Skip to main content
Log in

Cytochrome P450-Mediated Changes in Oxycodone Pharmacokinetics/Pharmacodynamics and Their Clinical Implications

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

In recent years the use of the opioid oxycodone has increased markedly and replacing morphine as the first-line choice of opioid in several countries. There are formulations for oral immediate, oral extended release and intravenous use. The bioavailability is higher than for morphine and less variable. Oxycodone is primarily metabolized in the liver by the cytochrome P450 (CYP) enzymes with CYP3A as the major metabolic pathway and CYP2D6 as the minor metabolic pathway to noroxycodone, oxymorphone and noroxymorphone. Oxycodone exerts its analgesic effect via the µ-opioid receptor. The metabolism of CYP2D6 substrates varies to a large degree between individuals as a result of allele functionality. Poor metabolizers (PM) have two non-functional alleles, extensive metabolizers (EM) are homozygous with two functional alleles or heterozygous with one functional allele and ultrarapid metabolizers (UM) have more than two functional alleles. There are pronounced interethnic differences in the allele distribution. On the basis of studies performed thus far, oxycodone concentrations in comparison with EM are similar in PM and reduced in UM. The pharmacokinetics in UM are insufficiently investigated. Simultaneous inhibition of both CYP3A and CYP2D6 results in increased oxycodone concentrations and such a combination should be avoided. A similar effect is to be expected with use of a CYP3A inhibitor in CYP2D6 PM. Concomitant use of enzyme inducers such as rifampicin, St John’s wort and carbamazepine should be avoided because of the risk of subtherapeutic concentrations of oxycodone. When the dosage of morphine may result in unpredictable bioavailability, like in patients with severe hepatic cirrhosis, oxycodone might be beneficial because it has higher and less variability in bioavailability between patients than morphine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kalso E. Oxycodone. J Pain Symptom Manage. 2005;29(5 Suppl):S47–56.

    Article  PubMed  CAS  Google Scholar 

  2. Poulsen KK, Andersen SE, Moreno SI, et al. General practitioners’ and hospital physicians’ preference for morphine or oxycodone as first-time choice for a strong opioid: a National Register-based study. Basic Clin Pharmacol Toxicol. 2013;112(2):110–5.

    Google Scholar 

  3. Roxburgh A, Bruno R, Larance B, et al. Prescription of opioid analgesics and related harms in Australia. Med J Aust. 2011;195(5):280–4.

    Article  PubMed  Google Scholar 

  4. The International Narcotics Control Board. Availability of Internationally controlled drugs: ensuring adequate access for medical and scientific purposes. 2011. http://www.incb.org/documents/Publications/AnnualReports/AR2010/Supplement-AR10_availability_English.pdf. Accessed 10 Nov 2012.

  5. Van Zee A. The promotion and marketing of oxycontin: commercial triumph, public health tragedy. Am J Public Health. 2009;99(2):221–7.

    Article  PubMed  Google Scholar 

  6. Lexchin J, Kohler JC. The danger of imperfect regulation: oxycontin use in the United States and Canada. Int J Risk Saf Med. 2011;23(4):233–40.

    PubMed  Google Scholar 

  7. Gronlund J, Saari TI, Hagelberg NM, et al. Effect of inhibition of cytochrome P450 enzymes 2D6 and 3A4 on the pharmacokinetics of intravenous oxycodone: a randomized, three-phase, crossover, placebo-controlled study. Clin Drug Investig. 2011;31(3):143–53.

    Article  PubMed  CAS  Google Scholar 

  8. Gronlund J, Saari TI, Hagelberg NM, et al. Exposure to oral oxycodone is increased by concomitant inhibition of CYP2D6 and 3A4 pathways, but not by inhibition of CYP2D6 alone. Br J Clin Pharmacol. 2010;70(1):78–87.

    Article  PubMed  CAS  Google Scholar 

  9. Kummer O, Hammann F, Moser C, et al. Effect of the inhibition of CYP3A4 or CYP2D6 on the pharmacokinetics and pharmacodynamics of oxycodone. Eur J Clin Pharmacol. 2011;67(1):63–71.

    Article  PubMed  CAS  Google Scholar 

  10. Lalovic B, Phillips B, Risler LL, et al. Quantitative contribution of CYP2D6 and CYP3A to oxycodone metabolism in human liver and intestinal microsomes. Drug Metab Dispos. 2004;32(4):447–54.

