Skip to main content
Log in

The effect of rotational speed and dwell time on Al/SiC/Cu composite made by friction stir spot welding

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Friction stir spot welding (FSSW) was implemented to joining of AA2024-T4 and commercially pure copper with SiC nanoparticles as a reinforcing particle with different rotational speeds (1300, 1600, and 1900 rpm) and dwell times (2, 4, and 6 s). For this purpose, macro- and microstructures, shear tensile strength, and microhardness of joints were investigated. The grain size of the stir zone on the Cu and Al sides decreased from 45.1 to 10.5 μm and 62.2 to 14.5 μm, respectively, as rotational speed and dwell time decreased. The size of the weld zone increased as rotational speed and the dwell time increased. The main reason behind this phenomenon was discussed with the help of geometric parameters and generated heat with respect to different joining conditions. The XRD and the EDS analysis also revealed the formation of AlCu and Al2Cu intermetallic compounds (IMCs) in the weld zone, while the thickness of the IMCs layer in the interface joint increased as heat input increased. There is a direct relationship between the shear strength of weld samples and rotational speed and the dwell time during the FSSW process because of the applied optimal welding parameters. The microhardness was significantly improved from HV 122 to HV 156 with an increase in rotational speed and dwell time due to the formation of the IMCs layer, the pinning effect, and the Cu fragment in the stir zone. The fracture surface analysis showed the ductile fracture for all weld samples joined under optimal welding conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mehta KP, Badheka VJ (2017) Influence of tool pin design on properties of dissimilar copper to aluminum friction stir welding. Trans Nonferrous Met Soc China 27:36–54. https://doi.org/10.1016/S1003-6326(17)60005-0

    Article  CAS  Google Scholar 

  2. Ghiasvand A, Hassanifard S, Jakikian MM, Kheradmand H (2021) Investigation of tool offset on mechanical properties of dissimilar AA6061-T6 and AA7075-T6 joint in parallel FSW process. Weld World 65:441–445. https://doi.org/10.1007/s40194-020-01037-4

    Article  CAS  Google Scholar 

  3. Memon S, Paidar M, Mehta KP, Babaei B, Lankarani HM (2021) Friction spot extrusion welding on dissimilar materials AA2024-T3 to AA5754-O: effect of shoulder plunge depth. J Mater Eng Perform 30:334–345. https://doi.org/10.1007/s11665-020-05387-4

    Article  CAS  Google Scholar 

  4. Carlone P, Astarita A, Palazzo GS, Paradiso V, Squillace A (2015) Microstructural aspects in Al-Cu dissimilar joining by FSW. Int J Adv Manuf Technol 79:1109–1116. https://doi.org/10.1007/s00170-015-6874-z

    Article  Google Scholar 

  5. Abbasi M, Givi M, Bagheri B (2020) New method to enhance the mechanical characteristics of Al-5052 alloy weldment produced by tungsten inert gas, Proc IMechE, Part B: J Eng Manuf https://doi.org/10.1177/0954405420929777.

  6. Li XW, Zhang DT, Qui C, Zhang W (2012) Microstructure and mechanical properties of dissimilar pure copper/1350 aluminum alloy butt joints by friction stir welding. Trans Nonferrous Metals Soc China 22:1298–1306. https://doi.org/10.1016/S1003-6326(11)61318-6

    Article  CAS  Google Scholar 

  7. Weigl M, Albert F, Schmidt M (2011) Enhancing the ductility of laser-welded copper-aluminum connections by using adapted filler materials. Phys Procedia 12:332–338. https://doi.org/10.1016/j.phpro.2011.03.141

    Article  CAS  Google Scholar 

  8. Patel NP, Parlikar P, Dhari RS, Mehta K, Pandya M (2019) Numerical modelling on cooling assisted friction stir welding of dissimilar Al-Cu joint. J Manuf Process 47:98–109. https://doi.org/10.1016/j.jmapro.2019.09.020

    Article  Google Scholar 

  9. Mehta KP, Badheka VJ (2016) A review on dissimilar friction stir welding of copper to aluminum: process, properties and variants. Mater Manuf Process 31:233–254. https://doi.org/10.1080/10426914.2015.1025971

