Skip to main content
Log in

Amisulpride: Real-World Evidence of Dose Adaptation and Effect on Prolactin Concentrations and Body Weight Gain by Pharmacokinetic/Pharmacodynamic Analyses

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

Amisulpride is an antipsychotic used in a wide range of doses. One of the major adverse events of amisulpride is hyperprolactinemia, and the drug might also induce body weight gain.

Objective

The aims of this work were to characterize the pharmacokinetics of amisulpride in order to suggest optimal dosage regimens to achieve the reference range of trough concentrations at steady-state (Cmin,ss) and to describe the relationship between drug pharmacokinetics and prolactin and body weight data.

Methods

The influence of clinical and genetic characteristics on amisulpride pharmacokinetics was quantified using a population approach. The final model was used to simulate Cmin,ss under several dosage regimens, and was combined with a direct Emax model to describe the prolactin data. The effect of model-based average amisulpride concentrations over 24 h (Cav) on weight was estimated using a linear model.

Results

A one-compartment model with first-order absorption and elimination best fitted the 513 concentrations provided by 242 patients. Amisulpride clearance significantly decreased with age and increased with lean body weight (LBW). Cmin,ss was higher than the reference range in 65% of the patients aged 60 years receiving 400 mg twice daily, and in 82% of the patients aged > 75 years with a LBW of 30 kg receiving 200 mg twice daily. The pharmacokinetic/pharmacodynamic model included 101 prolactin measurements from 68 patients. The Emax parameter was 53% lower in males compared with females. Model-predicted prolactin levels were above the normal values for Cmin,ss within the reference range. Weight gain did not depend on Cav.

Conclusions

Amisulpride treatment might be optimized when considering age and body weight. Hyperprolactinemia and weight gain do not depend on amisulpride concentrations. Modification of the amisulpride dosage regimen is not appropriate to reduce prolactin concentrations and alternative treatment should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mauri MC, Paletta S, Di Pace C, Reggiori A, Cirnigliaro G, Valli I, et al. Clinical pharmacokinetics of atypical antipsychotics: an update. Clin Pharmacokinet. 2018;57(12):1493–528.

    Article  CAS  Google Scholar 

  2. Muller MJ, Regenbogen B, Hartter S, Eich FX, Hiemke C. Therapeutic drug monitoring for optimizing amisulpride therapy in patients with schizophrenia. J Psychiatr Res. 2007;41(8):673–9.

    Article  Google Scholar 

  3. Leucht S, Cipriani A, Spineli L, Mavridis D, Orey D, Richter F, et al. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet. 2013;382:951–62.

    Article  CAS  Google Scholar 

  4. Hiemke C, Bergemann N, Clement HW, Conca A, Deckert J, Domschke K, et al. Consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology: update 2017. Pharmacopsychiatry. 2018;51(1–02):9–62.

    PubMed  CAS  Google Scholar 

  5. Peuskens J, Pani L, Detraux J, De Hert M. The effects of novel and newly approved antipsychotics on serum prolactin levels: a comprehensive review. CNS Drugs. 2014;28(5):421–53.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Iwata Y, Nakajima S, Caravaggio F, Suzuki T, Uchida H, Plitman E, et al. Threshold of dopamine D2/3 receptor occupancy for hyperprolactinemia in older patients with schizophrenia. J Clin Psychiatry. 2016;77(12):e1557–63.

    Article  Google Scholar 

  7. Besnard I, Auclair V, Callery G, Gabriel-Bordenave C, Roberge C. Antipsychotic-drug-induced hyperprolactinemia: physiopathology, clinical features and guidance [in French]. Encephale. 2014;40(1):86–94.

    Article  CAS  Google Scholar 

  8. Juruena MF, de Sena EP, de Oliveira IR. Safety and tolerability of antipsychotics: focus on amisulpride. Drug Healthc Patient Saf. 2010;2:205–11.

    Article  CAS  Google Scholar 

  9. Holt RI, Peveler RC. Antipsychotics and hyperprolactinaemia: mechanisms, consequences and management. Clin Endocrinol (Oxf). 2011;74(2):141–7.

    Article  CAS  Google Scholar 

  10. During SW, Nielsen MO, Bak N, Glenthoj BY, Ebdrup BH. Sexual dysfunction and hyperprolactinemia in schizophrenia before and after six weeks of D2/3 receptor blockade: an exploratory study. Psychiatry Res. 2019;274:58–65.

