Skip to main content
Log in

Comparison of Body Composition Changes Between Atazanavir/Ritonavir and Lopinavir/Ritonavir Each in Combination with Tenofovir/Emtricitabine in Antiretroviral-Naïve Patients with HIV-1 Infection

  • Original Research Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

Background and Objective

Antiretroviral drug regimen choice may influence changes in body composition. The objective of this study was to compare changes in body composition between ritonavir-boosted atazanavir (ATV/r) and ritonavir-boosted lopinavir (LPV/r) over 96 weeks using data from a substudy of CASTLE, which compared once-daily ATV/r with twice-daily LPV/r, both in combination with tenofovir disoproxil fumarate/emtricitabine in treatment-naïve patients with HIV-1 infection.

Methods

We examined 224 patients (125 on ATV/r; 99 on LPV/r) at baseline, 48 and 96 weeks using dual-energy X-ray absorptiometry and computerised tomography.

Results

In the lowest baseline body mass index (BMI) group, there were significantly greater gains at week 96 for ATV/r than for LPV/r in subcutaneous adipose tissue and in visceral adipose tissue (VAT). By week 96, patients with lowest baseline CD4 cell counts on ATV/r had 28 % increases in VAT versus 14 % reductions for patients receiving LPV/r. Those with the lowest baseline BMI on ATV/r had 19 % increases in VAT versus reductions of 5 % for patients on LPV/r. In the highest baseline BMI group, the mean increase in triglycerides was 6 and 70 % in the ATV/r and LPV/r arms, respectively. Compared with baseline, an increase in proportion of patients with high waist circumference (WC)/high triglycerides at 96 weeks was noted in both treatment arms, but this increase was numerically greater with LVP/r (18 %) than with ATV/r (11 %).

Conclusion

Truncal fat gains on ATV/r primarily led to increases in WC, which may reflect return to health, while on LPV/r increases in WC and triglycerides occurred. Changes in body composition with antiretroviral therapy are influenced by treatment choice and baseline characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Reference

  1. Macallan DC, Noble C, Baldwin C, et al. Prospective analysis of patterns of weight change in stage IV human immunodeficiency virus infection. Am J Clin Nutr. 1993;58(3):417–24.

    PubMed  CAS  Google Scholar 

  2. Crum-Cianflone N, Tejidor R, Medina S, Barahona I, Ganesan A. Obesity among patients with HIV: the latest epidemic. AIDS Patient Care STDS. 2008;22(12):925–30. doi:10.1089/apc 2008.0082.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Crum-Cianflone NF, Roediger M, Eberly LE, et al. Obesity among HIV-infected persons: impact of weight on CD4 cell count. AIDS. 2010;24(7):1069–72. doi:10.1097/QAD.0b013e328337fe01.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Janiszewski PM, Ross R, Despres JP, et al. Hypertriglyceridemia and waist circumference predict cardiovascular risk among HIV patients: a cross-sectional study. PLoS One. 2011;6(9):e25032. doi:10.1371/journal.pone.0025032.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Lemieux I, Pascot A, Couillard C, et al. Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men? Circulation. 2000;102(2):179–84.

  6. Mocroft A, Sabin CA, Youle M, et al. Changes in AIDS-defining illnesses in a London clinic, 1987–1998. J Acquir Immune Defic Syndr. 1999;21(5):401–7.

    Google Scholar 

  7. Smit E, Skolasky RL, Dobs AS, et al. Changes in the incidence and predictors of wasting syndrome related to human immunodeficiency virus infection, 1987–1999. Am J Epidemiol. 2002;156(3):211–8.

    Google Scholar 

  8. Carr A, Ritzhaupt A, Zhang W, et al. Effects of boosted tipranavir and lopinavir on body composition, insulin sensitivity and adipocytokines in antiretroviral-naive adults. AIDS. 2008;22(17):2313–21. doi:10.1097/QAD.0b013e328315a7a5.

    Article  PubMed  CAS  Google Scholar 

  9. Haubrich RH, Riddler SA, DiRienzo AG, et al. Metabolic outcomes in a randomized trial of nucleoside, nonnucleoside and protease inhibitor-sparing regimens for initial HIV treatment. AIDS. 2009;23(9):1109–18. doi:10.1097/QAD.0b013e32832b4377.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Podzamczer D, Ferrer E, Sanchez P, et al. Less lipoatrophy and better lipid profile with abacavir as compared to stavudine: 96-week results of a randomized study. J Acquir Immune Defic Syndr. 2007;44(2):139–47. doi:10.1097/QAI.0b013e31802bf122.

    Article  PubMed  CAS  Google Scholar 

  11. Tungsiripat M, Bejjani DE, Rizk N, et al. Rosiglitazone improves lipoatrophy in patients receiving thymidine-sparing regimens. AIDS. 2010;24(9):1291–8. doi:10.1097/QAD.0b013e328339e274.

