Skip to main content

Advertisement

Log in

Emerging Technologies to Solve the Key Issues in Endothelial Keratoplasty

  • Ophthalmology (D Myung, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Endothelial keratoplasty (EK) is increasingly used to treat corneal endothelial disease. However, issues remain with EK including a non-zero rejection rate, shortage of donor tissue, and technical challenges for Descemet’s membrane endothelial keratoplasty. Technologies that might solve these issues include small-molecule drugs, surgical innovations, cell therapy, tissue engineering, and gene therapy. Our purpose is to inform ophthalmologists, eye bankers, and eye health professionals of technologies that could impact practice in the near future.

Recent Findings

Recent advances are targeted at solving known issues with EK. Although none is yet routine, some are in clinical trials. Technologies that are closest to an ideal solution are those facing the highest regulatory and commercial hurdles.

Summary

In the future, there will multiple options for the treatment of corneal endothelial cell failure. Which of these differing treatments will be used will depend on their efficacy as well as commercial, regulatory, and patient factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gain P, Jullienne R, He Z, Aldossary M, Acquart S, Cognasse F, et al. Global survey of corneal transplantation and eye banking. JAMA Ophthalmol. 2016;134(2):167–73.

    Article  PubMed  Google Scholar 

  2. Tran T, Duong H, Bonnet C, Kashanchi A, Buckshey A, Aldave A. Corneal blindness in Asia: a systematic review and meta-analysis to identify challenges and opportunities. Cornea. 2020;39:1196–205.

    Article  PubMed  Google Scholar 

  3. America EBAo. Eye banking statistical report 2019. Washington: Eye Bank Association of America; 2020.

    Google Scholar 

  4. Williams KA, Keane MC, Coffey NE, Jones VJ, Mills RAD, Coster DJ. The Australian corneal graft registry 2018 report. Adelaide: South Australian Health and Medical Research Institute; 2018.

    Google Scholar 

  5. Anshu A, Price M, Price F. Risk of corneal transplant rejection significantly reduced with Descemet’s membrane endothelial keratoplasty. Ophthalmology. 2012;119(3):536–40.

    Article  PubMed  Google Scholar 

  6. Melles GRJ, San Ong T, Ververs B, van der Wees J. Descemet membrane endothelial keratoplasty (DMEK). Cornea. 2006;25(8):987–90.

    Article  PubMed  Google Scholar 

  7. Kruse FE, Laaser K, Cursiefen C, Heindl LM, Schlotzer-Schrehardt U, Riss S, et al. A stepwise approach to donor preparation and insertion increases safety and outcome of Descemet membrane endothelial keratoplasty. Cornea. 2011;30(5):580–7.

    Article  PubMed  Google Scholar 

  8. Monnereau C, Quilendrino R, Dapena I, Liarakos VS, Alfonso JF, Arnalich-Montiel F, et al. Multicenter study of descemet membrane endothelial keratoplasty: first case series of 18 surgeons. JAMA Ophthalmol. 2014;132(10):1192–8.

    Article  PubMed  Google Scholar 

  9. Varadaraj V, Woreta FA, Stoeger CG, Tran KD, Jorgenson R, Srikumaran D. Surgeon preference for endothelial keratoplasty techniques. Cornea. 2020;39(1):2–7.

    Article  PubMed  Google Scholar 

  10. Deng S, Sanchez PJ, Chen L. Clinical outcomes of Descemet membrane endothelial keratoplasty using eye bank-prepared tissues. Am J Ophthalmol. 2015;159(3):590–6.

    Article  PubMed  Google Scholar 

  11. Heinzelmann S, Maier P, Bohringer D, Huther S, Eberwein P, Reinhard T. Cystoid macular oedema following Descemet membrane endothelial keratoplasty. Br J Ophthalmol. 2015;99(1):98–102.

    Article  PubMed  Google Scholar 

  12. Suh LH, Yoo SH, Deobhakta A, Donaldson KE, Alfonso EC, Culbertson WW, et al. Complications of Descemet’s stripping with automated endothelial keratoplasty: survey of 118 eyes at One Institute. Ophthalmology. 2008;115(9):1517–24.

    Article  PubMed  Google Scholar 

  13. Okumura N, Inoue R, Okazaki Y, Nakano S, Nakagawa H, Kinoshita S, et al. Effect of the rho kinase inhibitor Y-27632 on corneal endothelial wound healing. Invest Ophthalmol Vis Sci. 2015;56(10):6067–74.

