Skip to main content
Log in

Treatment Options for Resistant Kawasaki Disease

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

“Resistant” Kawasaki disease is defined by the American Heart Association as failure to respond within 36 h following the first dose of intravenous immunoglobulin. The optimal management of resistant Kawasaki disease remains uncertain, the outcomes are potentially serious, and the cost of some treatments is considerable. We review the current evidence to guide treatment of resistant Kawasaki disease. Given the relative rarity, there are few trial data, and studies tend to be small and methodologically heterogeneous, making interpretation difficult and limiting generalisability. The literature on resistant Kawasaki disease should be interpreted with reference to current expert consensus guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singh S, Vignesh P, Burgner D. The epidemiology of Kawasaki disease: a global update. Arch Dis Child. 2015. doi:10.1136/archdischild-2014-307536.

    PubMed  Google Scholar 

  2. Newburger JW, Takahashi M, Burns JC. The present and future: Kawasaki disease. J Am Coll Cardiol. 2016;67:1738–49. doi:10.1016/j.jacc.2015.12.073.

    Article  PubMed  Google Scholar 

  3. Dajani AS, Taubert KA, Gerber MA, et al. Diagnosis and therapy of Kawasaki disease in children. Circulation. 1993;87(5):1776–80.

    Article  CAS  PubMed  Google Scholar 

  4. Kato H, Koike S, Yamamoto M, et al. Coronary aneurysms in infants and young children with acute febrile mucocutaneous lymph node syndrome. J Pediatr. 1975;86(6):892–8.

    Article  CAS  PubMed  Google Scholar 

  5. Burns JC, Shike H, Gordon JB, et al. Sequelae of Kawasaki disease in adolescents and young adults. J Am Coll Cardiol. 1996;1:253.

    Article  Google Scholar 

  6. Gordon JB, Kahn AM, Burns JC. State-of-the-art paper: when children with Kawasaki disease grow up. Myocardial and vascular complications in adulthood. J Am Coll Cardiol. 2009;54:1911–20. doi:10.1016/j.jacc.2009.04.102.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Senzaki H. Long-term outcome of Kawasaki disease. Circulation. 2008;118(25):2763–72.

    Article  PubMed  Google Scholar 

  8. Kawasaki T. Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children. Arerugī = [Allergy]. 1967;16(3):178–222.

    CAS  Google Scholar 

  9. Sano T, Makino N, Aoyama Y, et al. Temporal and geographical clustering of Kawasaki disease in Japan (2007–2012). Pediatr Int. 2016. doi:10.1111/ped.12970.

    Google Scholar 

  10. Nakamura Y, Yanagawa I, Kawasaki T. Temporal and geographical clustering of Kawasaki disease in Japan. Prog Clin Biol Res. 1987;250:19–32.

    CAS  PubMed  Google Scholar 

  11. Yanagawa H, Yashiro M, Nakamura Y, et al. Results of 12 nationwide epidemiological incidence surveys of Kawasaki disease in Japan. Arch Pediatr Adolesc Med. 1995;149(7):779–83.

    Article  CAS  PubMed  Google Scholar 

  12. Nakamura Y, Yashiro M, Uehara R, et al. Monthly observation of the number of patients with Kawasaki disease and its incidence rates in Japan: chronological and geographical observation from nationwide surveys. J Epidemiol. 2008;18(6):273–9. doi:10.2188/jea.JE2008030.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fujita Y, Nakamura Y, Sakata K, et al. Kawasaki disease in families. Pediatrics. 1989;84(4):666.

    CAS  PubMed  Google Scholar 

  14. Kao AS, Getis A, Brodine S, et al. Spatial and temporal clustering of Kawasaki syndrome cases. Pediatr Infect Dis J. 2008;27(11):981–5. doi:10.1097/INF.0b013e31817acf4f.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Saji BT, Newburger JW, Burns JC, et al. Kawasaki disease: current understanding of the mechanism and evidence-based treatment. Springer Medicine eBooks. Springer Japan; 2017,9784431560395 4431560394.

  16. McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association. Circulation. 2017. doi:10.1161/CIR.0000000000000484.

    Google Scholar 

  17. Eleftheriou D, Levin M, Shingadia D, et al. Management of Kawasaki disease. Arch Dis Child. 2014;99(1):74–83. doi:10.1136/archdischild-2012-302841.

    Article  CAS  PubMed  Google Scholar 

  18. Wang C-L, Wu Y-T, Liu C-A, et al. Kawasaki disease: infection, immunity and genetics. Pediatr Infect Dis J. 2005;24(11):998–1004.

    Article  PubMed  Google Scholar 

  19. Galeotti C, Kaveri SV, Cimaz R, et al. Predisposing factors, pathogenesis and therapeutic intervention of Kawasaki disease. Drug Discov Today. 2016;21(11):1850–7. doi:10.1016/j.drudis.2016.08.004.

    Article  CAS  PubMed  Google Scholar 

  20. Misra DP, Shenoy SN. Cardiac involvement in primary systemic vasculitis and potential drug therapies to reduce cardiovascular risk. Rheumatol Int. 2017;37(1):151–67. doi:10.1007/s00296-016-3435-1.

    Article  CAS  PubMed  Google Scholar 

  21. Muta H, Ishii M, Yashiro M, et al. Late intravenous immunoglobulin treatment in patients with Kawasaki disease. Pediatrics. 2012;129(2):e291–7. doi:10.1542/peds.2011-1704.