    Article  CAS  Google Scholar 

  11. Reeves S, Bertrand J, D’Antonio F, McLachlan E, Nair A, Brownings S, et al. A population approach to characterise amisulpride pharmacokinetics in older people and Alzheimer’s disease. Psychopharmacology (Berl). 2016;233(18):3371–81.

    Article  CAS  Google Scholar 

  12. Reeves S, Bertrand J, McLachlan E, D’Antonio F, Brownings S, Nair A, et al. A population approach to guide amisulpride dose adjustments in older patients with Alzheimer’s disease. J Clin Psychiatry. 2017;78(7):e844–51.

    Article  Google Scholar 

  13. Leucht S, Wagenpfeil S, Hamann J, Kissling W. Amisulpride is an “atypical” antipsychotic associated with low weight gain. Psychopharmacology (Berl). 2004;173(1–2):112–5.

    Article  CAS  Google Scholar 

  14. Ivanyuk A, Livio F, Biollaz J, Buclin T. Renal drug transporters and drug interactions. Clin Pharmacokinet. 2017;56(8):825–92.

    Article  CAS  Google Scholar 

  15. Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B. Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44(10):1051–65.

    Article  Google Scholar 

  16. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41.

    Article  CAS  Google Scholar 

  17. Pai MP. Estimating the glomerular filtration rate in obese adult patients for drug dosing. Adv Chronic Kidney Dis. 2010;17:e53–62.

    Article  Google Scholar 

  18. Beal S, Sheiner LB, Boeckmann A, Bauer RJ. NONMEM User’s Guides (1989–2009). Ellicott City: Icon Development Solutions; 2009.

    Google Scholar 

  19. Lindbom L, Pihlgren P, Jonsson EN, Jonsson N. PsN-Toolkit—a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed. 2005;79:241–57.

    Article  Google Scholar 

  20. Savic RM, Karlsson MO. Importance of shrinkage in empirical bayes estimates for diagnostics: problems and solutions. AAPS J. 2009;11(3):558–69.

    Article  Google Scholar 

  21. Taylor DM, Barnes TRE, Young AH. The Maudsley prescribing guidelines in psychiatry. 13th ed. New York: Wiley Blackwell; 2018.

    Google Scholar 

  22. Citrome L. Current guidelines and their recommendations for prolactin monitoring in psychosis. J Psychopharmacol. 2008;22(2 Suppl):90–7.

    Article  Google Scholar 

  23. Rosenzweig P, Canal M, Patat A, Bergougnan L, Zieleniuk I, Bianchetti G. A review of the pharmacokinetics, tolerability and pharmacodynamics of amisulpride in healthy volunteers. Hum Psychopharmacol. 2002;17:1–13.

    Article  CAS  Google Scholar 

  24. Bergemann N, Kopitz J, Kress KR, Frick A. Plasma amisulpride levels in schizophrenia or schizoaffective disorder. Eur Neuropsychopharmacol. 2004;14(3):245–50.

    Article  CAS  Google Scholar 

  25. Dos Santos Pereira JN, Tadjerpisheh S, Abu Abed M, Saadatmand AR, Weksler B, Romero IA, et al. The poorly membrane permeable antipsychotic drugs amisulpride and sulpiride are substrates of the organic cation transporters from the SLC22 family. AAPS J. 2014;16:1247–58.

    Article  CAS  Google Scholar 

  26. Solian® comprimés. http://www.swissmedicinfo.ch/. Accessed 14 Jan 2019.

  27. Graff-Guerrero A, Rajji TK, Mulsant BH, Nakajima S, Caravaggio F, Suzuki T, et al. Evaluation of antipsychotic dose reduction in late-life schizophrenia: a prospective dopamine D2/3 receptor occupancy study. JAMA Psychiatry. 2015;72(9):927–34.

    Article  Google Scholar 

  28. Lange B, Mueller JK, Leweke FM, Bumb JM. How gender affects the pharmacotherapeutic approach to treating psychosis—a systematic review. Expert Opin Pharmacother. 2017;18(4):351–62.

    Article  CAS  Google Scholar 

  29. Sparshatt A, Taylor D, Patel MX, Kapur S. Amisulpride – dose, plasma concentration, occupancy and response: implications for therapeutic drug monitoring. Acta Psychiatr Scand. 2009;120(6):416–28.

    Article  CAS  Google Scholar 

  30. Lako IM, van den Heuvel ER, Knegtering H, Bruggeman R, Taxis K. Estimating dopamine D(2) receptor occupancy for doses of 8 antipsychotics: a meta-analysis. J Clin Psychopharmacol. 2013;33(5):675–81.

