Skip to main content
Log in

Challenges and Opportunities in the Pharmacological Treatment of Acute Venous Thromboembolism in Children

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Venous thromboembolism (VTE) is an important but historically under-recognized problem in pediatrics, with an incidence concentrated in hospitalized children. A number of specific VTE diseases with discrete triggers have been described, but the most common pediatric trigger is the presence of central venous access devices. VTE diseases, though heterogenous in etiology, are linked by the common therapeutic strategies shared by their management. Historically, the most commonly used drug therapies have been unfractionated heparin, low-molecular-weight heparins, and vitamin K antagonists, based on extrapolation from adult data rather than any specific pediatric trials. Although these widely used drugs appear safe and effective in expert hands, the historical lack of pediatric data is problematic in view of the recognized significant differences between children and adults with regards to hemostatic physiology, VTE etiology, and drug pharmacokinetics. The increasing adult usage of novel VTE pharmacotherapies such as direct oral anticoagulants (DOACs) has led to considerable interest in exploring the pediatric applications of these newer drugs. This review summarizes the advantages and disadvantages of existing VTE pharmacotherapies and outlines emerging novel pediatric VTE therapies, particularly DOACs, within the context of the current pediatric trial landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. van Ommen C, Heijboer H, Büller H, Hirasing R, Heijmans H, Peters M. Venous thromboembolism in childhood: a prospective two-year registry in the Netherlands. J Pediatr. 2001;139:676–81.

    Article  Google Scholar 

  2. Gibson B, Chalmers E, Bolton-Maggs P, Henderson D, Lynn R. Thromboembolism in childhood: a prospective two-year BPSU study in the United Kingdom. Br J Haematol. 2004;125:1.

    Article  Google Scholar 

  3. Andrew M, David M, Adams M, Ali K, Anderson R, Barnard D, et al. Venous thromboembolic complications (VTE) in children: first analyses of the Canadian Registry of VTE. Blood. 1994;83:1251–7.

    Article  CAS  Google Scholar 

  4. Raffini L, Huang Y-S, Witmer C, Feudtner C. Dramatic increase in venous thromboembolism in children’s hospitals in the United States from 2001 to 2007. Pediatrics. 2009;124:1001–8. https://doi.org/10.1542/peds.2009-0768.

    Article  PubMed  Google Scholar 

  5. Massicotte MP, Dix D, Monagle P, Adams M, Andrew M. Central venous catheter related thrombosis in children: analysis of the Canadian Registry of venous thromboembolic complications. J Pediatr. 1998;133:770–6. https://doi.org/10.1016/S0022-3476(98)70149-0.

    Article  PubMed  CAS  Google Scholar 

  6. Monagle P, Chan AKC, Goldenberg NA, Ichord RN, Journeycake JM, Nowak-Göttl U, et al. Antithrombotic therapy in neonates and children. Chest. 2012;141:e737S–e801S. https://doi.org/10.1378/chest.11-2308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Oates JA, Wood AJJ, Hirsh J. Heparin. N Engl J Med. 1991;324:1565–74. https://doi.org/10.1056/NEJM199105303242206.

    Article  Google Scholar 

  8. Monagle P, Barnes C, Ignjatovic V, Furmedge J, Newall F, Chan A, et al. Developmental haemostasis: impact for clinical haemostasis laboratories. Thromb Haemost. 2006;95:362–72. https://doi.org/10.1160/TH05-01-0047.

    Article  PubMed  CAS  Google Scholar 

  9. Newall F, Ignjatovic V, Johnston L, Summerhayes R, Lane G, Cranswick N, et al. Age is a determinant factor for measures of concentration and effect in children requiring unfractionated heparin. Thromb Haemost. 2010;103:1085–90. https://doi.org/10.1160/TH09-09-0624.

    Article  PubMed  CAS  Google Scholar 

  10. Ignjatovic V, Summerhayes R, Than J, Gan A, Monagle P. Therapeutic range for unfractionated heparin therapy: age-related differences in response in children. J Thromb Haemost. 2006;4:2280–3. https://doi.org/10.1111/j.1538-7836.2006.02136.x.

