficacy of gold nanorods coupled with laser induced photoplasmonic therapy in Ehrlich carcinoma solid tumor model. PLoS ONE 8, e76207 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Lee, M.J.E., Veiseh, O., Bhattarai, N., Sun, C., Hansen, S.J., Ditzler, S., Knoblaugh, S., Lee, D., Ellenbogen, R., Zhang, M., Olson, J.M.: Rapid pharmacokinetic and biodistribution studies using cholorotoxin-conjugated iron oxide nanoparticles: a novel non-radioactive method. PLoS ONE 5, e9536 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  274. Cole, A.J., David, A.E., Wang, J., Galbán, C.J., Hill, H.L., Yang, V.C.: Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials 32, 2183–2193 (2011)

    Article  CAS  PubMed  Google Scholar 

  275. Zhang, J., Shin, M.C., David, A.E., Zhou, J., Lee, K., He, H., Yang, V.C.: Long-circulating heparin-functionalized magnetic nanoparticles for potential application as a protein drug delivery platform. Mol. Pharm. 10, 3892–3902 (2013)

    Article  CAS  PubMed  Google Scholar 

  276. Ma, H.L., Xu, Y.F., Qi, X.R., Maitani, Y., Nagai, T.: Superparamagnetic iron oxide nanoparticles stabilized by alginate: pharmacokinetics, tissue distribution, and applications in detecting liver cancers. Int. J. Pharm. 354, 217–226 (2008)

    Article  CAS  PubMed  Google Scholar 

  277. Li, C.H., Shen, C.C., Cheng, Y.W., Huang, S.H., Wu, C.C., Kao, C.C., Liao, J.W., Kang, J.J.: Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice. Nanotoxicology 6, 746–756 (2012)

    Article  CAS  PubMed  Google Scholar 

  278. Wang, J., Zhou, G., Chen, C., Yu, H., Wang, T., Ma, Y., Jia, G., Gao, Y., Li, B., Sun, J., Li, Y., Jiao, F., Zhao, Y., Chai, Z.: Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol. Lett. 168, 176–185 (2007)

    Article  CAS  PubMed  Google Scholar 

  279. Yamashita, K., Yoshioka, Y., Higashisaka, K., Mimura, K., Morishita, Y., Nozaki, M., Yoshida, T., Ogura, T., Nabeshi, H., Nagano, K., Abe, Y., Kamada, H., Monobe, Y., Imazawa, T., Aoshima, H., Shishido, K., Kawai, Y., Mayumi, T., Tsunoda, S.I., Itoh, N., Yoshikawa, T., Yanagihara, I., Saito, S., Tsutsumi, Y.: Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat. Nanotechnol. 6, 321–328 (2011)

    Article  CAS  PubMed  Google Scholar 

  280. Malaikolundhan, H., Mookkan, G., Krishnamoorthi, G., Matheswaran, N., Alsawalha, M., Veeraraghavan, V.P., Krishna Mohan, S., Di, A.: Anticarcinogenic effect of gold nanoparticles synthesized from Albizia Lebbeck on HCT-116 colon cancer cell lines. Artif. Cells Nanomed. Biotechnol. 48, 1206–1213 (2020)

    Article  CAS  PubMed  Google Scholar 

  281. Liu, G., Li, Q., Ni, W., Zhang, N., Zheng, X., Wang, Y., Shao, D., Tai, G.: Cytotoxicity of various types of gold-mesoporous silica nanoparticles in human breast cancer cells. Int. J. Nanomed. 10, 6075–6087 (2015)

    CAS  Google Scholar 

  282. Sun, B., Hu, N., Han, L., Pi, Y., Gao, Y., Chen, K.: Anticancer activity of green synthesised gold nanoparticles from Marsdenia tenacissima inhibits A549 cell proliferation through the apoptotic pathway. Artif. Cells Nanomed. Biotechnol. 47, 4012–4019 (2019)

    Article  PubMed  Google Scholar 

  283. Yun, Z., Chinnathambi, A., Alharbi, S.A., Jin, Z.: Biosynthesis of gold nanoparticles using Vitex negundo and evaluation of pro-apoptotic effect on human gastric cancer cell lines. J. Photochem. Photobiol. B Biol. 203, 111749 (2020)

    Article  CAS  Google Scholar 

  284. Li, L., Zhang, W., Desikan Seshadri, V.D., Cao, G.: Synthesis and characterization of gold nanoparticles from Marsdenia tenacissima and its anticancer activity of liver cancer HepG2 cells. Artif. Cells Nanomed. Biotechnol. 47, 3029–3036 (2019)