    Article  CAS  Google Scholar 

  10. Mehta K, Astarita A, Carlone P, Gatta RD, Vyas H, Vilaca P, Tucci F (2021) Investigation of exit-hole repairing on dissimilar aluminum-copper friction stir welded joints. J Mater Res Technol 13:2180–2193. https://doi.org/10.1016/j.jmrt.2021.06.019

    Article  CAS  Google Scholar 

  11. Saha R, Biswas P (2022) Current status and development of external energy-assisted friction stir welding processes: a review. Weld World 66:577–609. https://doi.org/10.1007/s40194-021-01228-7

    Article  Google Scholar 

  12. Cao F, Li J, Hou W, Shen Y, Ni R (2021) Microstructural evolution and mechanical properties of the friction stir welded Al–Cu dissimilar joint enhanced by post-weld heat treatment. Mater Char 174:110998. https://doi.org/10.1016/j.matchar.2021.110998

    Article  CAS  Google Scholar 

  13. Muthu MFX, Jayabalan V (2016) Effect of pin profile and process parameters on microstructure and mechanical properties of friction stir welded Al−Cu joints. Trans Nonferrous Met Soc Chin 26:984–993. https://doi.org/10.1016/S1003-6326(16)64195-X

    Article  CAS  Google Scholar 

  14. Akinlabi ET, Andews A, Akinlabi SA (2014) Effects of processing parameters on corrosion properties of dissimilar friction stir welds of aluminium and copper. Trans Nonferrous Met Soc Chin 24:1323–1330. https://doi.org/10.1016/S1003-6326(14)63195-2

    Article  CAS  Google Scholar 

  15. Ashu G, Anirban B (2017) Similar and dissimilar joining of AA6061-T6 and copper by single and multi-spot friction stirring. J Mater Process Technol. https://doi.org/10.1016/j.jmatprotec.2017.07.029

    Article  Google Scholar 

  16. Sahu PK, Pal S, PAL SK, (2017) Al/Cu Dissimilar friction stir welding with Ni, Ti, and Zn foil as the interlayer for flow control, enhancing mechanical and metallurgical properties. Metall Mater Trans A 48:3300–3317. https://doi.org/10.1007/s11661-017-4093-y

    Article  CAS  Google Scholar 

  17. Anbukkarasi R, Kailas SV (2020) Influences of shape of the new interfaces and morphology of the intermetallics on mechanical properties of aluminum AA2024–pure copper joints by friction stir welding. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-019-04911-8

    Article  Google Scholar 

  18. Gao P, Zhang Y, Mehta KP (2020) Metallurgical and mechanical properties of Al–Cu joint by friction stir spot welding and modified friction stir clinching. Metal Mater Int 27:3058–3094. https://doi.org/10.1007/s12540-020-00759-w

    Article  CAS  Google Scholar 

  19. Hong ST, Das H, Oh HS, Nasim MNE, Chun DM (2017) Combination of nano-particle deposition system and friction stir spot welding for fabrication of carbon/aluminum metal matrix composite joints of dissimilar aluminum alloys. CIRP Annals - Manuf Technol. https://doi.org/10.1016/j.cirp.2017.04.115

    Article  Google Scholar 

  20. Ma N, Geng P, Ma Y, Shimakawa K, Choi JW, Aoki Y, Fujii H (2021) Thermo-mechanical modeling and analysis of friction spot joining of Al alloy and carbon fiber reinforced polymer. Mater Res Technol. https://doi.org/10.1016/j.jmrt.2021.03.111

    Article  Google Scholar 

  21. Khorrami MS, Saito N, Miyashitac Y, Kondo M (2019) Texture variations and mechanical properties of aluminum during severe plastic deformation and friction stir processing with SiC nanoparticles. Mater Sci Eng A 744:349–364. https://doi.org/10.1016/j.msea.2018.12.031

    Article  CAS  Google Scholar 

  22. Bagheri B, Abbasi M, Abdollahzadeh A (2021) Microstructure and mechanical characteristics of AA6061-T6 joints produced by friction stir welding, friction stir vibration welding and tungsten inert gas welding: a comparative study. Int J Min Metall Mater 28(3):450–461. https://doi.org/10.1007/s12613-020-2085-1