    Article  PubMed  CAS  Google Scholar 

  11. Ignjatovic V, Summerhayes R, Gan A, Than J, Chan A, Cochrane A, et al. Monitoring unfractionated heparin (UFH) therapy: which anti factor Xa assay is appropriate? Thromb Res. 2007;120:347–51. https://doi.org/10.1016/j.thromres.2006.10.006.

    Article  PubMed  CAS  Google Scholar 

  12. Newall F, Ignjatovic V, Summerhayes R, Gan A, Butt W, Johnston L, et al. In vivo age dependency of unfractionated heparin in infants and children. Thromb Res. 2009;123:710–4. https://doi.org/10.1016/j.thromres.2008.07.009.

    Article  PubMed  CAS  Google Scholar 

  13. Ignjatovic V, Furmedge J, Newall F, Chan A, Berry L, Fong C, et al. Age-related differences in heparin response. Thromb Res. 2006;118:741–5. https://doi.org/10.1016/j.thromres.2005.11.004.

    Article  PubMed  CAS  Google Scholar 

  14. Newall F, Ignjatovic V, Johnston L, Summerhayes R, Lane G, Cranswick N, et al. Clinical use of unfractionated heparin therapy in children: time for change?: UFH management in children. Br J Haematol. 2010;150:674–8. https://doi.org/10.1111/j.1365-2141.2010.08302.x.

    Article  PubMed  CAS  Google Scholar 

  15. Newall F, Chan AK, Ignjatovic V, Monagle P. Recommendations for developing uniform laboratory monitoring of heparinoid anticoagulants in children: heparinoid monitoring in children. J Thromb Haemost. 2012;10:145–7. https://doi.org/10.1111/j.1538-7836.2011.04561.x.

    Article  PubMed  CAS  Google Scholar 

  16. Al-Sallami H, Newall F, Monagle P, Ignjatovic V, Cranswick N, Duffull S. Development of a population pharmacokinetic-pharmacodynamic model of a single bolus dose of unfractionated heparin in paediatric patients: a PKPD model of unfractionated heparin in paediatric patients. Br J Clin Pharmacol. 2016;82:178–84. https://doi.org/10.1111/bcp.12930.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Mitchell L, Vegh P. Conventional chromogenic heparin assays are influenced by patient’s endogenous plasma antithrombin levels. Klin Pädiatr. 2010;222:164–7.

    Article  CAS  Google Scholar 

  18. Kuhle S, Eulmesekian P, Kavanagh B, Massicotte P, Vegh P, Lau A, et al. Lack of correlation between heparin dose and standard clinical monitoring tests in treatment with unfractionated heparin in critically III children. Haematologica. 2007;92:554–7. https://doi.org/10.3324/haematol.10696.

    Article  PubMed  CAS  Google Scholar 

  19. Andrew M, Marzinotto V, Massicotte P, Blanchette V, Ginsberg J, Brill-Edwards P, et al. Heparin therapy in pediatric patients: a prospective cohort study. Pediatr Res. 1994;35:78–83. https://doi.org/10.1203/00006450-199401000-00016.

    Article  PubMed  CAS  Google Scholar 

  20. Raschke RA. The weight-based heparin dosing nomogram compared with a standard care nomogram: a randomized controlled trial. Ann Intern Med. 1993;119:874. https://doi.org/10.7326/0003-4819-119-9-199311010-00002.

    Article  PubMed  CAS  Google Scholar 

  21. Kuhle S, Eulmesekian P, Kavanagh B, Massicotte P, Vegh P, Mitchell LG. A clinically significant incidence of bleeding in critically ill children receiving therapeutic doses of unfractionated heparin: a prospective cohort study. Haematologica. 2007;92:244–7. https://doi.org/10.3324/haematol.10616.

    Article  PubMed  CAS  Google Scholar 

  22. Galant SP. Accidental heparinization of a newborn infant. Arch Pediatr Adolesc Med. 1967;114:313. https://doi.org/10.1001/archpedi.1967.02090240127014.

    Article  CAS  Google Scholar 

  23. Glueck HI. Inadvertent sodium heparin administration to a newborn infant. JAMA J Am Med Assoc. 1965;191:1031. https://doi.org/10.1001/jama.1965.03080120065026.