    Article  PubMed  Google Scholar 

  22. Research Committee of the Japanese Society of Pediatric Cardiology: Cardiac Surgery Committee for Development of Guidelines for Medical Treatment of Acute Kawasaki Disease. Guidelines for medical treatment of acute Kawasaki disease: report of the Research Committee of the Japanese Society of Pediatric Cardiology and Cardiac Surgery (2012 revised version). Pediatr Int. 2014;56(2):135–58. doi:10.1111/ped.12317.

    Article  Google Scholar 

  23. Terai M, Shulman ST. Prevalence of coronary artery abnormalities in Kawasaki disease is highly dependent on gamma globulin dose but independent of salicylate dose. J Pediatr. 1997;131(6):888–93.

    Article  CAS  PubMed  Google Scholar 

  24. Newburger JW, Takahashi M, Beiser AS, et al. A single intravenous infusion of gamma globulin as compared with four infusions in the treatment of acute Kawasaki syndrome. N Engl J Med. 1991. doi:10.1056/NEJM199106063242305.

    Google Scholar 

  25. Newburger JW, Takahashi M, Burns JC, et al. The treatment of Kawasaki syndrome with intravenous gamma globulin. N Engl J Med. 1986;315(6):341–7.

    Article  CAS  PubMed  Google Scholar 

  26. Okuni M, Harada K, Yamaguchi H, et al. Intravenous gamma globulin therapy in Kawasaki disease-trial of low dose gamma globulin. Prog Clin Biol Res. 1987;250:433–9.

    CAS  PubMed  Google Scholar 

  27. Burns JC, Franco A. The immunomodulatory effects of intravenous immunoglobulin therapy in Kawasaki disease. Expert Rev Clin Immunol. 2015;11(7):819–25. doi:10.1586/1744666X.2015.1044980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leung DY, Cotran RS, Kurt-Jones E, et al. Endothelial cell activation and high interleukin-1 secretion in the pathogenesis of acute Kawasaki disease. Lancet. 1989;2(8675):1298–302.

    Article  CAS  PubMed  Google Scholar 

  29. Suzuki H, Uemura S, Tone S, et al. Effects of immunoglobulin and gamma-interferon on the production of tumour necrosis factor-alpha and interleukin-1 beta by peripheral blood monocytes in the acute phase of Kawasaki disease. Eur J Pediatr. 1996;155(4):291–6.

    Article  CAS  PubMed  Google Scholar 

  30. Arend WP, Leung DY. IgG induction of IL-1 receptor antagonist production by human monocytes. Immunol Rev. 1994;139:71–8.

    Article  CAS  PubMed  Google Scholar 

  31. Okitsu-Negishi S, Furusawa S, Kawa Y, et al. Suppressive effect of intravenous immunoglobulins on the activity of interleukin-1. Immunol Res. 1994;13(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  32. Kobayashi N, Mori M, Kobayashi Y, et al. Intravenous gamma-globulin therapy improves hypercytokinemia in the acute phase of Kawasaki disease. Mod Rheumatol. 2004;14(6):447–52.

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Wang W, Gong F, et al. Evaluation of intravenous immunoglobulin resistance and coronary artery lesions in relation to Th1/Th2 cytokine profiles in patients with Kawasaki disease. Arthritis Rheum. 2013;65(3):805–14. doi:10.1002/art.37815.

    Article  CAS  PubMed  Google Scholar 

  34. Manlhiot C, Yeung RSM, Chahal N, et al. Intravenous immunoglobulin preparation type: association with outcomes for patients with acute Kawasaki disease. Pediatr Allergy Immunol. 2010;21(3):515–21. doi:10.1111/j.1399-3038.2010.00987.x.

    Article  PubMed  Google Scholar 

  35. Durongpisitkul K, Gururaj VJ, Park JM, et al. The prevention of coronary artery aneurysm in Kawasaki disease: a meta-analysis on the efficacy of aspirin and immunoglobulin treatment. Pediatrics. 1995;96(6):1057–61.

    CAS  PubMed  Google Scholar 

  36. Kato H, Inoue O, Akagi T. Kawasaki disease: cardiac problems and management. Pediatr Rev. 1988;9(7):209–17.

    Article  CAS  PubMed  Google Scholar 

  37. Dallaire F, Fortier-Morissette Z, Blais S, et al. Aspirin dose and prevention of coronary abnormalities in Kawasaki disease. Pediatrics. 2017;139(6):1–7. doi:10.1542/peds.2017-0098.

    Article  Google Scholar 

  38. Kai-Sheng H, Ken-Pen W, Chu-Chuan L, et al. Treatment of acute Kawasaki disease: aspirin’s role in the febrile stage revisited. Pediatrics. 2004;114(6):e689–93. doi:10.1542/peds.2004-1037.

    Article  Google Scholar 

  39. Shulman ST, Bass JL, Bierman F, et al. Management of Kawasaki syndrome: a consensus statement prepared by North American participants of the Third International Kawasaki Disease Symposium, Tokyo, Japan, December, 1988. Pediatr Infect Dis J. 1989;8(10):663–7.

    Article  Google Scholar 

  40. Uehara R, Belay ED, Maddox RA, et al. Analysis of potential risk factors associated with nonresponse to initial intravenous immunoglobulin treatment among Kawasaki disease patients in Japan. Pediatr Infect Dis J. 2008;27(2):155–60. doi:10.1097/INF.0b013e31815922b5.

    PubMed  Google Scholar 

  41. Burns JC, Capparelli EV, Brown JA, et al. Intravenous gamma-globulin treatment and retreatment in Kawasaki disease. US/Canadian Kawasaki Syndrome Study Group. Pediatr Infect Dis J. 1998;17(12):1144–8.