    PubMed Central  PubMed  CAS  Google Scholar 

  12. Dube MP, Parker RA, Tebas P, et al. Glucose metabolism, lipid, and body fat changes in antiretroviral-naive subjects randomized to nelfinavir or efavirenz plus dual nucleosides. AIDS. 2005;19(16):1807–18.

    Google Scholar 

  13. Mallon PW, Miller J, Cooper DA, Carr A. Prospective evaluation of the effects of antiretroviral therapy on body composition in HIV-1-infected men starting therapy. AIDS. 2003;17(7):971–9. doi:10.1097/01.aids.0000060348.78202.74.

    Article  PubMed  CAS  Google Scholar 

  14. Squires KE, Young B, Dejesus E, et al. Similar efficacy and tolerability of atazanavir compared with atazanavir/ritonavir, each with abacavir/lamivudine after initial suppression with abacavir/lamivudine plus ritonavir-boosted atazanavir in HIV-infected patients. AIDS. 2010;24(13):2019–27. doi:10.1097/QAD.0b013e32833bee1b.

    Article  PubMed  CAS  Google Scholar 

  15. Jemsek JG, Arathoon E, Arlotti M, et al. Body fat and other metabolic effects of atazanavir and efavirenz, each administered in combination with zidovudine plus lamivudine, in antiretroviral-naive HIV-infected patients. Clin Infect Dis. 2006;42(2):273–80. doi:10.1086/498505.

    Article  PubMed  CAS  Google Scholar 

  16. Koethe JR, Lukusa A, Giganti MJ, et al. Association between weight gain and clinical outcomes among malnourished adults initiating antiretroviral therapy in Lusaka, Zambia. J Acquir Immune Defic Syndr. 2010;53(4):507–13. doi:10.1097/QAI.0b013e3181b32baf.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Madec Y, Szumilin E, Genevier C, et al. Weight gain at 3 months of antiretroviral therapy is strongly associated with survival: evidence from two developing countries. AIDS. 2009;23(7):853–61. doi:10.1097/QAD.0b013e32832913ee.

    Article  PubMed  Google Scholar 

  18. Amorosa V, Synnestvedt M, Gross R, et al. A tale of 2 epidemics: the intersection between obesity and HIV infection in Philadelphia. J Acquir Immune Defic Syndr. 2005;39(5):557–61.

    Google Scholar 

  19. Scherzer R, Heymsfield SB, Lee D, et al. Decreased limb muscle and increased central adiposity are associated with 5-year all-cause mortality in HIV infection. AIDS. 2011;25(11):1405–14. doi:10.1097/QAD.0b013e32834884e6.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Worm SW, Friis-Moller N, Bruyand M, et al. High prevalence of the metabolic syndrome in HIV-infected patients: impact of different definitions of the metabolic syndrome. AIDS. 2010;24(3):427–35. doi:10.1097/QAD.0b013e328334344e.

    Article  PubMed  Google Scholar 

  21. Joy T, Keogh HM, Hadigan C, et al. Relation of body composition to body mass index in HIV-infected patients with metabolic abnormalities. J Acquir Immune Defic Syndr. 2008;47(2):174–84. doi:10.1097/QAI.0b013e31815b0792.

    Article  PubMed  Google Scholar 

  22. Currier J, Scherzer R, Bacchetti P, et al. Regional adipose tissue and lipid and lipoprotein levels in HIV-infected women. J Acquir Immune Defic Syndr. 2008;48(1):35–43. doi:10.1097/QAI.0b013e318164227f.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Wohl D, Scherzer R, Heymsfield S, et al. The associations of regional adipose tissue with lipid and lipoprotein levels in HIV-infected men. J Acquir Immune Defic Syndr. 2008;48(1):44–52. doi:10.1097/QAI.0b013e31816d9ba1.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Moyle G. Metabolic issues associated with protease inhibitors. J Acquir Immune Defic Syndr. 2007;45(Suppl 1):S19–26. doi:10.1097/QAI.0b013e31806007ed.

    Article  PubMed  CAS  Google Scholar 

  25. McComsey GA, Kitch D, Sax PE, et al. Peripheral and central fat changes in subjects randomized to abacavir–lamivudine or tenofovir–emtricitabine with atazanavir–ritonavir or efavirenz: ACTG Study A5224s. Clin Infect Dis. 2011;53(2):185–96. doi:10.1093/cid/cir324.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Vrouenraets SM, Wit FW, Fernandez Garcia E, et al. Randomized comparison of metabolic and renal effects of saquinavir/r or atazanavir/r plus tenofovir/emtricitabine in treatment-naive HIV-1-infected patients. HIV Med. 2011;12(10):620–31. doi:10.1111/j.1468-1293.2011.00941.x.

  27. Molina JM, Andrade-Villanueva J, Echevarria J, et al. Once-daily atazanavir/ritonavir versus twice-daily lopinavir/ritonavir, each in combination with tenofovir and emtricitabine, for management of antiretroviral-naive HIV-1-infected patients: 48 week efficacy and safety results of the CASTLE study. Lancet. 2008;372(9639):646–55. doi:10.1016/S0140-6736(08)61081-8.

