Skip to main content
Log in

Artificial Intelligence in Dermatology—Where We Are and the Way to the Future: A Review

  • Review Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Although artificial intelligence has been available for some time, it has garnered significant interest recently and has been popularized by major companies with its applications in image identification, speech recognition and problem solving. Artificial intelligence is now being increasingly studied for its potential uses in medicine. A sound understanding of the concepts of this emerging field is essential for the dermatologist as dermatology has abundant medical data and images that can be used to train artificial intelligence for patient care. There are already a number of artificial intelligence studies focusing on skin disorders such as skin cancer, psoriasis, atopic dermatitis and onychomycosis. This article aims to present a basic introduction to the concepts of artificial intelligence as well as present an overview of the current research into artificial intelligence in dermatology, examining both its current applications and its future potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hogarty DT, Mackey DA, Hewitt AW. Current state and future prospects of artificial intelligence in ophthalmology: a review. Clin Exp Ophthalmol. 2019;47(1):128–39. https://doi.org/10.1111/ceo.13381.

    Article  PubMed  Google Scholar 

  2. McCorduck P. Machines who think. 2nd ed. Natick: A. K. Peters; 2004.

    Google Scholar 

  3. Rawson TM, Ahmad R, Toumazou C, Georgiou P, Holmes AH. Artificial intelligence can improve decision-making in infection management. Nat Hum Behav. 2019;3:543–5.

    Article  PubMed  Google Scholar 

  4. Filice R. Deep-learning language-modeling approach for automated, personalized, and iterative radiology-pathology correlation. J Am Coll Radiol. 2019. https://doi.org/10.1016/j.jacr.2019.05.007.

    Article  PubMed  Google Scholar 

  5. Forlenza GP. Use of artificial intelligence to improve diabetes outcomes in patients using multiple daily injections therapy. Diabetes Technol Ther. 2019;21:S24–8.

    Article  PubMed  Google Scholar 

  6. Kothari S, Gionfrida L, Bharath AA, Abraham S. Artificial intelligence (AI) and rheumatology: a potential partnership. Rheumatology. 2019. https://doi.org/10.1093/rheumatology/kez194 (pii:kez194).

    Article  PubMed  Google Scholar 

  7. Tizhoosh HR, Pantanowitz L. Artificial intelligence and digital pathology: challenges and opportunities. J Pathol Inform. 2018;9:38.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, et al. Deep learning: a primer for radiologists. Radiographics. 2017;37:2113–31.

    Article  PubMed  Google Scholar 

  9. Moore MM, Slonimsky E, Long AD, Sze RW, Iyer RS. Machine learning concepts, concerns and opportunities for a pediatric radiologist. Pediatr Radiol. 2019;49:509–16.

    Article  PubMed  Google Scholar 

  10. Akobeng AK. Understanding diagnostic tests 1: sensitivity, specificity and predictive values. Acta Paediatr. 2007;96:338–41.

    Article  PubMed  Google Scholar 

  11. Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med. 2013;4:627–35.

    PubMed  PubMed Central  Google Scholar 

  12. Park SH, Goo JM, Jo C-H. Receiver operating characteristic (ROC) curve: practical review for radiologists. Korean J Radiol. 2004;5:11–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Leiter U, Eigentler T, Garbe C. Epidemiology of skin cancer. Adv Exp Med Biol. 2014;810:120–40.

    PubMed  Google Scholar 

  14. Lomas A, Leonardi-Bee J, Bath-Hextall F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol. 2012;166:1069–80.

    Article  CAS  PubMed  Google Scholar 

  15. Rat C, Hild S, Rault Sérandour J, Gaultier A, Quereux G, Dreno B, et al. Use of smartphones for early detection of melanoma: systematic review. J Med Internet Res. 2018;20:e135.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Australian Cancer Network, New Zealand Guidelines Group. Clinical Practice Guidelines for the Management of Melanoma in Australia and New Zealand. New Zealand Guidelines Group; 2008.

  17. Han SS, Kim MS, Lim W, Park GH, Park I, Chang SE. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. J Invest Dermatol. 2018;1:1. https://doi.org/10.1016/j.jid.2018.01.028.

    Article  CAS  Google Scholar 

  18. He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. arXiv [cs.CV]. 2015. http://arxiv.org/abs/1502.01852.

  19. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ, editors. Advances in neural information processing systems 25. Red Hook: Curran Associates, Inc; 2012. p. 1097–105.

    Google Scholar 

  20. Nasr-Esfahani E, Samavi S, Karimi N, Soroushmehr SMR, Jafari MH, Ward K, et al. Melanoma detection by analysis of clinical images using convolutional neural network. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:1373–6.

    CAS  Google Scholar 

  21. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fujisawa Y, Otomo Y, Ogata Y, Nakamura Y, Fujita R, Ishitsuka Y, et al. Deep learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumor diagnosis. Br J Dermatol. 2018. https://doi.org/10.1111/bjd.16826.

    Article  PubMed  Google Scholar 

  23. Malvehy J, Hauschild A, Curiel-Lewandrowski C, Mohr P, Hofmann-Wellenhof R, Motley R, et al. Clinical performance of the Nevisense system in cutaneous melanoma detection: an international, multicentre, prospective and blinded clinical trial on efficacy and safety. Br J Dermatol. 2014;171:1099–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cukras AR. On the comparison of diagnosis and management of melanoma between dermatologists and Melafind. JAMA Dermatol Am Med Assoc. 2013;149:622–3.