    Article  CAS  PubMed  Google Scholar 

  42. Sundel RP, Burns JC, Baker A, et al. Gamma globulin re-treatment in Kawasaki disease. J Pediatr. 1993;123(4):657–9. doi:10.1016/S0022-3476(05)80972-2.

    Article  CAS  PubMed  Google Scholar 

  43. Kitano N, Suzuki H, Takeuchi T, et al. Epidemiologic features and prognostic factors of coronary artery lesions associated with Kawasaki disease based on a 13-year cohort of consecutive cases identified by complete enumeration surveys in Wakayama, Japan. J Epidemiol. 2014;24(5):427–34. doi:10.2188/jea.JE20140018.

    Article  PubMed  Google Scholar 

  44. Nakamura Y, Yashiro M, Oki I, et al. Giant coronary aneurysms due to Kawasaki disease: a case-control study. Pediatr Int. 2002;44(3):254–8. doi:10.1046/j.1442-200X.2002.01551.x.

    Article  PubMed  Google Scholar 

  45. Nakamura Y, Yashiro M, Uehara R, et al. Case-control study of giant coronary aneurysms due to Kawasaki disease. Pediatr Int. 2003;45(4):410–3. doi:10.1046/j.1442-200X.2003.01744.x.

    Article  PubMed  Google Scholar 

  46. Sudo D, Monobe Y, Yashiro M, et al. Case-control study of giant coronary aneurysms due to Kawasaki disease: the 19th nationwide survey. Pediatr Int. 2010;52(5):790–4. doi:10.1111/j.1442-200X.2010.03161.x.

    Article  PubMed  Google Scholar 

  47. Ogata S, Shimizu C, Franco A, et al. Treatment response in Kawasaki disease is associated with sialylation levels of endogenous but not therapeutic intravenous immunoglobulin G. PLoS One. 2013;8(12):e81448. doi:10.1371/journal.pone.0081448.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hwang JY, Lee KY, Rhim JW, et al. Assessment of intravenous immunoglobulin non-responders in Kawasaki disease. Arch Dis Child. 2011;96(11):1088–90.

    Article  PubMed  Google Scholar 

  49. Tremoulet AH, Best BM, Song S, et al. Resistance to intravenous immunoglobulin in children with Kawasaki disease. J Pediatr. 2008;153(1):117–121.e3. doi:10.1016/j.jpeds.2007.12.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Levy M, Koren G. Atypical Kawasaki disease: analysis of clinical presentation and diagnostic clues. Pediatr Infect Dis J. 1990;9(2):122–6.

    Article  CAS  PubMed  Google Scholar 

  51. Joffe A, Kabani A, Jadavji T. Atypical and complicated Kawasaki disease in infants. Do we need criteria? West J Med. 1995;162(4):322–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chuang CH, Hsiao MH, Chiu CH, et al. Kawasaki disease in infants three months of age or younger. J Microbiol Immunol Infect. 2006;39(5):387–91.

    PubMed  Google Scholar 

  53. Yoon YM, Yun HW, Kim SH. Clinical characteristics of Kawasaki disease in infants younger than six months: a single-center study. Korean Circ J. 2016;46(4):550–5. doi:10.4070/kcj.2016.46.4.550.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chang F, Hwang B, Chen S, et al. Characteristics of Kawasaki disease in infants younger than six months of age. Pediatr Infect Dis J. 2006;25(3):241–4.

    Article  PubMed  Google Scholar 

  55. Wallace CA, French JW, Kahn SJ, et al. Initial intravenous gammaglobulin treatment failure in Kawasaki disease. Pediatrics. 2000;105(6):E78-E.

    Article  Google Scholar 

  56. Han RK, Silverman ED, Newman A, et al. Management and outcome of persistent or recurrent fever after initial intravenous gamma globulin therapy in acute Kawasaki disease. Arch Pediatr Adolesc Med. 2000;154(7):694–9.

    Article  CAS  PubMed  Google Scholar 

  57. Sewell WAC, Jolles S. Immunomodulatory action of intravenous immunoglobulin. Immunology. 2002;107(4):387–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Furukawa T, Kishiro M, Akimoto K, et al. Effects of steroid pulse therapy on immunoglobulin-resistant Kawasaki disease. Arch Dis Child. 2008;93(2):142–6.

    Article  CAS  PubMed  Google Scholar 

  59. Ogata S, Bando Y, Kimura S, et al. The strategy of immune globulin resistant Kawasaki disease: a comparative study of additional immune globulin and steroid pulse therapy. J Cardiol. 2009;53(1):15–9.

    Article  PubMed  Google Scholar 

  60. Naoe S, Takahashi K, Masuda H, et al. Kawasaki disease. With particular emphasis on arterial lesions. Acta Pathologica Japonica. 1991;41(11):785–97.

    CAS  PubMed  Google Scholar 

  61. Takahashi K, Oharaseki T, Yokouchi Y. Pathogenesis of Kawasaki disease. Clin Exp Immunol. 2011;164(Suppl 1):20–2. doi:10.1111/j.1365-2249.2011.04361.x.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Orenstein JM, Shulman ST, Fox LM, et al. Three linked vasculopathic processes characterize Kawasaki disease: a light and transmission electron microscopic study. PLoS One. 2012;7(6):1–25. doi:10.1371/journal.pone.0038998.

    Article  CAS  Google Scholar 

  63. Wright DA, Newburger JW, Baker A, et al. Treatment of immune globulin-resistant Kawasaki disease with pulsed doses of corticosteroids. J Pediatr. 1996;128(1):144–6.