    Article  CAS  Google Scholar 

  23. Sadeghi B, Abbasi H, Atapour M, Shafiee S, Cavaliere P, Marfavi Z (2020) Friction stir spot welding of TiO2 nanoparticlereinforced interstitial free steel. J Mater Sci. https://doi.org/10.1007/s10853-020-04838-6

    Article  Google Scholar 

  24. Bagheri B, Abbasi B, Givi M (2019) Effects of vibration on microstructure and thermal properties of friction stir spot welded (FSSW) aluminum alloy (Al5083). Int J Prec Eng Manuf 20(7):1219–1227. https://doi.org/10.1007/s12541-019-00134-9

    Article  Google Scholar 

  25. Heideman R, Johnson C, Kou S (2010) Metallurgical analysis of Al/Cu friction stir spot welding. Sci Technol Weld Join 15(7):597–604. https://doi.org/10.1179/136217110X12785889549985

    Article  CAS  Google Scholar 

  26. Wang Q, Zhao Z, Zhao Y, Yan K, Zhang H (2015) The adjustment strategy of welding parameters for spray formed 7055 aluminum alloy underwater friction stir welding joint. Mater Des 88:1366–1376. https://doi.org/10.1016/j.matdes.2015.09.038

    Article  CAS  Google Scholar 

  27. Li G, Zhou L, Zhou W, Song X, Huang Y (2019) Influence of dwell time on microstructure evolution and mechanical properties of dissimilar friction stir spot welded aluminum–copper metals. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2019.02.015

    Article  Google Scholar 

  28. Otten C, Reisgen U, Schmachtenberg M (2016) Electron beam welding of aluminum to copper: mechanical properties and their relation to microstructure. Weld World 60:21–31. https://doi.org/10.1007/s40194-015-0280-x

    Article  CAS  Google Scholar 

  29. Wang J, Wang XW, Li B, Chen CH, Lu XF (2021) Interface repairing for AA5083/T2 copper explosive composite plate by friction stir processing. Trans Nonferrous Met Soc Chin 31:2585–2596. https://doi.org/10.1016/S1003-6326(21)65677-7

    Article  CAS  Google Scholar 

  30. Yang Y, Zhao Y, Kai X, Tao R (2017) Superplasticity behavior and deformation mechanism of the in-situ Al3Zr/6063Al composites processed by friction stir processing. J Alloy Compd 710:225–233. https://doi.org/10.1016/j.jallcom.2017.03.246

    Article  CAS  Google Scholar 

  31. Argesi FB, Shamsipur A, Mirsalehi SE (2021) Preparation of bimetallic nano-composite by dissimilar friction stir welding of copper to aluminum alloy. Trans Nonferrous Met Soc China 31:1363–1380. https://doi.org/10.1016/S1003-6326(21)65583-8

    Article  Google Scholar 

  32. Li GH, Zhou L, Shu FY, Liu YC (2020) Statistical and metallurgical analysis of dissimilar friction stir spot welded aluminum/copper metals. J Mater Eng Perform. https://doi.org/10.1007/s11665-020-04729-6

    Article  Google Scholar 

  33. Shiraly M, Shamanian M, Toroghinejad MR (2014) Effect of tool rotation rate on microstructure and mechanical behavior of friction stir spot-welded Al/Cu composite. J Mater Eng Perform 23:413–420. https://doi.org/10.1007/s11665-013-0768-8

    Article  CAS  Google Scholar 

  34. Karthikeyan P, Mahadevan K (2015) Investigating on the effects of SiC particles addition in the weld zone during friction stir welding of Al 6351 alloy. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-015-7160-9

    Article  Google Scholar 

  35. Argesi FB, Shamsipur A, Mirsalehi SE (2018) Dissimilar joining of pure copper to aluminum alloy via friction stir welding. Acta Metall Sin (EnglishLetters) 31:1183–1196. https://doi.org/10.1007/s40195-018-0741-5

    Article  CAS  Google Scholar 

  36. Bagheri B, Abbasi M, Abdollahzadeh A, Kokabi AO (2020) Numerical analysis of cooling and joining speed effects on friction stir welding by smoothed particle hydrodynamics (SPH). Arch App Mech J 90:2275–2296. https://doi.org/10.1007/s00419-020-01720-4