    Article  CAS  PubMed  Google Scholar 

  14. Meekins LC, Rosado-Adames N, Maddala R, Zhao JJ, Rao PV, Afshari NA. Corneal endothelial cell migration and proliferation enhanced by rho kinase (ROCK) inhibitors in in vitro and in vivo models. Invest Ophthalmol Vis Sci. 2016;57(15):6731–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Okumura N, Okazaki Y, Inoue R, Kakutani K, Nakano S, Kinoshita S, et al. Effect of the rho-associated kinase inhibitor eye drop (ripasudil) on corneal endothelial wound healing. Invest Ophthalmol Vis Sci. 2016;57(3):1284–92.

    Article  CAS  PubMed  Google Scholar 

  16. Muraine M, Gueudry J, He Z, Piselli S, Lefevre S, Toubeau D. Novel technique for the preparation of corneal grafts for Descemet membrane endothelial keratoplasty. Am J Ophthalmol. 2013;156(5):851–9.

    Article  CAS  PubMed  Google Scholar 

  17. Chong E, Bandeira F, Finn P, Mehta J, Chan E. Evaluation of total donor endothelial viability after endothelium-inward versus endothelium-outward loading and insertion in Descemet membrane endothelial keratoplasty. Cornea. 2020;39(1):104–9.

    Article  PubMed  Google Scholar 

  18. Terry M, Straiko M, Veldman P, Talajic J, VanZyl C, Sales C, et al. Standardized DMEK technique: reducing complications using prestripped tissue, novel glass injector, and sulfur hexafluoride (SF6) gas. Cornea. 2015;34(8):845–52.

    Article  PubMed  Google Scholar 

  19. He Z, Gueudry J, Toubeau D, Gain P, Thuret G, Muraine M. Endothelial quality of eye bank-prestripped DMEK prepared form organ-cultured corneas with the Muraine technique. Cell Tissue Bank. 2018;19(4):705–16.

    Article  CAS  PubMed  Google Scholar 

  20. Busin M, Leon P, Scorcia V, Ponzin D. Contact Lens-assisted pull-through technique for delivery of tri-folded (endothelium in) DMEK grafts minimizes surgical time and cell loss. Ophthalmology. 2016;123(3):476–83.

    Article  PubMed  Google Scholar 

  21. Gerber-Hollbach N, Baydoun L, Lopez EF, Frank LE, Dapena I, Liarakos VS, et al. Clinical outcome of rebubbling for graft detachment after Descemet membrane endothelial keratoplasty. Cornea. 2017;36(7):771–6.

    Article  PubMed  Google Scholar 

  22. Dunker SL, Dickman MM, Wisse RPL, Nobacht S, Wijdh RHJ, Bartels MC, et al. Descemet membrane endothelial keratoplasty versus ultrathin Descemet stripping automated endothelial keratoplasty: a multicenter randomized controlled clinical trial. Ophthalmology. 2020.

  23. Mencucci R, Favuzza E, Marziali E, Cennamo M, Mazzotta C, Lucenteforte E, et al. Ultrathin Descemet stripping automated endothelial keratoplasty versus Descemet membrane endothelial keratoplasty: a fellow-eye comparison. Eye Vis (Lond). 2020;7:25.

    Article  Google Scholar 

  24. Chamberlain W, Lin CC, Austin A, Schubach N, Clover J, McLeod SD, et al. Descemet endothelial thickness comparison trial: a randomized trial comparing ultrathin Descemet stripping automated endothelial keratoplasty with Descemet membrane endothelial keratoplasty. Ophthalmology. 2019;126(1):19–26.

    Article  PubMed  Google Scholar 

  25. Moloney G, Chan UT, Hamilton A, Zahidin A, Grigg J, Devasahayam R. Descemetorhexis for Fuchs' dystrophy. Can J Ophthalmol. 2015;50(1):68–72.

    Article  PubMed  Google Scholar 

  26. Kaufman A, Nosé R, Pineda R. Descemetorhexis without endothelial keratoplasty (DWEK): proposal for nomenclature standardization. Cornea. 2018;37(4):e20–1.

    Article  PubMed  Google Scholar 

  27. Balachandran C, Ham L, Verschoor C, San Ong T, van der Wees J, Melles GRJ. Spontaneous corneal clearance despite graft detachment in descemet membrane endothelial keratoplasty. Am J Ophthalmol. 2009;148(2):227–34.e1.

    Article  PubMed  Google Scholar 

  28. Ziaei M, Barsam A, Mearza A. Spontaneous corneal clearance despite graft removal in Descemet stripping endothelial keratoplasty in Fuchs endothelial dystrophy. Cornea. 2013;32(7):e164–e66.

    Article  PubMed  Google Scholar 

  29. Koenig S. Planned Descemetorhexis without endothelial Keratoplasty in eyes with Fuchs corneal endothelial dystrophy. Cornea. 2015;34(9):1149–51.