    Article  Google Scholar 

  64. Kato H, Koike S, Yokoyama T. Kawasaki disease: effect of treatment on coronary artery involvement. Pediatrics. 1979;63(2):175–80.

    CAS  PubMed  Google Scholar 

  65. Lo JY, Minich LL, Tani LY, et al. Coronary artery disease: factors associated with resource utilization and coronary artery dilation in refractory Kawasaki disease (from the Pediatric Health Information System Database). Am J Cardiol. 2016;118(11):1636–40. doi:10.1016/j.amjcard.2016.08.039.

    Article  PubMed  Google Scholar 

  66. Teraguchi M, Ogino H, Yoshimura K, et al. Steroid pulse therapy for children with intravenous immunoglobulin therapy-resistant Kawasaki disease: a prospective study. Pediatr Cardiol. 2013;34(4):959–63. doi:10.1007/s00246-012-0589-9.

    Article  PubMed  Google Scholar 

  67. Kobayashi T, Kobayashi T, Morikawa A, et al. Efficacy of intravenous immunoglobulin combined with prednisolone following resistance to initial intravenous immunoglobulin treatment of acute Kawasaki disease. J Pediatr. 2013;163(2):521–6.

    Article  CAS  PubMed  Google Scholar 

  68. Jibiki T, Kato I, Shiohama T, et al. Intravenous immune globulin plus corticosteroids in refractory Kawasaki disease. Pediatr Int. 2011;53(5):729–35. doi:10.1111/j.1442-200X.2011.03338.x.

    Article  CAS  PubMed  Google Scholar 

  69. Miura M, Ohki H, Yoshiba S, et al. Adverse effects of methylprednisolone pulse therapy in refractory Kawasaki disease. Arch Dis Child. 2005;90(10):1096–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hashino K, Ishii M, Iemura M, et al. Re-treatment for immune globulin-resistant Kawasaki disease: a comparative study of additional immune globulin and steroid pulse therapy. Pediatr Int. 2001;43(3):211–7. doi:10.1046/j.1442-200X.2001.01373.x.

    Article  CAS  PubMed  Google Scholar 

  71. Kijima Y, Kamiya T, Suzuki A, et al. A trial procedure to prevent aneurysm formation of the coronary arteries by steroid pulse therapy in Kawasaki disease. Jpn Circ J. 1982;46(11):1239–42.

    Article  CAS  PubMed  Google Scholar 

  72. Yang X, Liu G, Huang Y, et al. A meta-analysis of re-treatment for intravenous immunoglobulin-resistant Kawasaki disease. Cardiol Young. 2015;25(6):1182–90. doi:10.1017/S1047951114002601.

    Article  PubMed  Google Scholar 

  73. Millar K, Manlhiot C, Yeung RSM, et al. Corticosteroid administration for patients with coronary artery aneurysms after Kawasaki disease may be associated with impaired regression. Int J Cardiol. 2012;154(1):9–13. doi:10.1016/j.ijcard.2010.08.070.

    Article  PubMed  Google Scholar 

  74. Adachi S, Sakaguchi H, Kuwahara T, et al. High regression rate of coronary aneurysms developed in patients with immune globulin-resistant Kawasaki disease treated with steroid pulse therapy. Tohoku J Exp Med. 2010;220(4):285–90.

    Article  PubMed  Google Scholar 

  75. Chen S, Dong Y, Yin Y, et al. Intravenous immunoglobulin plus corticosteroid to prevent coronary artery abnormalities in Kawasaki disease: a meta-analysis. Heart. 2013;99(2):76–82.

    Article  CAS  PubMed  Google Scholar 

  76. Matsubara T, Furukawa S, Yabuta K. Serum levels of tumor necrosis factor, interleukin 2 receptor, and interferon-gamma in Kawasaki disease involved coronary-artery lesions. Clin Immunol Immunopathol. 1990;56(1):29–36.

    Article  CAS  PubMed  Google Scholar 

  77. Aeschlimann F, Yeung R. TNF and IL-1 targeted treatment in Kawasaki disease. Curr Treat Opt Rheumatol. 2016;2(4):283–95.

    Article  Google Scholar 

  78. Furukawa S, Matsubara T, Jujoh K, et al. Peripheral blood monocyte/macrophages and serum tumor necrosis factor in Kawasaki disease. Clin Immunol Immunopathol. 1988;48(2):247–51. doi:10.1016/0090-1229(88)90088-8.

    Article  CAS  PubMed  Google Scholar 

  79. Hui-Yuen JS, Duong TT, Yeung RS. TNF-alpha is necessary for induction of coronary artery inflammation and aneurysm formation in an animal model of Kawasaki disease. J Immunol (Baltimore, Md: 1950). 2006;176(10):6294–301.

    Article  CAS  Google Scholar 

  80. Lin CY, Lin CC, Hwang B, et al. Serial changes of serum interleukin-6, interleukin-8, and tumor necrosis factor alpha among patients with Kawasaki disease. J Pediatr. 1992;121(6):924–6.

    Article  CAS  PubMed  Google Scholar 

  81. Furukawa S, Matsubara T, Umezawa Y, et al. Serum levels of p60 soluble tumor necrosis factor receptor during acute Kawasaki disease. J Pediatr. 1994;124(5 Pt 1):721–5.

    Article  CAS  PubMed  Google Scholar 

  82. Eleftheriou D, Melo M, Marks SD, et al. Biologic therapy in primary systemic vasculitis of the young. Rheumatology (Oxford, England). 2009;48(8):978–86. doi:10.1093/rheumatology/kep148.