    Article  PubMed  CAS  Google Scholar 

  28. Molina JM, Andrade-Villanueva J, Echevarria J, et al. Once-daily atazanavir/ritonavir compared with twice-daily lopinavir/ritonavir, each in combination with tenofovir and emtricitabine, for management of antiretroviral-naive HIV-1-infected patients: 96-week efficacy and safety results of the CASTLE study. J Acquir Immune Defic Syndr. 2010;53(3):323–32. doi:10.1097/QAI.0b013e3181c990bf.

    Article  PubMed  CAS  Google Scholar 

  29. Croom KF, Dhillon S, Keam SJ. Atazanavir: a review of its use in the management of HIV-1 infection. Drugs. 2009;69(8):1107–40. doi:10.2165/00003495-200969080-00009.

    Article  PubMed  CAS  Google Scholar 

  30. Noor MA, Parker RA, O’Mara E, et al. The effects of HIV protease inhibitors atazanavir and lopinavir/ritonavir on insulin sensitivity in HIV-seronegative healthy adults. AIDS. 2004;18(16):2137–44.

    Google Scholar 

  31. Mallolas J, Podzamczer D, Milinkovic A, et al. Efficacy and safety of switching from boosted lopinavir to boosted atazanavir in patients with virological suppression receiving a LPV/r-containing HAART: the ATAZIP study. J Acquir Immune Defic Syndr. 2009;51(1):29–36. doi:10.1097/QAI.0b013e31819a226f.

    Article  PubMed  CAS  Google Scholar 

  32. Stanley TL, Joy T, Hadigan CM, et al. Effects of switching from lopinavir/ritonavir to atazanavir/ritonavir on muscle glucose uptake and visceral fat in HIV-infected patients. AIDS. 2009;23(11):1349–57. doi:10.1097/QAD.0b013e32832ba904.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology. 2004;145(5):2273–82. doi:10.1210/en.2003-1336.

    Article  PubMed  CAS  Google Scholar 

  34. Grunfeld C, Pang M, Shigenaga JK, et al. Serum leptin levels in the acquired immunodeficiency syndrome. J Clin Endocrinol Metab. 1996;81(12):4342–6.

    Google Scholar 

  35. Kosmiski LA, Bacchetti P, Kotler DP, et al. Relationship of fat distribution with adipokines in human immunodeficiency virus infection. J Clin Endocrinol Metab. 2008;93(1):216–24. doi:10.1210/jc.2007-1155.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Nagy GS, Tsiodras S, Martin LD, et al. Human immunodeficiency virus type 1-related lipoatrophy and lipohypertrophy are associated with serum concentrations of leptin. Clin Infect Dis. 2003;36(6):795–802. doi:10.1086/367859.

    Article  PubMed  CAS  Google Scholar 

  37. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev. 2000;21(6):697–738.

    Google Scholar 

  38. Wajchenberg BL, Giannella-Neto D, da Silva ME, Santos RF. Depot-specific hormonal characteristics of subcutaneous and visceral adipose tissue and their relation to the metabolic syndrome. Horm Metab Res. 2002;34(11–12):616–21. doi:10.1055/s-2002-38256.

    Article  PubMed  CAS  Google Scholar 

  39. Sam S, Haffner S, Davidson MH, et al. Hypertriglyceridemic waist phenotype predicts increased visceral fat in subjects with type 2 diabetes. Diabetes Care. 2009;32(10):1916–20. doi:10.2337/dc09-0412.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Brown TT, Xu X, John M, et al. Fat distribution and longitudinal anthropometric changes in HIV-infected men with and without clinical evidence of lipodystrophy and HIV-uninfected controls: a substudy of the Multicenter AIDS Cohort Study. AIDS Res Ther. 2009;6:8. doi:10.1186/1742-6405-6-8.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The study group would like to acknowledge the patients and their families for their participation and commitment during the study, the co-investigators who participated in this substudy, and the Bristol-Myers Squibb (BMS) study team. This BMS-supported study is also known as Study AI424138 and is registered with ClinicalTrials.gov, number NCT00272779. Professional medical writing and editorial assistance was provided by Emily Cullinan and Carolyn Carroll, employees of BMS, and Julian Martins, an employee of inScience communications, Springer Healthcare, which was funded by BMS.

Funding Source

Bristol-Myers Squibb.

Disclosure Statement

GM has received research grants or been a speaker/advisor for BMS, Gilead, Merck, Viiv Healthcare, Pfizer, GSK and Theratechnologies, and has received a grant from Abbott Laboratories. HH, AF, MD and DM are employees and shareholders of BMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme J. Moyle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moyle, G.J., Hardy, H., Farajallah, A. et al. Comparison of Body Composition Changes Between Atazanavir/Ritonavir and Lopinavir/Ritonavir Each in Combination with Tenofovir/Emtricitabine in Antiretroviral-Naïve Patients with HIV-1 Infection. Clin Drug Investig 34, 287–296 (2014). https://doi.org/10.1007/s40261-014-0175-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40261-014-0175-4

Keywords

Navigation