    Article  PubMed  Google Scholar 

  30. Borkar D, Veldman P, Colby K. Treatment of Fuchs endothelial dystrophy by Descemet stripping without endothelial keratoplasty. Cornea. 2016;35(10):1267–73.

    Article  PubMed  Google Scholar 

  31. Davies E, Jurkunas U, Pineda R. Predictive factors for corneal clearance after Descemetorhexis without endothelial Keratoplasty. Cornea. 2018;37(2):137–40.

    Article  PubMed  Google Scholar 

  32. Arbelaez J, Price M, Price F. Long-term follow-up and complications of stripping descemet membrane without placement of graft in eyes with Fuchs endothelial dystrophy. Cornea. 2014;33(12):1295–9.

    Article  PubMed  Google Scholar 

  33. Garcerant D, Hirnschall N, Toalster N, Zhu M, Wen L, Moloney G. Descemet’s stripping without endothelial keratoplasty. Curr Opin Ophthalmol. 2019;30(4):275–85.

    Article  PubMed  Google Scholar 

  34. Bhogal M, Lwin C, Seah X-Y, Peh G, Mehta J. Allogeneic Descemet’s membrane transplantation enhances corneal endothelial monolayer formation and restores functional integrity following Descemet'’s stripping. Invest Ophthalmol Vis Sci. 2017;58(10):4249–60.

    Article  CAS  PubMed  Google Scholar 

  35. Soh Y, Mehta J. Regenerative therapy for Fuchs endothelial corneal dystrophy. Cornea. 2018;37(4):523–7.

    Article  PubMed  Google Scholar 

  36. Moloney G, Petsoglou C, Ball M, Kerdraon Y, Höllhumer R, Spiteri N, et al. Descemetorhexis without grafting for Fuchs endothelial dystrophy-supplementation with topical ripasudil. Cornea. 2017;36(6):642–8.

    Article  PubMed  Google Scholar 

  37. • Soh Y, Mehta J. Selective endothelial removal for Peters anomaly. Cornea. 2018;37(3):382–5.

    Article  PubMed  Google Scholar 

  38. Yang LL, Lambert SR, Lynn MJ, Stulting RD. Long-term results of corneal graft survival in infants and children with peters anomaly. Ophthalmology. 1999;106(4):833–48.

    Article  CAS  PubMed  Google Scholar 

  39. •• Kinoshita S, Koizumi N, Ueno M, Okumura N, Imai K, Tanaka H, et al. Injection of cultured cells with a ROCK inhibitor for bullous keratopathy. N Engl J Med. 2018;378(11):995–1003.

    Article  CAS  PubMed  Google Scholar 

  40. Okumura N, Matsumoto D, Fukui Y, Teramoto M, Imai H, Kurosawa T, et al. Feasibility of cell-based therapy combined with descemetorhexis for treating Fuchs endothelial corneal dystrophy in rabbit model. PLoS One. 2018;13(1):e0191306–e06.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Jia Y, Li W, Duan H, Li Z, Zhou Q, Shi W. Mini-sheet injection for cultured corneal endothelial transplantation. Tissue Eng Part C Methods. 2018;24(8):474–9.

    Article  CAS  PubMed  Google Scholar 

  42. Toda M, Ueno M, Hiraga A, Asada K, Montoya M, Sotozono C, et al. Production of homogeneous cultured human corneal endothelial cells indispensable for innovative cell therapy. Invest Ophthalmol Vis Sci. 2017;58(4):2011–20.

    Article  CAS  PubMed  Google Scholar 

  43. •• Nakahara M, Okumura N, Nakano S, Koizumi N. Effect of a p38 mitogen-activated protein kinase inhibitor on corneal endothelial cell proliferation. Invest Ophthalmol Vis Sci. 2018;59(10):4218–27.

    Article  CAS  PubMed  Google Scholar 

  44. Parekh M, Ahmad S, Ruzza A, Ferrari S. Human corneal endothelial cell cultivation from old donor corneas with forced attachment. Sci Rep. 2017;7(1):142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Zhang Z-H, Miao Y-Y, Ke B-L, Liu K, Xu X. LY2109761, transforming growth factor β receptor type I and type II dual inhibitor, is a novel approach to suppress endothelial mesenchymal transformation in human corneal endothelial cells. Cell Physiol Biochem. 2018;50(3):963–72.