    Article  Google Scholar 

  37. Tabasi M, Farahani M, Givi MKB, Farzami M, Moharami A (2016) Dissimilar friction stir welding of 7075 aluminum alloy to AZ31 magnesium alloy using SiC nanoparticles. Int J Adv Manuf Technol 86:705–715. https://doi.org/10.1007/s00170-015-8211-y

    Article  Google Scholar 

  38. Maitra S, Roy J (2018) Nanoceramic matrix composites: types, processing, and applications. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102166-8.00003-7

    Article  Google Scholar 

  39. Moradi MM, Jamshidi Aval H, Jamaati R, Amirkhanlou S, Ji S (2019) Effect of SiC nanoparticles on the microstructure and texture of friction stir welded AA2024/AA6061. Mater Char 152:169–179. https://doi.org/10.1016/j.matchar.2019.04.020

    Article  CAS  Google Scholar 

  40. Guan Q, Zhang H, Liu H, Gao Q, Gong M, Qu F (2020) Structure-property characteristics of Al-Cu joint formed by high-rotation speed friction stir lap welding without tool penetration into lower Cu sheet. J Manuf Process 57:363–369. https://doi.org/10.1016/j.jmapro.2020.07.001

    Article  Google Scholar 

  41. Anil Kumar KSh, Murigendrappa SM, Kumar H (2019) Experimental investigation on effects of varying volume fractions of SiC nanoparticle reinforcement on microstructure and mechanical properties in friction-stir-welded dissimilar joints of AA2024-T351 and AA7075-T651. J Mater Res. https://doi.org/10.1557/jmr.2018.445

    Article  Google Scholar 

  42. Sadeghi B, Shamanian M, Ashrafizadeh F, Cavaliere P, Rizzo A (2018) Friction stir processing of spark plasma sintered aluminum matrix composites with bimodal micro- and nano-sized reinforcing Al2O3particles. J Manuf Process 32:412–424. https://doi.org/10.1016/j.jmapro.2018.03.013

    Article  Google Scholar 

  43. Muhammad NA, Wu CS, Tian W (2019) Effect of ultrasonic vibration on the intermetallic compound layer formation in Al/Cu friction stir weld joints. J Alloy Comp 785:512–522. https://doi.org/10.1016/j.jallcom.2019.01.170

    Article  CAS  Google Scholar 

  44. Zuo YY, Gong P, Ji SD, Li QH, Ma ZW, Lv Z (2021) Ultrasound-assisted friction stir transient liquid phase spot welded dissimilar copper-aluminum joint. J Manuf Process 62:58–66. https://doi.org/10.1016/j.jmapro.2020.11.019

    Article  Google Scholar 

  45. Xue P, Xiao BL, Ma ZY (2015) Effect of interfacial microstructure evolution on mechanical properties and fracture behavior of friction stir-welded Al–Cu joints. Metall Mater Trans A 46(7):3091–3103. https://doi.org/10.1007/s11661-015-2909-1

    Article  CAS  Google Scholar 

  46. Liu J, Song Q, Song L, Ji Sh, Li M, Jia Zh, Yang K (2020) A novel friction stir spot riveting of Al/Cu dissimilar materials. Acta Metall Sin (English Letters). https://doi.org/10.1007/s40195-020-01092-2

    Article  Google Scholar 

  47. Kundig KJA, Weed RD (2015) Copper and copper alloys, in: M. Kutz (Ed.), Mech. Eng. Handb., fourth ed., John Wiley & Sons Inc, Hoboken, New Jersey 117–227, https://doi.org/10.1002/9780470172551.ch5

  48. Bagheri B, Abbasi M (2020) Development of AZ91/SiC surface composite by FSP: effect of vibration and process parameters on microstructure and mechanical characteristics. Adv Manuf J 8:82–96. https://doi.org/10.1007/s40436-019-00288-9

    Article  CAS  Google Scholar 

  49. Sun H, Zhou Q, Zhu J, Peng Y (2017) Analysis on the fracture of Al-Cu dissimilar materials friction stir welding lap joint. J Mater Eng Perform. https://doi.org/10.1007/s11665-017-3029-4