    Article  CAS  Google Scholar 

  83. Blandizzi C, Gionchetti P, Armuzzi A, et al. The role of tumour necrosis factor in the pathogenesis of immune-mediated diseases. Int J Immunopathol Pharmacol. 2014;27(1 Suppl):1–10.

    Article  CAS  PubMed  Google Scholar 

  84. Shoda T. TNF-α blockers for the treatment of Kawasaki disease in children. In: Cochrane Database of Systematic Reviews. 2016. http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD012448/full. Accessed 11.

  85. Ohashi R, Fukazawa R, Watanabe M, et al. Etanercept suppresses arteritis in a murine model of Kawasaki disease: a comparative study involving different biological agents. Int J Vasc Med. 2013:1–10. doi:10.1155/2013/543141.

  86. Crouch SP, Fletcher J. Effect of ingested pentoxifylline on neutrophil superoxide anion production. Infect Immun. 1992;60(11):4504–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Strieter RM, Remick DG, Ward PA, et al. Cellular and molecular regulation of tumor necrosis factor-alpha production by pentoxifylline. Biochem Biophys Res Commun. 1988;155(3):1230–6.

    Article  CAS  PubMed  Google Scholar 

  88. Furukawa S, Matsubara T, Umezawa Y, et al. Pentoxifylline and intravenous gamma globulin combination therapy for acute Kawasaki disease. Eur J Pediatr. 1994;153(9):663–7.

    Article  CAS  PubMed  Google Scholar 

  89. Best BM, Burns JC, DeVincenzo J, et al. Pharmacokinetic and tolerability assessment of a pediatric oral formulation of pentoxifylline in Kawasaki disease. Curr Ther Res Clin Exp. 2003;64:96–115. doi:10.1016/S0011-393X(03)00018-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sonoda K, Mori M, Hokosaki T, et al. Infliximab plus plasma exchange rescue therapy in Kawasaki disease. J Pediatr. 2014;164(5):1128–1132.e1. doi:10.1016/j.jpeds.2014.01.020.

    Article  CAS  PubMed  Google Scholar 

  91. Accomando S, Liotta A, Maggio MC, et al. Infliximab administration effective in the treatment of refractory Kawasaki disease. Pediatr Allergy Immunol. 2010;21(7):1091–2. doi:10.1111/j.1399-3038.2010.01029.x.

    Article  PubMed  Google Scholar 

  92. Weiss JE, Eberhard BA, Chowdhury D, et al. Infliximab as a novel therapy for refractory Kawasaki disease. J Rheumatol. 2004;31(4):808–10.

    PubMed  Google Scholar 

  93. Hirono K, Kemmotsu Y, Wittkowski H, et al. Infliximab reduces the cytokine-mediated inflammation but does not suppress cellular infiltration of the vessel wall in refractory Kawasaki disease. Pediatr Res. 2009;65(6):696–701. doi:10.1203/PDR.0b013e31819ed68d.

    Article  CAS  PubMed  Google Scholar 

  94. Masuda H, Abe J, Oana S, et al. Abstract O.51: effects of anti-TNF-alpha antibody therapy on IVIG-resistant patients with Kawasaki disease. Circulation. 2015;131(Suppl 2):AO51.

  95. Tremoulet AH, Jain S, Jaggi P, et al. Infliximab for intensification of primary therapy for Kawasaki disease: a phase 3 randomised, double-blind, placebo-controlled trial. Lancet. 2014;383(9930):1731–8. doi:10.1016/S0140-6736(13)62298-9.

    Article  CAS  PubMed  Google Scholar 

  96. Youn Y, Kim J, Hong YM, et al. Infliximab as the first retreatment in patients with Kawasaki disease resistant to initial intravenous immunoglobulin. Pediatr Infect Dis J. 2016;35(4):457–9. doi:10.1097/INF.0000000000001039.

    Article  PubMed  Google Scholar 

  97. Mori M, Imagawa T, Hara R, et al. Efficacy and limitation of infliximab treatment for children with Kawasaki disease intractable to intravenous immunoglobulin therapy: report of an open-label case series. J Rheumatol. 2012;39(4):864–7.

    Article  CAS  PubMed  Google Scholar 

  98. Song MS, Lee SB, Sohn S, et al. Infliximab treatment for refractory Kawasaki disease in Korean children. Korean Circ J. 2010;40(7):334–8. doi:10.4070/kcj.2010.40.7.334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Burns JC, Best BM, Mejias A, et al. Infliximab treatment of intravenous immunoglobulin–resistant Kawasaki disease. J Pediatr. 2008;153(6):833–8. doi:10.1016/j.jpeds.2008.06.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Burns JC, Mason WH, Hauger SB, et al. Infliximab treatment for refractory Kawasaki syndrome. J Pediatr. 2005;146(5):662–7. doi:10.1016/j.jpeds.2004.12.022.

    Article  CAS  PubMed  Google Scholar 

  101. Son MB, Gauvreau K, Burns JC, et al. Infliximab for intravenous immunoglobulin resistance in Kawasaki disease: a retrospective study. J Pediatr. 2011;158(4):644–9.

    Article  CAS  PubMed  Google Scholar 

  102. Shanghai Children’s Medical Center, Shanghai 10th People’s Hospital, Shanghai 8th People’s Hospital, et al. Infliximab for Kawasaki disease patients resistant to IVIG: a multicentre, prospective, randomised trial. Fudan University. 2016. https://clinicaltrials.gov/ct2/show/NCT02298062.