    Article  Google Scholar 

  25. Navarrete-Dechent C, Dusza SW, Liopyris K, Marghoob AA, Halpern AC, Marchetti MA. Automated dermatological diagnosis: hype or reality? J Invest Dermatol. 2018;138(10):2277–9. https://doi.org/10.1016/j.jid.2018.04.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Han SS, Lim W, Kim MS, Park I, Park GH, Chang SE. Interpretation of the outputs of deep learning model trained with skin cancer dataset. J Invest Dermatol. 2018;138(10):2275–7. https://doi.org/10.1016/j.jid.2018.05.014.

    Article  CAS  PubMed  Google Scholar 

  27. Brinker TJ, Hekler A, Enk AH, Klode J, Hauschild A, Berking C, et al. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. Eur J Cancer. 2019;111:148–54.

    Article  PubMed  Google Scholar 

  28. Brinker TJ, Hekler A, Enk AH, Klode J, Hauschild A, Berking C, et al. Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. Eur J Cancer. 2019;113:47–54.

    Article  PubMed  Google Scholar 

  29. Brinker TJ, Hekler A, Hauschild A, Berking C, Schilling B, Enk AH, et al. Comparing artificial intelligence algorithms to 157 German dermatologists: the melanoma classification benchmark. Eur J Cancer. 2019;111:30–7.

    Article  PubMed  Google Scholar 

  30. Chuchu N, Takwoingi Y, Dinnes J, Matin RN, Bassett O, Moreau JF, et al. Smartphone applications for triaging adults with skin lesions that are suspicious for melanoma. Cochrane Database Syst Rev. 2018;12:CD013192.

    PubMed  Google Scholar 

  31. Hekler A, Utikal JS, Enk AH, Berking C, Klode J, Schadendorf D, et al. Pathologist-level classification of histopathological melanoma images with deep neural networks. Eur J Cancer. 2019;115:79–83.

    Article  PubMed  Google Scholar 

  32. Brinker TJ, Hekler A, Utikal JS, Grabe N, Schadendorf D, Klode J, et al. Skin cancer classification using convolutional neural networks: systematic review. J Med Internet Res. 2018;20:e11936.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shrivastava VK, Londhe ND, Sonawane RS, Suri JS. Computer-aided diagnosis of psoriasis skin images with HOS, texture and color features: a first comparative study of its kind. Comput Methods Programs Biomed. 2016;126:98–109.

    Article  PubMed  Google Scholar 

  34. Guo P, Luo Y, Mai G, Zhang M, Wang G, Zhao M, et al. Gene expression profile based classification models of psoriasis. Genomics. 2014;103:48–55.

    Article  CAS  PubMed  Google Scholar 

  35. Shrivastava VK, Londhe ND, Sonawane RS, Suri JS. A novel and robust Bayesian approach for segmentation of psoriasis lesions and its risk stratification. Comput Methods Programs Biomed. 2017;150:9–22.

    Article  PubMed  Google Scholar 

  36. Shrivastava VK, Londhe ND, Sonawane RS, Suri JS. Reliable and accurate psoriasis disease classification in dermatology images using comprehensive feature space in machine learning paradigm. Expert Syst Appl. 2015;42:6184–95.

    Article  Google Scholar 

  37. Ihtatho D, Fadzil MHA, Affandi AM, Hussein SH. Area assessment of psoriasis lesion for PASI scoring. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:3446–9.

    Google Scholar 

  38. Lu J, Kazmierczak E, Manton JH, Sinclair R. Automatic segmentation of scaling in 2-D psoriasis skin images. IEEE Trans Med Imaging. 2013;32:719–30.

    Article  PubMed  Google Scholar 

  39. Gustafson E, Pacheco J, Wehbe F, Silverberg J, Thompson W. A Machine learning algorithm for identifying atopic dermatitis in adults from electronic health records. 2017 IEEE International Conference on Healthcare Informatics (ICHI). 2017. p. 83–90.

  40. De Guzman LCD, Maglaque RPC, Torres VMB, Zapido SPA, Cordel MO. Design and evaluation of a multi-model, multi-level artificial neural network for eczema skin lesion detection. 2015 3rd International conference on artificial intelligence, modelling and simulation (AIMS). 2015. p. 42–7.

  41. Han SS, Park GH, Lim W, Kim MS, Na JI, Park I, et al. Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: automatic construction of onychomycosis datasets by region-based convolutional deep neural network. PLoS One. 2018;13:e0191493.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tschandl P, Rosendahl C, Kittler H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data. 2018;5:180161.

    Article  PubMed  PubMed Central  Google Scholar 

  43. ISIC Archive. 2018. https://www.isic-archive.com/#!/topWithHeader/wideContentTop/main. Accessed 11 Sep 2018.

  44. Mendonca T, Ferreira PM, Marques JS, Marcal ARS, Rozeira J. PH2—a dermoscopic image database for research and benchmarking. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:5437–40.

    Google Scholar 

  45. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929–58.

    Google Scholar 

  46. Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv [cs.LG]. 2015. http://arxiv.org/abs/1502.03167.

  47. Lemley J, Bazrafkan S, Corcoran P. Smart augmentation—learning an optimal data augmentation strategy. arXiv [cs.AI]. 2017. http://arxiv.org/abs/1703.08383.

  48. Abbott LM, Smith SD. Smartphone apps for skin cancer diagnosis: implications for patients and practitioners. Australas J Dermatol. 2018;59:168–70.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel T. Hogarty.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflict of interest

Daniel T Hogarty, John C Su, Kevin Phan, Mohamed Atia, Mohammed Hossny, Saeid Nahavandi, Patricia Lenane, Fergal J Moloney, and Anousha Yazdabadi have no conflicts of interest that might be relevant to the contents of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hogarty, D.T., Su, J.C., Phan, K. et al. Artificial Intelligence in Dermatology—Where We Are and the Way to the Future: A Review. Am J Clin Dermatol 21, 41–47 (2020). https://doi.org/10.1007/s40257-019-00462-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-019-00462-6

Navigation