    Article  Google Scholar 

  50. Rajan K, Wallach ER (1980) A transmission electron microscopy study of intermetallic formation in aluminium-copper thin-film couples. J Cryst Growth. https://doi.org/10.1016/0022-0248(80)90164-5

    Article  Google Scholar 

  51. Bhattacharya TK, Das H, Pal T (2015) Influence of welding parameters on material flow, mechanical property and intermetallic characterization of friction stir welded 6063 AA to HCP copper dissimilar butt joint without offset. Trans Nonferrous Met Soc Chin 25(9):2833–2846. https://doi.org/10.1016/S1003-6326(15)63909-7

    Article  CAS  Google Scholar 

  52. Hu XW, Li YL, Min ZX (2014) Interfacial reaction and IMC growth between Bi-containing Sn0.7Cu solders and Cu substrate during soldering and aging. J Alloys Comp 582:341–347. https://doi.org/10.1016/j.jallcom.2013.08.018

    Article  CAS  Google Scholar 

  53. Zhou L, Zhang RX, Li GH, Zhou WL, Huang YX, Song XG (2018) Effect of pin profile on microstructure and mechanical properties of friction stir spot welded Al-Cu dissimilar metals. J Manuf Process 36:1–9. https://doi.org/10.1016/j.jmapro.2018.09.017

    Article  Google Scholar 

  54. Kim DG, Jung SB (2005) Interfacial reaction and growth kinetics for intermetallic compounds layer between In-Sn solder and bare Cu substrate. J Alloys Comp 386:151–156. https://doi.org/10.1016/j.jallcom.2004.05.055

    Article  CAS  Google Scholar 

  55. Elmetwally HT, SaadAllah HN, Abd-Elhady MS, Abdel-Magied RK (2020) Optimum combination of rotational and welding speeds for welding of Al/Cu-butt joint by friction stir welding. Int J Adv Manuf Technol 110:163–175. https://doi.org/10.1007/s00170-020-05815-8

    Article  Google Scholar 

  56. Zhou L, Li GH, Zhang RX, Zhou WL, He WX, Huang YX, Song XG (2018) Microstructure evolution and mechanical properties of friction stir spot welded dissimilar aluminum copper joint. J Alloy Comp. https://doi.org/10.1016/j.jallcom.2018.10.045

    Article  Google Scholar 

  57. El-Danaf EA, El-Rayes MM (2013) Microstructure and mechanical properties of friction stir welded 6082 AA in as welded and post weld heat treated conditions. Mater Des 46:561–572. https://doi.org/10.1016/j.matdes.2012.10.047

    Article  CAS  Google Scholar 

  58. Polar A, Indacochea JE (2009) Microstructural assessment of copper friction stir welds. J Manuf Sci Eng 131(3):031012. https://doi.org/10.1115/1.3123313

    Article  Google Scholar 

  59. Bagheri B, Abbasi M, Hamzeloo R (2020) The investigation into vibration effect on microstructure and mechanical characteristics of friction stir spot vibration welded aluminum: Simulation and experiment. Proc IMechE, Part C: J Mech Eng Sci. Vol 234(9), 2020, pp 1809–1822. https://doi.org/10.1177/0954406219900194

  60. Karakizis P, Pantelis D, Fourlaris G, Tsakiridis P (2018) Effect of SiC and TiC nanoparticle reinforcement on the microstructure, microhardness, and tensile performance of AA6082-T6 friction stir welds. Int J Adv Manuf Technol 95:3823–3837. https://doi.org/10.1007/s00170-017-1446-z

    Article  Google Scholar 

  61. Esmaeili A, Givi MB, Rajani HZ (2011) A metallurgical and mechanical study on dissimilar friction stir welding of aluminum 1050 to brass (CuZn30). Mater Sci Eng A 528:7093–7102. https://doi.org/10.1016/j.msea.2011.06.004

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Bagheri.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission IX - Behaviour of Metals Subjected to Welding

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, B., Alizadeh, M., Mirsalehi, S.E. et al. The effect of rotational speed and dwell time on Al/SiC/Cu composite made by friction stir spot welding. Weld World 66, 2333–2350 (2022). https://doi.org/10.1007/s40194-022-01376-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-022-01376-4

Keywords

Navigation