    Article  CAS  Google Scholar 

  24. Moncino M, Kurtzberg J. Accidental heparinization in the newborn: a case report and brief review of the literature. J Perinatol Off J Calif Perinat Assoc. 1990;10:399.

    CAS  Google Scholar 

  25. Pachman D. Accidental heparin poisoning in an infant. Am J Dis Child. 1965;110:210–2.

    PubMed  CAS  Google Scholar 

  26. Pegelow C, Powars D. Inadvertent heparinization as a complication of intensive care. Clin Res. 1975;23:A161.

    Google Scholar 

  27. Schreiner RL. Accidental heparin toxicity in the newborn intensive care unit. J Pediatr. 1978;92:115–6.

    Article  CAS  Google Scholar 

  28. Sackler JP, Liu L. Heparin-induced osteoporosis. Br J Radiol. 1973;46:548–50.

    Article  CAS  Google Scholar 

  29. Rauch F, Travers R, Plotkin H, Glorieux FH. The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta. J Clin Invest. 2002;110:1293–9. https://doi.org/10.1172/JCI0215952.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Shaughnessy S, Young E, Deschamps P, Hirsh J. The effects of low molecular weight and standard heparin on calcium loss from fetal rat calvaria. Blood. 1995;86:1368–73. https://doi.org/10.1182/blood.V86.4.1368.bloodjournal8641368.

    Article  PubMed  CAS  Google Scholar 

  31. Warkentin TE, Greinacher A. Heparin-induced thrombocytopenia: recognition, treatment, and prevention. Chest. 2004;126:311S–37S. https://doi.org/10.1378/chest.126.3_suppl.311S.

    Article  PubMed  CAS  Google Scholar 

  32. Obeng EA, Harney KM, Moniz T, Arnold A, Neufeld EJ, Trenor CC. Pediatric heparin-induced thrombocytopenia: prevalence, thrombotic risk, and application of the 4Ts scoring system. J Pediatr. 2015;166(144–150):e1. https://doi.org/10.1016/j.jpeds.2014.09.017.

    Article  CAS  Google Scholar 

  33. Merkel N, Günther G, Schobess R. Long-term treatment of thrombosis with enoxaparin in pediatric and adolescent patients. Acta Haematol. 2006;115:230–6. https://doi.org/10.1159/000090940.

    Article  PubMed  CAS  Google Scholar 

  34. Ignjatovic V, Straka E, Summerhayes R, Monagle P. Age-specific differences in binding of heparin to plasma proteins: heparin binding to proteins is age-dependent. J Thromb Haemost. 2010;8:1290–4. https://doi.org/10.1111/j.1538-7836.2010.03847.x.

    Article  PubMed  CAS  Google Scholar 

  35. Ignjatovic V, Najid S, Newall F, Summerhayes R, Monagle P. Dosing and monitoring of enoxaparin (low molecular weight heparin) therapy in children: enoxaparin (LMWH) therapy in children. Br J Haematol. 2010;149:734–8. https://doi.org/10.1111/j.1365-2141.2010.08163.x.

    Article  PubMed  CAS  Google Scholar 

  36. Nohe N, Flemmer A, Rümler R, Praun M, Auberger K. The low molecular weight heparin dalteparin for prophylaxis and therapy of thrombosis in childhood: a report on 48 cases. Eur J Pediatr. 1999;158:S134–S139139. https://doi.org/10.1007/PL00014339.

    Article  PubMed  CAS  Google Scholar 

  37. Massicotte P, Adams M, Marzinotto V, Brooker LA, Andrew M. Low-molecular-weight heparin in pediatric patients with thrombotic disease: a dose finding study. J Pediatr. 1996;128:313–8. https://doi.org/10.1016/S0022-3476(96)70273-1.

    Article  PubMed  CAS  Google Scholar 

  38. Vieira A, Berry L, Ofosu F, Andrew M. Heparin sensitivity and resistance in the neonate: an explanation. Thromb Res. 1991;63:85–988.