  103. Choueiter NF, Olson AK, Shen DD, et al. Prospective open-label trial of etanercept as adjunctive therapy for Kawasaki disease. J Pediatr. 2010;157(6):960–6. doi:10.1016/j.jpeds.2010.06.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Portman MA. Clinical Trials register—etanercept in Kawasaki disease. 2017. https://clinicaltrials.gov/show/NCT00841789. Accessed 16 May 2017.

  105. Onouchi Y, Gunji T, Burns JC, et al. ITPKC functional polymorphism associated with Kawasaki disease susceptibility and formation of coronary artery aneurysms. Nat Genet. 2008;40(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  106. Onouchi Y, Ozaki K, Buns JC, et al. Common variants in CASP3 confer susceptibility to Kawasaki disease. Hum Mol Genet. 2010;19(14):2898–906. doi:10.1093/hmg/ddq176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kuo H-C, Yu H-R, Juo S-HH, et al. CASP3 gene single-nucleotide polymorphism (rs72689236) and Kawasaki disease in Taiwanese children. J Hum Genet. 2011;56(2):161–5. doi:10.1038/jhg.2010.154.

    Article  CAS  PubMed  Google Scholar 

  108. Alphonse MP, Duong TT, Shumitzu C, et al. Inositol-triphosphate 3-kinase C mediates inflammasome activation and treatment response in Kawasaki disease. J Immunol (Baltimore, Md: 1950). 2016;197(9):3481–9. doi:10.4049/jimmunol.1600388.

  109. Onouchi Y, Ozaki K, Burns JC, et al. A genome-wide association study identifies three new risk loci for Kawasaki disease. Nat Genet. 2012;44(5):517–21. doi:10.1038/ng.2220.

    Article  CAS  PubMed  Google Scholar 

  110. Khor CC, Davila S, Breunis WB, et al. Genome-wide association study identifies FCGR2A as a susceptibility locus for Kawasaki disease. Nat Genet. 2011;43(12):1241–6. doi:10.1038/ng.981.

    Article  CAS  PubMed  Google Scholar 

  111. Dietz SM, van Stijn D, Burgner D, et al. Dissecting Kawasaki disease: a state-of-the-art review. Eur J Pediatr. 2017;176(8):995–1009. doi:10.1007/s00431-017-2937-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Aoyagi R, Hamada H, Sato Y, et al. Study protocol for a phase III multicentre, randomised, open-label, blinded-end point trial to evaluate the efficacy and safety of immunoglobulin plus cyclosporin A in patients with severe Kawasaki disease (KAICA Trial). BMJ Open. 2015;5(12):e009562-e. doi:10.1136/bmjopen-2015-009562.

  113. Tremoulet AH, Pancoast P, Franco A, et al. Calcineurin inhibitor treatment of intravenous immunoglobulin–resistant Kawasaki disease. J Pediatr. 2012;161(3):506–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Suzuki H, Terai M, Hamada H, et al. Cyclosporin A treatment for Kawasaki disease refractory to initial and additional intravenous immunoglobulin. Pediatr Infect Dis J. 2011;30(10):871–6. doi:10.1097/INF.0b013e318220c3cf.

    Article  PubMed  Google Scholar 

  115. Hamada H, Suzuki H, Abe J, et al. Inflammatory cytokine profiles during cyclosporin treatment for immunoglobulin-resistant Kawasaki disease. Cytokine. 2012;60:681–5. doi:10.1016/j.cyto.2012.08.006.

    Article  CAS  PubMed  Google Scholar 

  116. Kremer JM, Lawrence DA, Hamilton R, et al. Long-term study of the impact of methotrexate on serum cytokines and lymphocyte subsets in patients with active rheumatoid arthritis: correlation with pharmacokinetic measures. RMD Open. 2016;2(1):e000287-e. doi:10.1136/rmdopen-2016-000287.

  117. Gerards AH, de Lathouder S, de Groot ER, et al. Inhibition of cytokine production by methotrexate. Studies in healthy volunteers and patients with rheumatoid arthritis. Rheumatology (Oxford, England). 2003;42(10):1189–96.

  118. Pan S, Stamp LK, Duffull SB, et al. Assessment of the relationship between methotrexate polyglutamates in red blood cells and clinical response in patients commencing methotrexate for rheumatoid arthritis. Clin Pharmacokinet. 2014;53(12):1161–70. doi:10.1007/s40262-014-0179-5.

    Article  CAS  PubMed  Google Scholar 

  119. Dalrymple JM, Stamp LK, O’Donnell JL, et al. Pharmacokinetics of oral methotrexate in patients with rheumatoid arthritis. Arthritis Rheum. 2008;58(11):3299–308.

    Article  CAS  PubMed  Google Scholar 

  120. Lee TJ, Kim KH, Chun J-K, et al. Low-dose methotrexate therapy for intravenous immunoglobulin-resistant Kawasaki disease. Yonsei Med J. 2008;49(5):714–8. doi:10.3349/ymj.2008.49.5.714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ahn SY, Kim DS. Treatment of intravenous immunoglobulin-resistant Kawasaki disease with methotrexate. Scand J Rheumatol. 2005;34(2):136–9.

    CAS  PubMed  Google Scholar 

  122. Blankier S, McCrindle BW, Ito S, et al. The role of atorvastatin in regulating the immune response leading to vascular damage in a model of Kawasaki disease. Clin Exp Immunol. 2011;164(2):193–201. doi:10.1111/j.1365-2249.2011.04331.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Huang S-M, Weng K-P, Chang J-S, et al. Effects of statin therapy in children complicated with coronary arterial abnormality late after Kawasaki disease: a pilot study. Circ J. 2008;72(10):1583–7.