    Article  CAS  PubMed  Google Scholar 

  285. Li, Y., Ke, Y., Zou, H., Wang, K., Huang, S., Rengarajan, T., Wang, L.: Gold nano particles synthesized from Strychni semen and its anticancer activity in cholangiocarcinoma cell (KMCH-1). Artif. Cells Nanomed. Biotechnol. 47, 1610–1616 (2019)

    Article  CAS  PubMed  Google Scholar 

  286. Wang, L., Xu, J., Yan, Y., Liu, H., Karunakaran, T., Li, F.: Green synthesis of gold nanoparticles from Scutellaria barbata and its anticancer activity in pancreatic cancer cell (PANC-1). Artif. Cells Nanomed. Biotechnol. 47, 1617–1627 (2019)

    Article  CAS  PubMed  Google Scholar 

  287. Daei, S., Ziamajidi, N., Abbasalipourkabir, R., Khanaki, K., Bahreini, F.: Anticancer effects of gold nanoparticles by inducing apoptosis in bladder cancer 5637 cells. Biol. Trace Elem. Res. (2021). https://doi.org/10.1007/s12011-021-02895-9

    Article  PubMed  Google Scholar 

  288. Wu, T., Duan, X., Hu, C., Wu, C., Chen, X., Huang, J., Liu, J., Cui, S.: Synthesis and characterization of gold nanoparticles from Abies spectabilis extract and its anticancer activity on bladder cancer T24 cells. Artif. Cells Nanomed. Biotechnol. 47, 512–523 (2019)

    Article  PubMed  Google Scholar 

  289. Ke, Y., Al Aboody, M.S., Alturaiki, W., Alsagaby, S.A., Alfaiz, F.A., Veeraraghavan, V.P., Mickymaray, S.: Photosynthesized gold nanoparticles from Catharanthus roseus induces caspase-mediated apoptosis in cervical cancer cells (HeLa). Artif. Cells Nanomedicine Biotechnol. 47, 1938–1946 (2019)

    Article  CAS  Google Scholar 

  290. Li, F., Song, L., Yang, X., Huang, Z., Mou, X., Syed, A., Bahkali, A.H., Zheng, L.: Anticancer and genotoxicity effect of (Clausena lansium (Lour.) Skeels) Peel ZnONPs on neuroblastoma (SH-SY5Y) cells through the modulation of autophagy mechanism. J. Photochem. Photobiol. B Biol. 203, 111748 (2020)

    Article  CAS  Google Scholar 

  291. Cheng, J., Wang, X., Qiu, L., Li, Y., Marraiki, N., Elgorban, A.M., Xue, L.: Green synthesized zinc oxide nanoparticles regulates the apoptotic expression in bone cancer cells MG-63 cells. J. Photochem. Photobiol. B Biol. 202, 111644 (2020)

    Article  CAS  Google Scholar 

  292. Berehu, H.M., S, A., Khan, M.I., Chakraborty, R., Lavudi, K., Penchalaneni, J., Mohapatra, B., Mishra, A., Patnaik, S.: Cytotoxic potential of biogenic zinc oxide nanoparticles synthesized from swertia chirayita leaf extract on colorectal cancer cells. Front. Bioeng. Biotechnol. 9, 788527–788527 (2021)

  293. Tang, Q., Xia, H., Liang, W., Huo, X., Wei, X.: Synthesis and characterization of zinc oxide nanoparticles from Morus nigra and its anticancer activity of AGS gastric cancer cells. J. Photochem. Photobiol. B Biol. 202, 111698 (2020)

    Article  CAS  Google Scholar 

  294. Duan, X., Liao, Y., Liu, T., Yang, H., Liu, Y., Chen, Y., Ullah, R., Wu, T.: Zinc oxide nanoparticles synthesized from Cardiospermum halicacabum and its anticancer activity in human melanoma cells (A375) through the modulation of apoptosis pathway. J. Photochem. Photobiol. B Biol. 202, 111718 (2020)

    Article  Google Scholar 

  295. Thomas, S., Gunasangkaran, G., Arumugam, V.A., Muthukrishnan, S.: Synthesis and characterization of zinc oxide nanoparticles of solanum nigrum and its anticancer activity via the induction of apoptosis in cervical cancer. Biol. Trace Elem. Res. (2021). https://doi.org/10.1007/s12011-021-02898-6

    Article  PubMed  Google Scholar 

  296. Jabir, M.S., Saleh, Y.M., Sulaiman, G.M., Yaseen, N.Y., Sahib, U.I., Dewir, Y.H., Alwahibi, M.S., Soliman, D.A.: Green synthesis of silver nanoparticles using Annona muricata extract as an inducer of apoptosis in cancer cells and inhibitor for NLRP3 inflammasome via enhanced autophagy. Nanomaterials 11, 1–22 (2021)