    Article  CAS  Google Scholar 

  39. Trame MN, Mitchell L, Krümpel A, Male C, Hempel G, Nowak-Göttl U. Population pharmacokinetics of enoxaparin in infants, children and adolescents during secondary thromboembolic prophylaxis: a cohort study: enoxaparin pharmacokinetics in children. J Thromb Haemost. 2010;8:1950–8. https://doi.org/10.1111/j.1538-7836.2010.03964.x.

    Article  PubMed  CAS  Google Scholar 

  40. Nowak-Göttl U, Bidlingmaier C, Krümpel A, Göttl L, Kenet G. Pharmacokinetics, efficacy, and safety of LMWHs in venous thrombosis and stroke in neonates, infants and children: low-molecular-weight heparin in children. Br J Pharmacol. 2009;153:1120–7. https://doi.org/10.1038/sj.bjp.0707447.

    Article  CAS  Google Scholar 

  41. Krzyżaniak N, Pawłowska I, Bajorek B. Review of drug utilization patterns in NICUs worldwide. J Clin Pharm Ther. 2016;41:612–20. https://doi.org/10.1111/jcpt.12440.

    Article  PubMed  Google Scholar 

  42. Goldsmith R, Chan A, Paes B, Bhatt M. Feasibility and safety of enoxaparin whole milligram dosing in premature and term neonates. J Perinatol. 2015;35:852–4. https://doi.org/10.1038/jp.2015.84.

    Article  PubMed  CAS  Google Scholar 

  43. Sanchez de Toledo J, Gunawardena S, Munoz R, Orr R, Berry D, Sonderman S, et al. Do neonates, infants and young children need a higher dose of enoxaparin in the cardiac intensive care unit? Cardiol Young. 2010;20:138–43. https://doi.org/10.1017/S1047951109990564.

    Article  PubMed  Google Scholar 

  44. Roeleveld PP, van der Hoeven A, de Wilde RBP, Eikenboom J, Smiers FJ, Bunker-Wiersma HE. Higher tinzaparin dosing is needed to achieve target anti-Xa levels in pediatric cardiac intensive care patients. Pediatr Crit Care Med. 2016;17:203–9. https://doi.org/10.1097/PCC.0000000000000640.

    Article  PubMed  Google Scholar 

  45. Malowany JI, Knoppert DC, Chan AKC, Pepelassis D, Lee DSC. Enoxaparin use in the neonatal intensive care unit: experience over 8 years. Pharmacotherapy. 2007;27:1263–71. https://doi.org/10.1592/phco.27.9.1263.

    Article  PubMed  CAS  Google Scholar 

  46. Warad D, Rao AN, Mullikin T, Graner K, Shaughnessy WJ, Pruthi RK, et al. A retrospective analysis of outcomes of dalteparin use in pediatric patients: a single institution experience. Thromb Res. 2015;136:229–33. https://doi.org/10.1016/j.thromres.2015.05.017.

    Article  PubMed  CAS  Google Scholar 

  47. Tousovska K, Zapletal O, Skotakova J, Bukac J, Sterba J. Treatment of deep venous thrombosis with low molecular weight heparin in pediatric cancer patients: safety and efficacy. Blood Coagul Fibrinolysis. 2009;20:583–9. https://doi.org/10.1097/MBC.0b013e32832ff577.

    Article  PubMed  CAS  Google Scholar 

  48. Fan JL, Roberts LE, Scheurer ME, Yee DL, Shah MD, Lee-Kim YJ. Association of outcomes and anti-Xa levels in the treatment of pediatric venous thromboembolism. Pediatr Blood Cancer. 2017;64:e26629. https://doi.org/10.1002/pbc.26629.

    Article  CAS  Google Scholar 

  49. Chander A, Nagel K, Wiernikowski J, Paes B, Chan AK, The Thrombosis, and Hemostasis in Newborns (THiN) Group. Evaluation of the use of low-molecular-weight heparin in neonates: a retrospective single-center study. Clin Appl Thromb. 2013;19:488–93. https://doi.org/10.1177/1076029613480557.

    Article  CAS  Google Scholar 

  50. Garcia DA, Baglin TP, Weitz JI, Samama MM. Parenteral anticoagulants. Chest. 2012;141:e24S–e43S. https://doi.org/10.1378/chest.11-2291.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Monagle P, Newall F. Management of thrombosis in children and neonates: practical use of anticoagulants in children. Hematology. 2018;2018:399–404. https://doi.org/10.1182/asheducation-2018.1.399.