    Article  PubMed  CAS  Google Scholar 

  11. Samer CF, Daali Y, Wagner M, et al. Genetic polymorphisms and drug interactions modulating CYP2D6 and CYP3A activities have a major effect on oxycodone analgesic efficacy and safety. Br J Pharmacol. 2010;160(4):919–30.

    Article  PubMed  CAS  Google Scholar 

  12. Samer CF, Daali Y, Wagner M, et al. The effects of CYP2D6 and CYP3A activities on the pharmacokinetics of immediate release oxycodone. Br J Pharmacol. 2010;160(4):907–18.

    Article  PubMed  CAS  Google Scholar 

  13. Zwisler ST, Enggaard TP, Mikkelsen S, et al. Impact of the CYP2D6 genotype on post-operative intravenous oxycodone analgesia. Acta Anaesthesiol Scand. 2010;54(2):232–40.

    Article  PubMed  CAS  Google Scholar 

  14. Zwisler ST, Enggaard TP, Noehr-Jensen L, et al. The hypoalgesic effect of oxycodone in human experimental pain models in relation to the CYP2D6 oxidation polymorphism. Basic Clin Pharmacol Toxicol. 2009;104(4):335–44.

    Article  PubMed  CAS  Google Scholar 

  15. Madadi P, Avard D, Koren G. Pharmacogenetics of opioids for the treatment of acute maternal pain during pregnancy and lactation. Curr Drug Metab. 2012;13(6):721–7.

    Article  PubMed  CAS  Google Scholar 

  16. Andreassen TN, Eftedal I, Klepstad P, et al. Do CYP2D6 genotypes reflect oxycodone requirements for cancer patients treated for cancer pain? A cross-sectional multicentre study. Eur J Clin Pharmacol. 2012;68(1):55–64.

    Article  PubMed  CAS  Google Scholar 

  17. Klepstad P, Fladvad T, Skorpen F, et al. Influence from genetic variability on opioid use for cancer pain: a European genetic association study of 2294 cancer pain patients. Pain. 2011;152(5):1139–45.

    Article  PubMed  CAS  Google Scholar 

  18. Zwisler ST, Enggaard TP, Mikkelsen S, et al. Lack of association of OPRM1 and ABCB1 single-nucleotide polymorphisms to oxycodone response in postoperative pain. J Clin Pharmacol. 2012;52(2):234–42.

    Google Scholar 

  19. Stamer UM, Zhang L, Stuber F. Personalized therapy in pain management: where do we stand? Pharmacogenomics. 2010;11(6):843–64.

    Article  PubMed  CAS  Google Scholar 

  20. Foster A, Mobley E, Wang Z. Complicated pain management in a CYP450 2D6 poor metabolizer. Pain Pract. 2007;7(4):352–6.

    Article  PubMed  Google Scholar 

  21. de Leon J, Dinsmore L, Wedlund P. Adverse drug reactions to oxycodone and hydrocodone in CYP2D6 ultrarapid metabolizers. J Clin Psychopharmacol. 2003;23(4):420–1.

    Article  PubMed  Google Scholar 

  22. Jannetto PJ, Wong SH, Gock SB, et al. Pharmacogenomics as molecular autopsy for postmortem forensic toxicology: genotyping cytochrome P450 2D6 for oxycodone cases. J Anal Toxicol. 2002;26(7):438–47.

    Article  PubMed  CAS  Google Scholar 

  23. Lurcott G. The effects of the genetic absence and inhibition of CYP2D6 on the metabolism of codeine and its derivatives, hydrocodone and oxycodone. Anesth Prog. 1998;45(4):154–6.

    PubMed  CAS  Google Scholar 

  24. Heiskanen T, Olkkola KT, Kalso E. Effects of blocking CYP2D6 on the pharmacokinetics and pharmacodynamics of oxycodone. Clin Pharmacol Ther. 1998;64(6):603–11.

    Article  PubMed  CAS  Google Scholar 

  25. Volpe DA, McMahon Tobin GA, Mellon RD, et al. Uniform assessment and ranking of opioid mu receptor binding constants for selected opioid drugs. Regul Toxicol Pharmacol. 2011;59(3):385–90.

