Skip to main content
Log in

Treatment of ALK-Rearranged Non-Small Cell Lung Cancer: Recent Progress and Future Directions

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Rearrangements of the anaplastic lymphoma kinase (ALK) gene originally discovered nearly 20 years ago in the context of anaplastic large cell lymphoma were identified as oncogenic drivers in a subset of non-small cell lung cancers (NSCLCs) in 2007. These ALK gene rearrangements are present in 3–5 % of NSCLC patients, typically younger, never or light smokers with adenocarcinomas. Crizotinib is a first-in-class ALK tyrosine kinase inhibitor with significant activity in ALK-positive NSCLC that received accelerated US Food and Drug Administration approval for treatment of ALK-positive NSCLC in 2011, just 4 years after identification of ALK rearrangements in this setting. Subsequently, two phase III trials have shown crizotinib to have a tolerable toxicity profile and to be superior to standard chemotherapy for the first- or second-line treatment of advanced ALK-positive lung cancer and numerous countries have approved its use. Despite initial responses, acquired resistance to crizotinib invariably leads to disease progression. Mechanisms of resistance have been described to include ALK tyrosine kinase mutations, activation of bypass signalling pathways and pharmacokinetic failure of crizotinib. Several next-generation ALK inhibitors, including ceritinib and alectinib, are in clinical development and show efficacy in both the crizotinib naïve and crizotinib refractory settings. Ongoing clinical trials will identify the optimal strategy to incorporate these novel agents in the treatment of patients with ALK-positive NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Solomon B, Varella-Garcia M, Camidge DR. ALK gene rearrangements: a new therapeutic target in a molecularly defined subset of non-small cell lung cancer. J Thorac Oncol. 2009;4(12):1450–4. doi:10.1097/JTO.0b013e3181c4dedb.

    Article  PubMed  Google Scholar 

  2. Shaw AT, Kim DW, Nakagawa K, Seto T, Crino L, Ahn MJ, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368(25):2385–94. doi:10.1056/NEJMoa1214886.

    Article  CAS  PubMed  Google Scholar 

  3. Solomon BJ, Mok T, Kim D-W, Wu Y-L, Nakagawa K, Mekhail T, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371(23):2167–77.

    Article  CAS  PubMed  Google Scholar 

  4. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263(5151):1281–4.

    Article  CAS  PubMed  Google Scholar 

  5. Hallberg B, Palmer RH. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat Rev Cancer. 2013;13(10):685–700. doi:10.1038/nrc3580.

    Article  CAS  PubMed  Google Scholar 

  6. Shaw AT, Solomon B. Targeting anaplastic lymphoma kinase in lung cancer. Clin Cancer Res. 2011;17(8):2081–6. doi:10.1158/1078-0432.CCR-10-1591.

    Article  CAS  PubMed  Google Scholar 

  7. Iwahara T, Fujimoto J, Wen D, Cupples R, Bucay N, Arakawa T, et al. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene. 1997;14(4):439–49.

    Article  CAS  PubMed  Google Scholar 

  8. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448(7153):561–6. doi:10.1038/nature05945.

    Article  CAS  PubMed  Google Scholar 

  9. Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131(6):1190–203. doi:10.1016/j.cell.2007.11.025.

    Article  CAS  PubMed  Google Scholar 

  10. Ou S-HI, Bartlett CH, Mino-Kenudson M, Cui J, Iafrate AJ. Crizotinib for the treatment of ALK-rearranged non-small cell lung cancer: a success story to usher in the second decade of molecular targeted therapy in oncology. Oncologist. 2012;17(11):1351–75.

  11. Soda M, Takada S, Takeuchi K, Choi YL, Enomoto M, Ueno T, et al. A mouse model for EML4-ALK-positive lung cancer. Proc Natl Acad Sci USA. 2008;105(50):19893–7. doi:10.1073/pnas.0805381105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Chen Z, Sasaki T, Tan X, Carretero J, Shimamura T, Li D, et al. Inhibition of ALK, PI3K/MEK, and HSP90 in murine lung adenocarcinoma induced by EML4-ALK fusion oncogene. Cancer Res. 2010;70(23):9827–36. doi:10.1158/0008-5472.CAN-10-1671.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. McDermott U, Iafrate AJ, Gray NS, Shioda T, Classon M, Maheswaran S, et al. Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res. 2008;68(9):3389–95. doi:10.1158/0008-5472.CAN-07-6186.