    Article  PubMed  Google Scholar 

  52. Goldenberg NA, Takemoto CM, Yee DL, Kittelson JM, Massicotte MP. Improving evidence on anticoagulant therapies for venous thromboembolism in children: key challenges and opportunities. Blood. 2015;126:2541–7. https://doi.org/10.1182/blood-2015-06-651539.

    Article  PubMed  CAS  Google Scholar 

  53. Fragmin for the Treatment of Acute VTE in Pediatric Cancer Patients. ClinicalTrialsGov. 2009. https://clinicaltrials.gov/ct2/show/NCT00952380. Accessed 17 Feb 2020.

  54. Streif W, Andrew M, Marzinotto V, Massicotte P, Chan AKC, Julian JA, et al. Analysis of warfarin therapy in pediatric patients: a prospective cohort study of 319 patients. Blood. 1994;94:3007–144.

    Article  Google Scholar 

  55. Bauman M, Black K, Massicotte M, Bauman M, Kuhle S, Howlett-Clyne S, et al. Accuracy of the CoaguChek XS for point-of-care international normalized ratio (INR) measurement in children requiring warfarin. Thromb Haemost. 2008;99:1097–103. https://doi.org/10.1160/TH07-10-0634.

    Article  PubMed  CAS  Google Scholar 

  56. Greenway A, Ignjatovic V, Summerhayes R, Newall F, Burgess J, DeRosa L, et al. Point-of-care monitoring of oral anticoagulation therapy in children: Comparison of the CoaguChek XS® system with venous INR and venous INR using an International Reference Thromboplastin preparation (rTF/95). Thromb Haemost. 2009;102:159–65. https://doi.org/10.1160/TH09-01-0056.

    Article  PubMed  CAS  Google Scholar 

  57. Monagle P, Cuello CA, Augustine C, Bonduel M, Brandão LR, Capman T, et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: treatment of pediatric venous thromboembolism. Blood Adv. 2018;2:3292–316. https://doi.org/10.1182/bloodadvances.2018024786.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhang J, Tian L, Huang J, Huang S, Chai T, Shen J. Cytochrome P450 2C9 gene polymorphism and warfarin maintenance dosage in pediatric patients: a systematic review and meta-analysis. Cardiovasc Ther. 2017;35:26–322. https://doi.org/10.1111/1755-5922.12230.

    Article  PubMed  CAS  Google Scholar 

  59. Haroon Y, Shearer MJ, Rahim S, Gunn WG, McEnery G, Barkhan P. The content of phylloquinone (vitamin K1) in human milk, cows’ milk and infant formula foods determined by high-performance liquid chromatography. J Nutr. 1982;112:1105–17.

    Article  CAS  Google Scholar 

  60. von Kries R, Shearer M, McCarthy P, Haug M, Harzer G, Göbel U. Vitamin K1 content of maternal milk: influence of the stage of lactation, lipid composition, and vitamin K1 supplements given to the mother. Pediatr Res. 1987;22:513–7.

    Article  CAS  Google Scholar 

  61. Jones S, Mertyn E, Alhucema P, Monagle P, Newall F. HEEADSSS assessment for adolescents requiring anticoagulation therapy: table 1. Arch Dis Child. 2012;97:430–3. https://doi.org/10.1136/adc.2011.300085.

    Article  PubMed  Google Scholar 

  62. Ries M, Klinge J, Rauch R. Erfahrungen mit der antikoagulatientherapi.e., bei 10 patienten an der Univ Kinderklinik Erlangen. Thromb. Im Kindersalter, Basel, Switzerland: Editiones Roche; 1992.

  63. Taybi H, Capitanio M. Tracheobronchial calcification: an observation in three children after mitral valve replacement and warfarin sodium therapy. Radiology. 1990;176:728–30.