    Article  PubMed  CAS  Google Scholar 

  26. Kalso E. How different is oxycodone from morphine? Pain. 2007;132(3):227–8.

    Article  PubMed  Google Scholar 

  27. Lemberg KK, Kontinen VK, Siiskonen AO, et al. Antinociception by spinal and systemic oxycodone: why does the route make a difference? In vitro and in vivo studies in rats. Anesthesiology. 2006;105(4):801–12.

    Article  PubMed  Google Scholar 

  28. Lalovic B, Kharasch E, Hoffer C, et al. Pharmacokinetics and pharmacodynamics of oral oxycodone in healthy human subjects: role of circulating active metabolites. Clin Pharmacol Ther. 2006;79(5):461–79.

    Article  PubMed  CAS  Google Scholar 

  29. Lemberg KK, Siiskonen AO, Kontinen VK, et al. Pharmacological characterization of noroxymorphone as a new opioid for spinal analgesia. Anesth Analg. 2008;106(2):463–70. table of contents.

    Article  PubMed  CAS  Google Scholar 

  30. Chen ZR, Irvine RJ, Somogyi AA, et al. Mu receptor binding of some commonly used opioids and their metabolites. Life Sci. 1991;48(22):2165–71.

    Article  PubMed  CAS  Google Scholar 

  31. Andreassen TN, Klepstad P, Davies A, et al. Is oxycodone efficacy reflected in serum concentrations? A multicenter, cross-sectional study in 456 adult cancer patients. J Pain Symptom Manag. 2012;43(4):694–705.

    Article  CAS  Google Scholar 

  32. Sloan PA, Barkin RL. Oxymorphone and oxymorphone extended release: a pharmacotherapeutic review. J Opioid Manag. 2008;4(3):131–44.

    PubMed  Google Scholar 

  33. Lugo RA, Kern SE. The pharmacokinetics of oxycodone. J Pain Palliat Care Pharmacother. 2004;18(4):17–30.

    Article  PubMed  Google Scholar 

  34. Poyhia R, Seppala T, Olkkola KT, et al. The pharmacokinetics and metabolism of oxycodone after intramuscular and oral administration to healthy subjects. Br J Clin Pharmacol. 1992;33(6):617–21.

    Article  PubMed  CAS  Google Scholar 

  35. Mandema JW, Kaiko RF, Oshlack B, et al. Characterization and validation of a pharmacokinetic model for controlled-release oxycodone. Br J Clin Pharmacol. 1996;42(6):747–56.

    Article  PubMed  CAS  Google Scholar 

  36. Poyhia R, Olkkola KT, Seppala T, et al. The pharmacokinetics of oxycodone after intravenous injection in adults. Br J Clin Pharmacol. 1991;32(4):516–8.

    Article  PubMed  CAS  Google Scholar 

  37. Liukas A, Kuusniemi K, Aantaa R, et al. Plasma concentrations of oral oxycodone are greatly increased in the elderly. Clin Pharmacol Ther. 2008;84(4):462–7.

    Article  PubMed  CAS  Google Scholar 

  38. Saari TI, Ihmsen H, Neuvonen PJ, et al. Oxycodone clearance is markedly reduced with advancing age: a population pharmacokinetic study. Br J Anaesth. 2012;108(3):491–8.

    Article  PubMed  CAS  Google Scholar 

  39. Kirvela M, Lindgren L, Seppala T, et al. The pharmacokinetics of oxycodone in uremic patients undergoing renal transplantation. J Clin Anesth. 1996;8(1):13–8.

    Article  PubMed  CAS  Google Scholar 

  40. Poyhia R, Vainio A, Kalso E. A review of oxycodone’s clinical pharmacokinetics and pharmacodynamics. J Pain Symptom Manag. 1993;8(2):63–7.

    Article  CAS  Google Scholar 

  41. Naito T, Takashina Y, Yamamoto K, et al. CYP3A5*3 affects plasma disposition of noroxycodone and dose escalation in cancer patients receiving oxycodone. J Clin Pharmacol. 2011;51(11):1529–38.