    Article  CAS  PubMed  Google Scholar 

  14. Heuckmann JM, Balke-Want H, Malchers F, Peifer M, Sos ML, Koker M, et al. Differential protein stability and ALK inhibitor sensitivity of EML4-ALK fusion variants. Clin Cancer Res. 2012;18(17):4682–90. doi:10.1158/1078-0432.CCR-11-3260.

    Article  CAS  PubMed  Google Scholar 

  15. Mano H. ALKoma: a cancer subtype with a shared target. Cancer Discov. 2012;2(6):495–502. doi:10.1158/2159-8290.CD-12-0009.

    Article  CAS  PubMed  Google Scholar 

  16. van Gaal JC, Flucke UE, Roeffen MH, de Bont ES, Sleijfer S, Mavinkurve-Groothuis AM, et al. Anaplastic lymphoma kinase aberrations in rhabdomyosarcoma: clinical and prognostic implications. J Clin Oncol. 2012;30(3):308–15. doi:10.1200/JCO.2011.37.8588.

    Article  PubMed  Google Scholar 

  17. Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med. 2010;363(18):1734–9. doi:10.1056/NEJMoa1007478.

    Article  CAS  PubMed  Google Scholar 

  18. Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med. 2012;4(120):120ra17. doi:10.1126/scitranslmed.3003316.

  19. Doebele RC, Pilling AB, Aisner DL, Kutateladze TG, Le AT, Weickhardt AJ, et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res. 2012;18(5):1472–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Yoshida A, Tsuta K, Nakamura H, Kohno T, Takahashi F, Asamura H, et al. Comprehensive histologic analysis of ALK-rearranged lung carcinomas. Am J Surg Pathol. 2011;35(8):1226–34. doi:10.1097/PAS.0b013e3182233e06.

    Article  PubMed  Google Scholar 

  21. Gainor JF, Varghese AM, Ou SH, Kabraji S, Awad MM, Katayama R, et al. ALK rearrangements are mutually exclusive with mutations in EGFR or KRAS: an analysis of 1,683 patients with non-small cell lung cancer. Clin Cancer Res. 2013;19(15):4273–81. doi:10.1158/1078-0432.CCR-13-0318.

    Article  CAS  PubMed  Google Scholar 

  22. Shaw AT, Yeap BY, Mino-Kenudson M, Digumarthy SR, Costa DB, Heist RS, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol. 2009;27(26):4247–53. doi:10.1200/JCO.2009.22.6993.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Atherly AJ, Camidge DR. The cost-effectiveness of screening lung cancer patients for targeted drug sensitivity markers. Br J Cancer. 2012;106(6):1100–6. doi:10.1038/bjc.2012.60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Doebele RC, Lu X, Sumey C, Maxson DA, Weickhardt AJ, Oton AB, et al. Oncogene status predicts patterns of metastatic spread in treatment-naive nonsmall cell lung cancer. Cancer. 2012;118(18):4502–11. doi:10.1002/cncr.27409.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Costa DB, Shaw AT, Ou SH, Solomon BJ, Riely GJ, Ahn MJ et al. Clinical experience with crizotinib in patients with advanced ALK-rearranged non-small-cell lung cancer and brain metastases. J Clin Oncol. doi:10.1200/JCO.2014.59.0539 (Epub 2015 Jan 15).

  26. Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Thorac Oncol. 2013;8(7):823–59. doi:10.1097/JTO.0b013e318290868f.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Tsao M, Hirsch F, Yatabe Y. IASLC atlas of ALK testing in lung cancer. Aurora: Int Soc Study Lung Cancer; 2013.