    Article  CAS  PubMed  Google Scholar 

  46. Peh GSL, Ang H-P, Lwin C, Adnan K, George B, Seah X-Y, et al. Regulatory compliant tissue-engineered human corneal endothelial grafts restore corneal function of rabbits with bullous keratopathy. Sci Rep. 2017;7(1):14149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Bartakova A, Kuzmenko O, Alvarez Delfin K, Kunzevitzky N, Goldberg J. A cell culture approach to optimized human corneal endothelial cell function. Invest Ophthalmol Vis Sci. 2018;59(3):1617–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sun P, Shen L, Zhang C, Du L, Wu X. Promoting the expansion and function of human corneal endothelial cells with an orbital adipose-derived stem cell-conditioned medium. Stem Cell Res Ther. 2017;8(1):287.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Shen L, Sun P, Zhang C, Yang L, Du L, Wu X. Therapy of corneal endothelial dysfunction with corneal endothelial cell-like cells derived from skin-derived precursors. Sci Rep. 2017;7(1):13400.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Gutermuth A, Maassen J, Harnisch E, Kuhlen D, Sauer Budge A, Skazik Voogt C, et al. Descemet's membrane biomimetic microtopography differentiates human mesenchymal stem cells into corneal endothelial-like cells. Cornea. 2019;38(1):110–9.

    Article  PubMed  Google Scholar 

  51. Feiertag E, Maassen J, Mueller A, Harnisch E, Skazik Voogt C, Engelmann K, et al. From cord to eye: Wharton jelly-derived stem cells differentiate into corneal endothelial-like cells. Cornea. 2020;39:877–85.

    Article  PubMed  Google Scholar 

  52. Wagoner M, Bohrer L, Aldrich B, Greiner M, Mullins R, Worthington K, et al. Feeder-free differentiation of cells exhibiting characteristics of corneal endothelium from human induced pluripotent stem cells. Biol Open. 2018;7(5).

  53. Kitazawa K, Hikichi T, Nakamura T, Nakamura M, Sotozono C, Masui S, et al. Direct reprogramming into corneal epithelial cells using a transcriptional network comprising PAX6, OVOL2, and KLF4. Cornea. 2019;38(Suppl 1):S34–41.

    Article  PubMed  Google Scholar 

  54. Prasad A, Teh DBL, Shah Jahan F, Manivannan J, Chua S, All A. Direct conversion through trans-differentiation: efficacy and safety. Stem Cells Dev. 2017;26(3):154–65.

    Article  PubMed  Google Scholar 

  55. Van den Bogerd B, Ní Dhubhghaill S, Zakaria N. Characterizing human decellularized crystalline lens capsules as a scaffold for corneal endothelial tissue engineering. J Tissue Eng Regen Med. 2018;12(4):e2020–e28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Parekh M, Van den Bogerd B, Zakaria N, Ponzin D, Ferrari S. Fish scale-derived scaffolds for culturing human corneal endothelial cells. Stem Cells Int. 2018;2018:8146834.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Cen Y-J, Feng Y. Constructing a novel three-dimensional biomimetic corneal endothelium graft by culturing corneal endothelium cells on compressed collagen gels. Chin Med J. 2018;131(14):1710–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Kruse M, Walter P, Bauer B, Rütten S, Schaefer K, Plange N, et al. Electro-spun membranes as scaffolds for human corneal endothelial cells. Curr Eye Res. 2018;43(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  59. • Peh GSL, Ong H, Adnan K, Ang H-P, Lwin C, Seah X-Y, et al. Functional evaluation of two corneal endothelial cell-based therapies: tissue-engineered construct and cell injection. Sci Rep. 2019;9(1):6087.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. He Z, Forest F, Bernard A, Gauthier A-S, Montard R, Peoc'h M, et al. Cutting and decellularization of multiple corneal stromal lamellae for the bioengineering of endothelial grafts. Invest Ophthalmol Vis Sci. 2016;57(15):6639–51.

    Article  PubMed  Google Scholar 

  61. Schwab IR. Cultured corneal epithelia for ocular surface disease. Trans Am Ophthalmol Soc. 1999;97:891–986.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhao J, Fan T, Ma X, Hu X. Construction of a high cell density human corneal endothelial equivalent and its transplantation in primate models. Xenotransplantation. 2019;26(4):e12514–e14.

    Article  PubMed  Google Scholar 

  63. Vázquez N, Chacón M, Rodríguez-Barrientos CA, Merayo-Lloves J, Naveiras M, Baamonde B, et al. Human bone derived collagen for the development of an artificial corneal endothelial graft. In vivo results in a rabbit model. PLoS One. 2016;11(12):e0167578–e78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Yoshida J, Yokoo S, Oshikata Miyazaki A, Amano S, Takezawa T, Yamagami S. Transplantation of human corneal endothelial cells cultured on bio-engineered collagen Vitrigel in a rabbit model of corneal endothelial dysfunction. Curr Eye Res. 2017;42(11):1420–5.