    Article  PubMed  CAS  Google Scholar 

  42. Lamba JK, Lin YS, Schuetz EG, et al. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev. 2012;54(10):1271–94.

    Google Scholar 

  43. Andersson T, Flockhart DA, Goldstein DB, et al. Drug-metabolizing enzymes: evidence for clinical utility of pharmacogenomic tests. Clin Pharmacol Ther. 2005;78(6):559–81.

    Article  PubMed  CAS  Google Scholar 

  44. Karolinska Institutet. The Human Cytochrome P450 (CYP) Allele Nomenclature Database Stockholm updated 22-Feb-2012. http://www.cypalleles.ki.se/. Accessed 20 Oct 2012.

  45. Johansson I, Ingelman-Sundberg M. CNVs of human genes and their implication in pharmacogenetics. Cytogenet Genome Res. 2008;123(1–4):195–204.

    Article  PubMed  CAS  Google Scholar 

  46. Dahl ML, Johansson I, Bertilsson L, et al. Ultrarapid hydroxylation of debrisoquine in a Swedish population. Analysis of the molecular genetic basis. J Pharmacol Exp Ther. 1995;274(1):516–20.

    PubMed  CAS  Google Scholar 

  47. Bathum L, Johansson I, Ingelman-Sundberg M, et al. Ultrarapid metabolism of sparteine: frequency of alleles with duplicated CYP2D6 genes in a Danish population as determined by restriction fragment length polymorphism and long polymerase chain reaction. Pharmacogenetics. 1998;8(2):119–23.

    Article  PubMed  CAS  Google Scholar 

  48. Johansson I, Lundqvist E, Bertilsson L, et al. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci U S A. 1993;90(24):11825–9.

    Article  PubMed  CAS  Google Scholar 

  49. Agundez JA, Ledesma MC, Ladero JM, et al. Prevalence of CYP2D6 gene duplication and its repercussion on the oxidative phenotype in a white population. Clin Pharmacol Ther. 1995;57(3):265–9.

    Article  PubMed  CAS  Google Scholar 

  50. Aklillu E, Persson I, Bertilsson L, et al. Frequent distribution of ultrarapid metabolizers of debrisoquine in an Ethiopian population carrying duplicated and multiduplicated functional CYP2D6 alleles. J Pharmacol Exp Ther. 1996;278(1):441–6.

    PubMed  CAS  Google Scholar 

  51. Wennerholm A, Johansson I, Massele AY, et al. Decreased capacity for debrisoquine metabolism among black Tanzanians: analyses of the CYP2D6 genotype and phenotype. Pharmacogenetics. 1999;9(6):707–14.

    Article  PubMed  CAS  Google Scholar 

  52. Liukas A, Kuusniemi K, Aantaa R, et al. Elimination of intravenous oxycodone in the elderly: a pharmacokinetic study in postoperative orthopaedic patients of different age groups. Drugs Aging. 2011;28(1):41–50.

    Article  PubMed  CAS  Google Scholar 

  53. Saari TI, Gronlund J, Hagelberg NM, et al. Effects of itraconazole on the pharmacokinetics and pharmacodynamics of intravenously and orally administered oxycodone. Eur J Clin Pharmacol. 2010;66(4):387–97.

    Article  PubMed  CAS  Google Scholar 

  54. Gronlund J, Saari T, Hagelberg N, et al. Effect of telithromycin on the pharmacokinetics and pharmacodynamics of oral oxycodone. J Clin Pharmacol. 2010;50(1):101–8.

    Article  PubMed  CAS  Google Scholar 

  55. Laine K, Tybring G, Hartter S, et al. Inhibition of cytochrome P4502D6 activity with paroxetine normalizes the ultrarapid metabolizer phenotype as measured by nortriptyline pharmacokinetics and the debrisoquin test. Clin Pharmacol Ther. 2001;70(4):327–35.

    PubMed  CAS  Google Scholar 

  56. Myers AL, Hassan HE, Lee IJ, et al. Repeated administration of oxycodone modifies the gene expression of several drug metabolising enzymes in the hepatic tissue of male Sprague-Dawley rats, including glutathione S-transferase A-5 (rGSTA5) and CYP3A2. J Pharm Pharmacol. 2010;62(2):189–96.