    Google Scholar 

  28. Shaw AT, Solomon B, Kenudson MM. Crizotinib and testing for ALK. J Natl Compr Canc Netw. 2011;9(12):1335–41.

    CAS  PubMed  Google Scholar 

  29. Mino-Kenudson M, Chirieac LR, Law K, Hornick JL, Lindeman N, Mark EJ, et al. A novel, highly sensitive antibody allows for the routine detection of ALK-rearranged lung adenocarcinomas by standard immunohistochemistry. Clin Cancer Res. 2010;16(5):1561–71. doi:10.1158/1078-0432.CCR-09-2845.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Selinger CI, Rogers TM, Russell PA, O’Toole S, Yip P, Wright GM, et al. Testing for ALK rearrangement in lung adenocarcinoma: a multicenter comparison of immunohistochemistry and fluorescent in situ hybridization. Mod Pathol. 2013;26(12):1545–53. doi:10.1038/modpathol.2013.87.

    Article  CAS  PubMed  Google Scholar 

  31. Camidge DR, Bang YJ, Kwak EL, Iafrate AJ, Varella-Garcia M, Fox SB, et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol. 2012;13(10):1011–9. doi:10.1016/S1470-2045(12)70344-3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363(18):1693–703. doi:10.1056/NEJMoa1006448.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Kim DK, Ahn MJ, Yang P, Liu X, De Pas T, Crino L et al. Updated results of a global phase II study with crizotinib in advanced ALK-positive non-small cell lung cancer (NSCLC). Ann Oncol. 2012;23(9):402.

    Google Scholar 

  34. Kazandjian D, Blumenthal GM, Chen HY, He K, Patel M, Justice R, et al. FDA approval summary: crizotinib for the treatment of metastatic non-small cell lung cancer with anaplastic lymphoma kinase rearrangements. Oncologist. 2014;19(10):e5–11. doi:10.1634/theoncologist.2014-0241.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Shaw AT, Yeap BY, Solomon BJ, Riely GJ, Gainor J, Engelman JA, et al. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 2011;12(11):1004–12. doi:10.1016/S1470-2045(11)70232-7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Clinical Lung Cancer Genome Project (CLCGP); Network Genomic Medicine (NGM). A genomics-based classification of human lung tumors. Sci Transl Med. 2013;5(209):209ra153.

  37. Kris MG, Johnson BE, Berry LD, Kwiatkowski DJ, Iafrate AJ, Wistuba II, et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA. 2014;311(19):1998–2006. doi:10.1001/jama.2014.3741.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Shaw AT, Ou S-HI, Bang Y-J, Camidge DR, Solomon BJ, Salgia R, et al. Crizotinib in ROS1-rearranged non–small-cell lung cancer. N Engl J Med. 2014;371:1963–71. doi:10.1056/NEJMoa1406766.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Mazières J, Zalcman G, Crino L, Biondani P, Barlesi F, Filleron T. Crizotinib therapy for advanced lung adenocarcinoma and a ROS1 rearrangement: results from the EUROS1 cohort. J Clin Oncol. 2015;33(9):992–9. doi:10.1200/JCO.2014.58.3302.

    Article  PubMed  Google Scholar 

  40. Camidge D, Ou S, Shapiro G, Otterson G, Villaruz L, Villalona-Calero M et al. Efficacy and safety of crizotinib in patients with advanced c-MET-amplified non-small cell lung cancer (NSCLC) [abstract no. 8001]. J Clin Oncol. 2014;32(s15).

  41. Solomon B. Refining the Toxicity Profile of Crizotinib. J Thorac Oncol. 2014;9(11):1596–7.

    Article  PubMed  Google Scholar 

  42. Camidge DR, Doebele RC. Treating ALK-positive lung cancer—early successes and future challenges. Nat Rev Clin Oncol. 2012;9(5):268–77. doi:10.1038/nrclinonc.2012.43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Lovly CM, Shaw AT. Molecular pathways: resistance to kinase inhibitors and implications for therapeutic strategies. Clin Cancer Res. 2014;20(9):2249–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Crystal AS, Shaw AT, Sequist LV, Friboulet L, Niederst MJ, Lockerman EL, et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science. 2014;346(6216):1480–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Costa DB, Kobayashi S, Pandya SS, Yeo W-L, Shen Z, Tan W, et al. CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. J Clin Oncol. 2011;29(15):e443–5.