    Article  CAS  Google Scholar 

  31. Tsuboi T, Bies RR, Suzuki T, Mamo DC, Pollock BG, Graff-Guerrero A, et al. Hyperprolactinemia and estimated dopamine D2 receptor occupancy in patients with schizophrenia: analysis of the CATIE data. Prog Neuropsychopharmacol Biol Psychiatry. 2013;45:178–82.

    Article  CAS  Google Scholar 

  32. Chen JX, Su YA, Bian QT, Wei LH, Zhang RZ, Liu YH, et al. Adjunctive aripiprazole in the treatment of risperidone-induced hyperprolactinemia: a randomized, double-blind, placebo-controlled, dose-response study. Psychoneuroendocrinology. 2015;58:130–40.

    Article  CAS  Google Scholar 

  33. Grigg J, Worsley R, Thew C, Gurvich C, Thomas N, Kulkarni J. Antipsychotic-induced hyperprolactinemia: synthesis of world-wide guidelines and integrated recommendations for assessment, management and future research. Psychopharmacology (Berl). 2017;234(22):3279–97.

    Article  CAS  Google Scholar 

  34. Huang Y, Ma H, Wang Y, Peng M, Zhu G. Topiramate add-on treatment associated with normalization of prolactin levels in a patient with schizophrenia. Neuropsychiatr Dis Treat. 2017;13:1395–7.

    Article  CAS  Google Scholar 

  35. Haddad PM, Wieck A. Antipsychotic-induced hyperprolactinaemia: mechanisms, clinical features and management. Drugs. 2004;64(20):2291–314.

    Article  CAS  Google Scholar 

  36. Veldhuis JD, Johnson ML. Operating characteristics of the hypothalamo-pituitary–gonadal axis in men: circadian, ultradian, and pulsatile release of prolactin and its temporal coupling with luteinizing hormone. J Clin Endocrinol Metab. 1988;67(1):116–23.

    Article  CAS  Google Scholar 

  37. Rosenbloom AL. Hyperprolactinemia with antipsychotic drugs in children and adolescents. Int J Pediatr Endocrinol. 2010. https://doi.org/10.1155/2010/159402.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. C. Aubert, M. Brawand, M. Brocard, C. Brogli, N. Cochard, C. Darbellay, M. Delessert, S. Jaquet, G. Viret and A. Vullioud for sample analyses and data collection; E. Retamales for help with the bibliography; M. Gholamrezaee for his helpful advice on statistical analysis; and G. Sibailly for her instructive and helpful comments on the clinical aspect of this work. The authors are also grateful to the patients who agreed to participate in the study, and to the nursing and medical staff who were involved in the metabolic monitoring program.

Author information

Authors and Affiliations

Authors

Contributions

AG wrote the manuscript and analyzed the data. MG reviewed the manuscript and supervised the data analysis. AD reviewed the manuscript and collected the data. CD reviewed the manuscript and collected the data. CG reviewed the manuscript and collected the data. NL reviewed the manuscript and collected the data. AG reviewed the manuscript and collected the data. PC reviewed the manuscript, collected the data, and obtained funding. CC reviewed the manuscript and supervised the data analysis. CBE reviewed the manuscript, designed the research, and obtained funding.

Corresponding authors

Correspondence to Chantal Csajka or Chin B. Eap.

Ethics declarations

Funding

This work has been funded in part by the Swiss National Research Foundation (CE and PC: 320030-120686, 324730-144064, and 320030-173211). The funding sources had no role in the writing of the manuscript or in the decision to submit the manuscript for publication. CE received honoraria for conferences or teaching continuing medical education courses from Astra Zeneca, Forum für Medizinische Fortbildung, Janssen-Cilag, Lundbeck, Mepha, Otsuka, Sandoz, Servier, Vifor-Pharma and Zeller over the past 3 years, and for writing a review article for the journal ‘Dialogues in Clinical Neurosciences’ (Servier).

Conflict of interest

Anaïs Glatard, Monia Guidi, Aurélie Delacrétaz, Céline Dubath, Claire Grosu, Nermine Laaboub, Armin von Gunten, Philippe Conus, Chantal Csajka and Chin B. Eap declare that they have no potential conflicts of interest that might be relevant to the contents of this manuscript.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glatard, A., Guidi, M., Delacrétaz, A. et al. Amisulpride: Real-World Evidence of Dose Adaptation and Effect on Prolactin Concentrations and Body Weight Gain by Pharmacokinetic/Pharmacodynamic Analyses. Clin Pharmacokinet 59, 371–382 (2020). https://doi.org/10.1007/s40262-019-00821-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-019-00821-w

Navigation