    Article  Google Scholar 

  297. Venkatadri, B., Shanparvish, E., Rameshkumar, M.R., Arasu, M.V., Al-Dhabi, N.A., Ponnusamy, V.K., Agastian, P.: Green synthesis of silver nanoparticles using aqueous rhizome extract of Zingiber officinale and Curcuma longa: In-vitro anti-cancer potential on human colon carcinoma HT-29 cells. Saudi J. Biol. Sci. 27, 2980–2986 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Elhawary, S., El-Hefnawy, H., Mokhtar, F.A., Sobeh, M., Mostafa, E., Osman, S., El-Raey, M.: Green synthesis of silver nanoparticles using extract of Jasminum officinal l. Leaves and evaluation of cytotoxic activity towards bladder (5637) and breast cancer (mcf-7) cell lines. Int. J. Nanomed. 15, 9771–9781 (2020)

    Article  CAS  Google Scholar 

  299. Zulkifli, N.I., Muhamad, M., Zain, N.N.M., Tan, W.N., Yahaya, N., Bustami, Y., Aziz, A.A., Kamal, N.N.S.N.M.: A bottom-up synthesis approach to silver nanoparticles induces anti-proliferative and apoptotic activities against MCF-7, MCF-7/TAMR-1 and MCF-10A human breast cell lines. Molecules. 25, 4332 (2020).

  300. He, Y., Du, Z., Ma, S., Liu, Y., Li, D., Huang, H., Jiang, S., Cheng, S., Wu, W., Zhang, K., Zheng, X.: Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo. Int. J. Nanomed. 11, 1879–1887 (2016)

    Article  CAS  Google Scholar 

  301. Mousavi, B., Tafvizi, F., ZakerBostanabad, S.: Green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS). Artif. Cells Nanomed. Biotechnol. 46, 499–510 (2018)

    Article  CAS  PubMed  Google Scholar 

  302. Bin-Jumah, M., Al-Abdan, M., Albasher, G., Alarifi, S.: Effects of green silver nanoparticles on apoptosis and oxidative stress in normal and cancerous human hepatic cells in vitro. Int. J. Nanomed. 15, 1537–1548 (2020)

    Article  CAS  Google Scholar 

  303. Murugesan, K., Koroth, J., Srinivasan, P.P., Singh, A., Mukundan, S., Karki, S.S., Choudhary, B., Gupta, C.M.: Effects of green synthesized silver nanoparticles (ST06-AgNPs) using curcumin derivative (ST06) on human cervical cancer cells (HeLa) in vitro and EAC tumor bearing mice models. Int. J. Nanomed. 14, 5257–5270 (2019)

    Article  CAS  Google Scholar 

  304. Zhang, K., Liu, X., Samuel Ravi, S.O.A., Ramachandran, A., Aziz Ibrahim, I.A., M. Nassir, A., Yao, J.: Synthesis of silver nanoparticles (AgNPs) from leaf extract of Salvia miltiorrhiza and its anticancer potential in human prostate cancer LNCaP cell lines. Artif. Cells, Nanomedicine Biotechnol. 47, 2846–2854 (2019)

  305. Namvar, F., Rahman, H.S., Mohamad, R., Baharara, J., Mahdavi, M., Amini, E., Chartrand, M.S., Yeap, S.K.: Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. Int. J. Nanomed. 9, 2479–2488 (2014)

    Article  Google Scholar 

  306. Shahabadi, N., Falsafi, M., Mansouri, K.: Improving antiproliferative effect of the anticancer drug cytarabine on human promyelocytic leukemia cells by coating on Fe3O4 at SiO2 nanoparticles. Coll. Surfaces B Biointerfaces. 141, 213–222 (2016)

    Article  CAS  Google Scholar 

  307. Sulaiman, G.M., Tawfeeq, A.T., Naji, A.S.: Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines. Artif. Cells Nanomed. Biotechnol. 46, 1215–1229 (2018)

    Article  CAS  PubMed  Google Scholar 

  308. Shejawal, K.P., Randive, D.S., Bhinge, S.D., Bhutkar, M.A., Todkar, S.S., Mulla, A.S., Jadhav, N.R.: Green synthesis of silver, iron and gold nanoparticles of lycopene extracted from tomato: their characterization and cytotoxicity against COLO320DM, HT29 and Hella cell. J. Mater. Sci. Mater. Med. 32, 19 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Muhammad, W., Khan, M.A., Nazir, M., Siddiquah, A., Mushtaq, S., Hashmi, S.S., Abbasi, B.H.: Papaver somniferum L mediated novel bioinspired lead oxide (PbO) and iron oxide (Fe2O3) nanoparticles: in-vitro biological applications, biocompatibility and their potential towards HepG2 cell line. Mater. Sci. Eng. C. 103, 109740 (2019)