    Article  PubMed  Google Scholar 

  46. Weickhardt AJ, Scheier B, Burke JM, Gan G, Lu X, Bunn PA Jr, et al. Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogene-addicted non-small-cell lung cancer. J Thorac Oncol. 2012;7(12):1807–14. doi:10.1097/JTO.0b013e3182745948.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Galkin AV, Melnick JS, Kim S, Hood TL, Li N, Li L, et al. Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK. Proc Natl Acad Sci USA. 2007;104(1):270–5. doi:10.1073/pnas.0609412103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Marsilje TH, Pei W, Chen B, Lu W, Uno T, Jin Y, et al. Synthesis, structure-activity relationships, and in vivo efficacy of the novel potent and selective anaplastic lymphoma kinase (ALK) inhibitor 5-chloro-n2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl)phenyl)-n4-(2-(isopropylsulf onyl)phenyl)pyrimidine-2,4-diamine (ldk378) currently in phase 1 and phase 2 clinical trials. J Med Chem. 2013;56(14):5675–90. doi:10.1021/jm400402q.

    Article  CAS  PubMed  Google Scholar 

  49. Shaw AT, Kim DW, Mehra R, Tan DS, Felip E, Chow LQ, et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med. 2014;370(13):1189–97. doi:10.1056/NEJMoa1311107.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Felip E, Kim D, Mehra R, Tan DSW, Chow LQ, Camidge DR et al. Efficacy and safety of ceritinib in patients (pts) with advanced anaplastic lymphoma kinase (ALK)-rearranged (ALK+) non-small cell lung cancer (NSCL) [abstract no. 1295P]. Ann Oncol. 2014;25 (suppl_4):iv426–iv70.

  51. Khozin S, Blumenthal GM, Zhang L, Tang S, Brower M, Fox E et al. FDA approval: ceritinib for the treatment of metastatic anaplastic lymphoma kinase-positive non-small cell lung cancer. Clin Cancer Res. 2015;22(11):1–4. doi:10.1158/1078-0432.CCR-14-3157.

    Google Scholar 

  52. Sakamoto H, Tsukaguchi T, Hiroshima S, Kodama T, Kobayashi T, Fukami TA, et al. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell. 2011;19(5):679–90. doi:10.1016/j.ccr.2011.04.004.

    Article  CAS  PubMed  Google Scholar 

  53. Kinoshita K, Asoh K, Furuichi N, Ito T, Kawada H, Hara S, et al. Design and synthesis of a highly selective, orally active and potent anaplastic lymphoma kinase inhibitor (CH5424802). Bioorg Med Chem. 2012;20(3):1271–80. doi:10.1016/j.bmc.2011.12.021.

    Article  CAS  PubMed  Google Scholar 

  54. Kodama T, Tsukaguchi T, Satoh Y, Yoshida M, Watanabe Y, Kondoh O, et al. Alectinib shows potent antitumor activity against RET-rearranged non-small cell lung cancer. Mol Cancer Ther. 2014;13(12):2910–8. doi:10.1158/1535-7163.MCT-14-0274.

    Article  CAS  PubMed  Google Scholar 

  55. Seto T, Kiura K, Nishio M, Nakagawa K, Maemondo M, Inoue A, et al. CH5424802 (RO5424802) for patients with ALK-rearranged advanced non-small-cell lung cancer (AF-001JP study): a single-arm, open-label, phase 1–2 study. Lancet Oncol. 2013;14(7):590–8. doi:10.1016/S1470-2045(13)70142-6.

    Article  CAS  PubMed  Google Scholar 

  56. Gadgeel SM, Gandhi L, Riely GJ, Chiappori AA, West HL, Azada MC, et al. Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol. 2014;15(10):1119–28. doi:10.1016/S1470-2045(14)70362-6.