    Article  CAS  PubMed  Google Scholar 

  124. Ozawa S, Hamaoka K, Niboshi N. HMG-CoA reductase inhibitors (statins) is effective in the prevention of acute coronary arteries injury in a rabbit model for Kawasaki disease. Cardiol Young. 2006;16(S2):62–3.

    Google Scholar 

  125. Tremoulet AH. The role of statins in inflammatory vasculitides. Autoimmunity. 2015;48(3):177–80. doi:10.3109/08916934.2015.1027818.

    Article  CAS  PubMed  Google Scholar 

  126. Hoffman HM. Therapy of autoinflammatory syndromes. J Allergy Clin Immunol. 2009;124(6):1129–38. doi:10.1016/j.jaci.2009.11.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dusser P, Kone-Paut I. IL-1 Inhibition may have an important role in treating refractory Kawasaki disease. Front Pharmacol. 2017;8:163. doi:10.3389/fphar.2017.00163.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Goldbach-Mansky R, Dailey NJ, Canna SW, et al. Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med. 2006;355(6):581–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pascual V, Allantaz F, Arce E, et al. Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J Exp Med. 2005;201(9):1479–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Urien S, Bardin C, Bader-Meunier B, et al. Anakinra pharmacokinetics in children and adolescents with systemic-onset juvenile idiopathic arthritis and autoinflammatory syndromes. BMC Pharmacol Toxicol. 2013;14:40. doi:10.1186/2050-6511-14-40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lee Y, Schulte DJ, Shimada K, et al. Interleukin-1[beta] is crucial for the induction of coronary artery inflammation in a mouse model of Kawasaki disease. Circulation. 2012;125(12):1542–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Dinarello CA, Simon A, van der Meer JWM. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov. 2012;11(8):633–52. doi:10.1038/nrd3800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lee EJ, Park YW, Hong YM, et al. Epidemiology of Kawasaki disease in infants 3 months of age and younger. Korean J Pediatr. 2012;55(6):202–5. doi:10.3345/kjp.2012.55.6.202.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Fury W, Tremoulet AH, Watson VE, et al. Transcript abundance patterns in Kawasaki disease patients with intravenous immunoglobulin resistance. Hum Immunol. 2010;71(9):865–73. doi:10.1016/j.humimm.2010.06.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Maury CP, Salo E, Pelkonen P. Circulating interleukin-1 beta in patients with Kawasaki disease. N Engl J Med. 1988;319(25):1670–1.

    Article  CAS  PubMed  Google Scholar 

  136. Sobi. Anakinra and Kawasaki Disease (KAWAKINRA). Assistance Publique—Hôpitaux de Paris. 2015. https://clinicaltrials.gov/ct2/show/NCT02390596.

  137. Tremoulet AH, Jain S, Kim S, et al. Rationale and study design for a phase I/IIa trial of anakinra in children with Kawasaki disease and early coronary artery abnormalities (the ANAKID trial). Contemp Clin Trials. 2016;48:70–5. doi:10.1016/j.cct.2016.04.002.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Shafferman A, Birmingham JD, Cron RQ. High dose anakinra for treatment of severe neonatal Kawasaki disease: a case report. Pediatr Rheumatol Online J. 2014;12:26. doi:10.1186/1546-0096-12-26.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Cohen S, Tacke CE, Straver B, et al. A child with severe relapsing Kawasaki disease rescued by IL-1 receptor blockade and extracorporeal membrane oxygenation. Ann Rheum Dis. 2012;71(12):2059–61. doi:10.1136/annrheumdis-2012-201658.

    Article  PubMed  Google Scholar 

  140. Sanchez-Manubens J, Gelman A, Franch N, et al. A child with resistant Kawasaki disease successfully treated with anakinra: a case report. BMC Pediatr. 2017;17(1):102. doi:10.1186/s12887-017-0852-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tacke CE, Burgner D, Kuipers IM, et al. Management of acute and refractory Kawasaki disease. Expert Rev Anti Infect Ther. 2012;10(10):1203–15. doi:10.1586/eri.12.101.

    Article  CAS  PubMed  Google Scholar 

  142. Weiner GJ. Rituximab: mechanism of action. Semin Hematol. 2010;47(2):115–23. doi:10.1053/j.seminhematol.2010.01.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ozen S, Bilginer Y. Chapter 17: IgA vasculitis (Henoch–Schönlein purpura), polyarteritis nodosa, granulomatous polyangiitis (Wegener granulomatosis), and other vasculitides. In: Handbook of systemic autoimmune diseases. Elsevier Science & Technology; 2016. p. 1571–5078.

  144. Morishita KA, Moorthy LN, Lubieniecka JM, et al. Early outcomes in children with antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheumatol. 2017;69(7):1470–9. doi:10.1002/art.40112.

    Article  CAS  PubMed  Google Scholar 

  145. Sauvaget E, Bonello B, David M, et al. Resistant Kawasaki disease treated with anti-CD20. J Pediatr. 2012;160(5):875–6. doi:10.1016/j.jpeds.2012.01.018.

    Article  PubMed  Google Scholar 

  146. Zaitsu M, Hamasaki Y, Tashiro K, et al. Ulinastatin, an elastase inhibitor, inhibits the increased mRNA expression of prostaglandin H2 synthase-type 2 in Kawasaki disease. J Infect Dis. 2000;183(3):1101–9.