    Article  CAS  Google Scholar 

  310. Calmon, M.F., de Souza, A.T., Candido, N.M., Raposo, M.I.B., Taboga, S., Rahal, P., Nery, J.G.: A systematic study of transfection efficiency and cytotoxicity in HeLa cells using iron oxide nanoparticles prepared with organic and inorganic bases. Coll. Surf. B Biointerfaces. 100, 177–184 (2012)

    Article  CAS  Google Scholar 

  311. Shejawal, K.P., Randive, D.S., Bhinge, S.D., Bhutkar, M.A., Todkar, S.S., Mulla, A.S., Jadhav, N.R.: Green synthesis of silver, iron and gold nanoparticles of lycopene extracted from tomato: their characterization and cytotoxicity against COLO320DM, HT29 and Hella cell. J. Mater. Sci. Mater. Med. 32 (2021).

  312. Gnanavel, V., Palanichamy, V., Roopan, S.M.: Biosynthesis and characterization of copper oxide nanoparticles and its anticancer activity on human colon cancer cell lines (HCT-116). J. Photochem. Photobiol. B Biol. 171, 133–138 (2017)

    Article  CAS  Google Scholar 

  313. EsmaeiliGovarchinGhaleh, H., Zarei, L., MansoriMotlagh, B., Jabbari, N.: Using CuO nanoparticles and hyperthermia in radiotherapy of MCF-7 cell line: synergistic effect in cancer therapy. Artif. Cells Nanomed. Biotechnol. 47, 1396–1403 (2019)

    Article  CAS  Google Scholar 

  314. Manikandan, D.B., Arumugam, M., Veeran, S., Sridhar, A., KrishnasamySekar, R., Perumalsamy, B., Ramasamy, T.: Biofabrication of ecofriendly copper oxide nanoparticles using Ocimum americanum aqueous leaf extract: analysis of in vitro antibacterial, anticancer, and photocatalytic activities. Environ. Sci. Pollut. Res. 28, 33927–33941 (2021)

    Article  CAS  Google Scholar 

  315. Chinnathambi, A., Awad Alahmadi, T., Ali Alharbi, S.: Biogenesis of copper nanoparticles (Cu-NPs) using leaf extract of Allium noeanum, antioxidant and in-vitro cytotoxicity. Artif. Cells Nanomed. Biotechnol. 49, 500–510 (2021)

    Article  CAS  PubMed  Google Scholar 

  316. Miri, A., Sarani, M., Hashemzadeh, A., Mardani, Z., Darroudi, M.: Biosynthesis and cytotoxic activity of lead oxide nanoparticles. Green Chem. Lett. Rev. 11, 567–572 (2018)

    Article  CAS  Google Scholar 

  317. Al-Jameel, S.S., Rehman, S., Almessiere, M.A., Khan, F.A., Slimani, Y., Al-Saleh, N.S., Manikandan, A., Al-Suhaimi, E.A., Baykal, A.: Anti-microbial and anti-cancer activities of Mn0.5Zn0.5DyxFe2-xO4 (x ≤ 0.1) nanoparticles. Artif. Cells Nanomed. Biotechnol. 49, 493–499 (2021)

    Article  CAS  PubMed  Google Scholar 

  318. Jabbari, N., Zarei, L., EsmaeiliGovarchinGaleh, H., MansoriMotlagh, B.: Assessment of synergistic effect of combining hyperthermia with irradiation and calcium carbonate nanoparticles on proliferation of human breast adenocarcinoma cell line (MCF-7 cells). Artif. Cells Nanomed. Biotechnol. 46, 364–372 (2018)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by a Ministry of Education Tier 1 Grant to GS. The authors also thank the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP# 0091.

Author information

Authors and Affiliations

Authors

Contributions

Literature search and data retrieval was done by RJ, GK, VKG, KS, MV, JK, DA, KD, VSJ, SM; manuscript designed and written by HST, GS, KSA, KD, TAA, GS and JK, DA, KD, VSJ, SM; GS, RJ, GK, VKG, KS, MV, JK, SAA, TAA and HST assisted with critical evaluation of the manuscript, and editing of the final version.

Corresponding authors

Correspondence to Hardeep Singh Tuli or Gautam Sethi.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuli, H.S., Joshi, R., Kaur, G. et al. Metal nanoparticles in cancer: from synthesis and metabolism to cellular interactions. J Nanostruct Chem 13, 321–348 (2023). https://doi.org/10.1007/s40097-022-00504-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-022-00504-2

Keywords

Navigation