    Article  CAS  PubMed  Google Scholar 

  57. Kodama T, Hasegawa M, Takanashi K, Sakurai Y, Kondoh O, Sakamoto H. Antitumor activity of the selective ALK inhibitor alectinib in models of intracranial metastases. Cancer Chemother Pharmacol. 2014;74(5):1023–8. doi:10.1007/s00280-014-2578-6.

    Article  CAS  PubMed  Google Scholar 

  58. Nanjo S, Nakagawa T, Takeuchi S, Kita K, Fukuda K, Nakada M, et al. In vivo imaging models of bone and brain metastases and pleural carcinomatosis with a novel human EML4-ALK lung cancer cell line. Cancer Sci. 2015;106(3):244–52. doi:10.1111/cas.12600.

    Article  CAS  PubMed  Google Scholar 

  59. Gainor JF, Sherman CA, Willoughby K, Logan J, Kennedy E, Brastianos PK, et al. Alectinib salvages CNS relapses in ALK-positive lung cancer patients previously treated with crizotinib and ceritinib. J Thorac Oncol. 2015;10(2):232–6. doi:10.1097/JTO.0000000000000455.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang S, Wang F, Keats J, Ning Y, Wardwell SD, Moran L, et al. AP26113, a potent ALK inhibitor, overcomes mutations in EML4-ALK that confer resistance to PF-02341066 (PF1066) [abstract no. LB-298]. AACR 101st annual meeting 2010; 15–17 Apr 2010; Washington, DC.

  61. Rivera VM, Wang F, Anjum R, Zhang S, Squillace R, Keats J, et al. AP26113 is a dual ALK/EGFR inhibitor: characterization against EGFR T790M in cell and mouse models of NSCLC [abstract no. 1794]. AACR 103rd annual meeting; 31 Mar–4 Apr 2012; Chicago.

  62. Gettinger S, Bazhenova L, Salgia R, Langer C, Gold K, Rosell R et al. ALK inhibitor AP26113 in patients with advanced malignancies, including ALK+ non-small cell lung cancer (NSCLC): updated efficacy and safety data [abstract no. 1292P]. Ann Oncol. 2014;25 (suppl_4):iv426–iv70.

  63. Lovly CM, Heuckmann JM, de Stanchina E, Chen H, Thomas RK, Liang C, et al. Insights into ALK-driven cancers revealed through development of novel ALK tyrosine kinase inhibitors. Cancer Res. 2011;71(14):4920–31. doi:10.1158/0008-5472.CAN-10-3879.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Horn L, Blumenscheine G, Wakelee HA, Arkenau TH, Dukart G, Harrow K, et al. A phase 1 trial of X-396, a novel ALK inhibitor, in patients with advanced solid tumors. Int J Radiat Oncol. 2014;90(5):S52–3.

    Article  Google Scholar 

  65. Wilcoxen KM, Brake RL, Saffran D, Teffera Y, Choquette D, Whittington D et al.. Characterization of a novel series of potent, selective inhibitors of wild type and mutant/fusion anaplastic lymphoma kinase [abstract no. 1795]. AACR 103rd annual meeting; 31 Mar–4 Apr 2012; Chicago.

  66. Sachdev J, Arkenau HT, Infante JR, Mita MM, Anthony SP, Natale RB, et al. Phase (Ph) 1/2a study of TSR-011, a potent inhibitor of ALK and TRK, in advanced solid tumors including crizotinib-resistant ALK positive non-small cell lung cancer [abstract no. 8063]. Eur J Cancer. 2014;50(6):165.

    Article  Google Scholar 

  67. De Braud FGM, L. Pilla L, Niger M, Damian S, Bardazza B, Martinetti A et al. Phase 1 open label, dose escalation study of RXDX-101, an oral Pan-Trk, ROS1, and ALK inhibitor, in patients with advanced solid tumors with relevant molecular alterations [abstract no. 2502]. ESMO; 2014: Ann Oncol. 2014;25(suppl_4):iv146–iv164.