    Article  PubMed  CAS  Google Scholar 

  57. Liu YT, Hao HP, Liu CX, et al. Drugs as CYP3A probes, inducers, and inhibitors. Drug Metab Rev. 2007;39(4):699–721.

    Article  PubMed  CAS  Google Scholar 

  58. Kato M. Intestinal first-pass metabolism of CYP3A4 substrates. Drug Metab Pharmacokinet. 2008;23(2):87–94.

    Article  PubMed  CAS  Google Scholar 

  59. Kivisto KT, Niemi M, Fromm MF. Functional interaction of intestinal CYP3A4 and P-glycoprotein. Fundam Clin Pharmacol. 2004;18(6):621–6.

    Article  PubMed  Google Scholar 

  60. Nieminen TH, Hagelberg NM, Saari TI, et al. Rifampin greatly reduces the plasma concentrations of intravenous and oral oxycodone. Anesthesiology. 2009;110(6):1371–8.

    Article  PubMed  CAS  Google Scholar 

  61. Nieminen TH, Hagelberg NM, Saari TI, et al. St John’s wort greatly reduces the concentrations of oral oxycodone. Eur J Pain. 2010;14(8):854–9.

    Article  PubMed  CAS  Google Scholar 

  62. Fromm MF, Busse D, Kroemer HK, et al. Differential induction of prehepatic and hepatic metabolism of verapamil by rifampin. Hepatology. 1996;24(4):796–801.

    Article  PubMed  CAS  Google Scholar 

  63. SFINX. Swedish Finnish interaction x-referencing. http://www.janusinfo.se. Accessed 7 Feb 2013.

  64. Bottiger Y, Laine K, Andersson ML, et al. SFINX—a drug–drug interaction database designed for clinical decision support systems. Eur J Clin Pharmacol. 2009;65(6):627–33.

    Article  PubMed  Google Scholar 

  65. Hagelberg NM, Nieminen TH, Saari TI, et al. Voriconazole drastically increases exposure to oral oxycodone. Eur J Clin Pharmacol. 2009;65(3):263–71.

    Article  PubMed  CAS  Google Scholar 

  66. Liukas A, Hagelberg NM, Kuusniemi K, et al. Inhibition of cytochrome P450 3A by clarithromycin uniformly affects the pharmacokinetics and pharmacodynamics of oxycodone in young and elderly volunteers. J Clin Psychopharmacol. 2011;31(3):302–8.

    Article  PubMed  CAS  Google Scholar 

  67. Nieminen TH, Hagelberg NM, Saari TI, et al. Grapefruit juice enhances the exposure to oral oxycodone. Basic Clin Pharmacol Toxicol. 2010;107(4):782–8.

    Article  PubMed  CAS  Google Scholar 

  68. Nieminen TH, Hagelberg NM, Saari TI, et al. Oxycodone concentrations are greatly increased by the concomitant use of ritonavir or lopinavir/ritonavir. Eur J Clin Pharmacol. 2010;66(10):977–85.

    Article  PubMed  CAS  Google Scholar 

  69. Watanabe M, Homma M, Momo K, et al. Effects of voriconazole co-administration on oxycodone-induced adverse events: a case in the retrospective survey. Eur J Clin Pharmacol. 2011;67(8):859–61.

    Article  PubMed  Google Scholar 

  70. Kokki M, Valitalo P, Rasanen I, et al. Absorption of different oral dosage forms of oxycodone in the elderly: a cross-over clinical trial in patients undergoing cystoscopy. Eur J Clin Pharmacol. 2012;68(10):1357–63.

    Article  PubMed  CAS  Google Scholar 

  71. Sistonen J, Sajantila A, Lao O, et al. CYP2D6 worldwide genetic variation shows high frequency of altered activity variants and no continental structure. Pharmacogenet Genomics. 2007;17(2):93–101.

    Google Scholar 

Download references

Acknowledgments

This work was in part supported by grants from Karolinska Institutet, the Swedish Foundation for Clinical Pharmacology and Pharmacotherapy and the Swedish Research Council (number 2007-5681). All authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin C. Söderberg Löfdal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Söderberg Löfdal, K.C., Andersson, M.L. & Gustafsson, L.L. Cytochrome P450-Mediated Changes in Oxycodone Pharmacokinetics/Pharmacodynamics and Their Clinical Implications. Drugs 73, 533–543 (2013). https://doi.org/10.1007/s40265-013-0036-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-013-0036-0

Keywords

Navigation