    Article  CAS  PubMed  Google Scholar 

  65. Kim D, Sim B, Khang G. Nature-derived aloe Vera gel blended silk fibroin film scaffolds for cornea endothelial cell regeneration and transplantation. ACS Appl Mater Interfaces. 2016;8(24):15160–8.

    Article  CAS  Google Scholar 

  66. Ozcelik B, Brown K, Blencowe A, Ladewig K, Stevens G, Scheerlinck J-P, et al. Biodegradable and biocompatible poly(ethylene glycol)-based hydrogel films for the regeneration of corneal endothelium. Adv Healthc Mater. 2014;3(9):1496–507.

    Article  CAS  PubMed  Google Scholar 

  67. Rizwan M, Peh GSL, Ang H-P, Lwin N, Adnan K, Mehta J, et al. Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications. Biomaterials. 2017;120:139–54.

    Article  CAS  PubMed  Google Scholar 

  68. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Song L, Llanga T, Conatser L, Zaric V, Gilger B, Hirsch M. Serotype survey of AAV gene delivery via subconjunctival injection in mice. Gene Ther. 2018;25(6):402–14.

    Article  CAS  PubMed  Google Scholar 

  70. Wang L, Xiao R, Andres Mateos E, Vandenberghe L. Single stranded adeno-associated virus achieves efficient gene transfer to anterior segment in the mouse eye. PLoS One. 2017;12(8):e0182473–e73.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Vicente Pascual M, Albano A, Solinís MÁ, Serpe L, Rodríguez Gascón A, Foglietta F, et al. Gene delivery in the cornea: in vitro & ex vivo evaluation of solid lipid nanoparticle-based vectors. Nanomedicine. 2018;13(15):1847–54.

    Article  PubMed  Google Scholar 

  72. Soh Y, Peh Swee Lim G, Htoon H, Gong X, Mootha VV, Vithana E, et al. Trinucleotide repeat expansion length as a predictor of the clinical progression of Fuchs’ Endothelial Corneal Dystrophy. PLoS One. 2019;14(1):e0210996–e96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Soliman A, Xing C, Radwan S, Gong X, Mootha VV. Correlation of severity of Fuchs endothelial corneal dystrophy with triplet repeat expansion in TCF4. JAMA Ophthalmol. 2015;133(12):1386–91.

    Article  PubMed  Google Scholar 

  74. Nakano M, Okumura N, Nakagawa H, Koizumi N, Ikeda Y, Ueno M, et al. Trinucleotide repeat expansion in the TCF4 gene in Fuchs’ endothelial corneal dystrophy in Japanese. Invest Ophthalmol Vis Sci. 2015;56(8):4865–9.

    Article  CAS  PubMed  Google Scholar 

  75. Xing C, Gong X, Hussain I, Khor C-C, Tan DTH, Aung T, et al. Transethnic replication of association of CTG18.1 repeat expansion of TCF4 gene with Fuchs’ corneal dystrophy in Chinese implies common causal variant. Invest Ophthalmol Vis Sci. 2014;55(11):7073–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pinto B, Saxena T, Oliveira R, Méndez Gómez H, Cleary J, Denes L, et al. Impeding transcription of expanded microsatellite repeats by deactivated Cas9. Mol Cell. 2017;68(3):479–90.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. • Chang Y, Hwang J, Chung T-Y, Shin Y. SOX2 activation using CRISPR/dCas9 promotes wound healing in corneal endothelial cells. Stem Cells. 2018;36(12):1851–62.

    Article  CAS  PubMed  Google Scholar 

  78. Nihongaki Y, Furuhata Y, Otabe T, Hasegawa S, Yoshimoto K, Sato M. CRISPR-Cas9-based photoactivatable transcription systems to induce neuronal differentiation. Nat Methods. 2017;14(10):963–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the DHB Foundation Fellowship. The Centre for Eye Research Australia receives Operational Infrastructure Support from the Victorian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl David Brown.

Ethics declarations

Conflict of Interest

Karl David Brown reports a philanthropic grant by the DHB Foundation Fellowship and operational infrastructure support by the Victorian Government.

Gregory J Dusting and Mark Daniell each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Regenerative Medicine in Ophthalmology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, K.D., Dusting, G.J. & Daniell, M. Emerging Technologies to Solve the Key Issues in Endothelial Keratoplasty. Curr Ophthalmol Rep 8, 236–244 (2020). https://doi.org/10.1007/s40135-020-00251-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-020-00251-z

Keywords

Navigation