  68. Yamazaki S, Lam JL, Zou HY, Wang H, Smeal T, Vicini P. Translational pharmacokinetic-pharmacodynamic modeling for an orally available novel inhibitor of anaplastic lymphoma kinase and c-Ros oncogene 1. J Pharmacol Exp Ther. 2014;351(1):67–76. doi:10.1124/jpet.114.217141.

    Article  PubMed  Google Scholar 

  69. Johnson TW, Richardson PF, Bailey S, Brooun A, Burke BJ, Collins MR, et al. Discovery of (10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(m etheno)pyrazolo[4,3-h][2, 5, 11]-benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a macrocyclic inhibitor of anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) with preclinical brain exposure and broad-spectrum potency against ALK-resistant mutations. J Med Chem. 2014;57(11):4720–44. doi:10.1021/jm500261q.

    Article  CAS  PubMed  Google Scholar 

  70. Bonvini P, Gastaldi T, Falini B, Rosolen A. Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK(+) CD30(+) lymphoma cells by the Hsp90 antagonist 17-allylamino,17-demethoxygeldanamycin. Cancer Res. 2002;62(5):1559–66.

    CAS  PubMed  Google Scholar 

  71. Katayama R, Khan TM, Benes C, Lifshits E, Ebi H, Rivera VM, et al. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc Natl Acad Sci USA. 2011;108(18):7535–40. doi:10.1073/pnas.1019559108.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Normant E, Paez G, West KA, Lim AR, Slocum KL, Tunkey C, et al. The Hsp90 inhibitor IPI-504 rapidly lowers EML4-ALK levels and induces tumor regression in ALK-driven NSCLC models. Oncogene. 2011;30(22):2581–6. doi:10.1038/onc.2010.625.

    Article  CAS  PubMed  Google Scholar 

  73. Sang J, Acquaviva J, Friedland JC, Smith DL, Sequeira M, Zhang C, et al. Targeted inhibition of the molecular chaperone Hsp90 overcomes ALK inhibitor resistance in non-small cell lung cancer. Cancer Discov. 2013;3(4):430–43. doi:10.1158/2159-8290.CD-12-0440.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Sequist LV, Gettinger S, Senzer NN, Martins RG, Janne PA, Lilenbaum R, et al. Activity of IPI-504, a novel heat-shock protein 90 inhibitor, in patients with molecularly defined non-small-cell lung cancer. J Clin Oncol. 2010;28(33):4953–60. doi:10.1200/JCO.2010.30.8338.

    Article  CAS  PubMed  Google Scholar 

  75. Socinski MA, Goldman J, El-Hariry I, Koczywas M, Vukovic V, Horn L, et al. A multicenter phase II study of ganetespib monotherapy in patients with genotypically defined advanced non-small cell lung cancer. Clin Cancer Res. 2013;19(11):3068–77. doi:10.1158/1078-0432.CCR-12-3381.

    Article  CAS  PubMed  Google Scholar 

  76. Felip E, Carcereny E, Barlesi F, Gandhi L, Sequist LV, Kim S-W, et al. Phase II activity of the HSP90 inhibitor AUY922 in patients with ALK-rearranged (ALK+) or EGFR-mutated advanced non-small cell lung cancer (NSCLC) [abstract no. 4380]. Ann Oncol. 2012;23(9):ix152.

Download references

Compliance with ethical standards

Funding: No sources of funding were used to assist with the preparation of this review.

Conflicts of interest: Dr. Cameron has no conflict of interest to declare. Dr. Solomon has served on advisory boards for Pfizer, Roche and Novartis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Solomon.

Additional information

This article is part of the topical collection on Lung Cancer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cameron, L., Solomon, B. Treatment of ALK-Rearranged Non-Small Cell Lung Cancer: Recent Progress and Future Directions. Drugs 75, 1059–1070 (2015). https://doi.org/10.1007/s40265-015-0415-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-015-0415-9

Keywords

Navigation