    Article  Google Scholar 

  147. Nakatani K, Takeshita S, Tsujimoto H, et al. Inhibitory effect of serine protease inhibitors on neutrophil-mediated endothelial cell injury. J Leukoc Biol. 2001;69(2):241–7.

    CAS  PubMed  Google Scholar 

  148. Kanai T, Ishiwata T, Kobayashi T, et al. Ulinastatin, a urinary trypsin inhibitor, for the initial treatment of patients with Kawasaki disease: a retrospective study. Circulation. 2011;124(25):2822–8.

    Article  CAS  PubMed  Google Scholar 

  149. Oishi T, Fujieda M, Shiraishi T, et al. Infliximab treatment for refractory Kawasaki disease with coronary artery aneurysm a 1-month-old girl. Circ J. 2008;72(5):850–2. doi:10.1253/circj.72.850.

    Article  CAS  PubMed  Google Scholar 

  150. Iino M, Igarashi H, Samada K, et al. A case of Kawasaki disease in NICU. Pediatr Res. 2003;53(1):181.

    Article  Google Scholar 

  151. Fujimaru T, Ito S, Masuda H, et al. Decreased levels of inflammatory cytokines in immunoglobulin-resistant Kawasaki disease after plasma exchange. Cytokine. 2014;70:156–60. doi:10.1016/j.cyto.2014.07.003.

    Article  CAS  PubMed  Google Scholar 

  152. Hokosaki T, Mori M, Nishizawa T, et al. Long-term efficacy of plasma exchange treatment for refractory Kawasaki disease. Pediatr Int. 2012;54(1):99–103. doi:10.1111/j.1442-200X.2011.03487.x.

    Article  CAS  PubMed  Google Scholar 

  153. Mori M, Imagawa T, Katakura S, et al. Efficacy of plasma exchange therapy for Kawasaki disease intractable to intravenous gamma-globulin. Mod Rheumatol. 2004;14(1):43–7.

    Article  PubMed  Google Scholar 

  154. Kashiwagi Y, Kawashima H, Akamatsu N, et al. Efficacy of plasma exchange therapy for Kawasaki disease by cytokine profiling. Ther Apher Dial. 2012;16(3):281–3. doi:10.1111/j.1744-9987.2012.01065.x.

    Article  CAS  PubMed  Google Scholar 

  155. Matsui M, Okuma Y, Yamanaka J, et al. Kawasaki disease refractory to standard treatments that responds to a combination of pulsed methylprednisolone and plasma exchange: cytokine profiling and literature review. Cytokine. 2015;2:339. doi:10.1016/j.cyto.2015.02.014.

    Article  CAS  Google Scholar 

  156. Imagawa T, Mori M, Miyamae T, et al. Plasma exchange for refractory Kawasaki disease. Eur J Pediatr. 2004;163(4–5):263–4.

    Article  PubMed  Google Scholar 

  157. Duan C, Du Z-D, Wang Y, et al. Effect of pravastatin on endothelial dysfunction in children with medium to giant coronary aneurysms due to Kawasaki disease. World J Pediatr. 2014;10(3):232–7. doi:10.1007/s12519-014-0498-5.

    Article  CAS  PubMed  Google Scholar 

  158. Niedra E, Chahal N, Manlhiot C, et al. Atorvastatin safety in Kawasaki disease patients with coronary artery aneurysms. Pediatr Cardiol. 2014;35(1):89–92. doi:10.1007/s00246-013-0746-9.

    Article  PubMed  Google Scholar 

  159. National Science Council T. Trial of atorvastatin on the persistent coronary aneurysm in children with Kawasaki disease. National Taiwan University Hospital. 2014. https://clinicaltrials.gov/ct2/show/NCT02114099.

  160. Colorado Children’s Hospital, University of Colorado D. Pharmacokinetics (PK)/safety study of atorvastatin in children with Kawasaki disease and coronary artery abnormalities. University of California, San Diego. 2016. https://clinicaltrials.gov/ct2/show/NCT01431105.

  161. Manlhiot C, Millar K, Golding F, et al. Improved classification of coronary artery abnormalities based only on coronary artery z-scores after Kawasaki disease. Pediatr Cardiol. 2010;31(2):242–9. doi:10.1007/s00246-009-9599-7.

    Article  PubMed  Google Scholar 

  162. De Zorzi A, Colan SD, Gauvreau K, et al. Coronary artery dimensions may be misclassified as normal in Kawasaki disease. J Pediatr. 1998;2:254.

    Article  Google Scholar 

  163. Durongpisitkul K, Soongswang J, Laohaprasitiporn D, et al. Immunoglobulin failure and retreatment in Kawasaki disease. Pediatr Cardiol. 2003;24(2):145–8.

    Article  CAS  PubMed  Google Scholar 

  164. de Magalhães CMR, de Magalhães Alves NR, de Melo AV, et al. Catastrophic Kawasaki disease unresponsive to IVIG in a 3-month-old infant: a diagnostic and therapeutic challenge. Pediatr Rheumatol Online J. 2012;10(1):1–9. doi:10.1186/1546-0096-11-7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Burgner.

Ethics declarations

Conflict of interest

Linny Kimly Phuong, Jonathan Akikusa, Peter Gowdie, Nigel Curtis and David Burgner declare that they have no conflicts of interest.

Funding

No financial assistance or funding was received to complete this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phuong, L.K., Curtis, N., Gowdie, P. et al. Treatment Options for Resistant Kawasaki Disease. Pediatr Drugs 20, 59–80 (2018). https://doi.org/10.1007/s40272-017-0269-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-017-0269-6

Navigation