    Article  CAS  Google Scholar 

  64. Buller HR, Lensing AWA, Prins MH, Agnelli G, Cohen A, Gallus AS, et al. A dose-ranging study evaluating once-daily oral administration of the factor Xa inhibitor rivaroxaban in the treatment of patients with acute symptomatic deep vein thrombosis: the Einstein–DVT Dose-Ranging Study. Blood. 2008;112:2242–7. https://doi.org/10.1182/blood-2008-05-160143.

    Article  PubMed  CAS  Google Scholar 

  65. Agnelli G, Gallus A, Goldhaber SZ, Haas S, Huisman MV, Hull RD, et al. Treatment of proximal deep-vein thrombosis with the oral direct factor Xa inhibitor rivaroxaban (BAY 59–7939): the ODIXa-DVT (Oral Direct Factor Xa Inhibitor BAY 59–7939 in Patients With Acute Symptomatic Deep-Vein Thrombosis) study. Circulation. 2007;116:180–7. https://doi.org/10.1161/CIRCULATIONAHA.106.668020.

    Article  PubMed  CAS  Google Scholar 

  66. Mueck W, Lensing AWA, Agnelli G, Decousus H, Prandoni P, Misselwitz F. Rivaroxaban: population pharmacokinetic analyses in patients treated for acute deep-vein thrombosis and exposure simulations in patients with atrial fibrillation treated for stroke prevention. Clin Pharmacokinet. 2011;50:675–86. https://doi.org/10.2165/11595320-000000000-00000.

    Article  PubMed  CAS  Google Scholar 

  67. The EINSTEIN Investigators. Oral rivaroxaban for symptomatic venous thromboembolism. N Engl J Med. 2010;363:2499–510. https://doi.org/10.1056/NEJMoa1007903.

    Article  Google Scholar 

  68. The EINSTEIN-PE Investigators. Oral Rivaroxaban for the treatment of symptomatic pulmonary embolism. N Engl J Med. 2012;366:1287–97. https://doi.org/10.1056/NEJMoa1113572.

    Article  Google Scholar 

  69. Prins MH, Lensing AW, Bauersachs R, van Bellen B, Bounameaux H, Brighton TA, et al. Oral rivaroxaban versus standard therapy for the treatment of symptomatic venous thromboembolism: a pooled analysis of the EINSTEIN-DVT and PE randomized studies. Thromb J. 2013;11:21. https://doi.org/10.1186/1477-9560-11-21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Weitz J, Lensing A, Prins M. Extended treatment of venous thromboembolism. N Engl J Med. 2017;376:2491–2.

    Article  Google Scholar 

  71. Bamber L, Wang MY, Prins MH, Ciniglio C, Bauersachs R, Lensing AWA, et al. Patient-reported treatment satisfaction with oral rivaroxaban versus standard therapy in the treatment of acute symptomatic deep-vein thrombosis. Thromb Haemost. 2013;110:732–41. https://doi.org/10.1160/TH13-03-0243.

    Article  PubMed  CAS  Google Scholar 

  72. Prins MH, Bamber L, Cano SJ, Wang MY, Erkens P, Bauersachs R, et al. Patient-reported treatment satisfaction with oral rivaroxaban versus standard therapy in the treatment of pulmonary embolism; results from the EINSTEIN PE trial. Thromb Res. 2015;135:281–8. https://doi.org/10.1016/j.thromres.2014.11.008.

    Article  PubMed  CAS  Google Scholar 

  73. Willmann S, Becker C, Burghaus R, Coboeken K, Edginton A, Lippert J, et al. Development of a paediatric population-based model of the pharmacokinetics of rivaroxaban. Clin Pharmacokinet. 2014;53:89–102. https://doi.org/10.1007/s40262-013-0090-5.

    Article  PubMed  CAS  Google Scholar 

  74. Willmann S, Thelen K, Kubitza D, Lensing AWA, Frede M, Coboeken K, et al. Pharmacokinetics of rivaroxaban in children using physiologically based and population pharmacokinetic modelling: an EINSTEIN-Jr phase I study. Thromb J. 2018;16:32. https://doi.org/10.1186/s12959-018-0185-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Monagle P, Lensing AWA, Thelen K, Martinelli I, Male C, Santamaría A, et al. Bodyweight-adjusted rivaroxaban for children with venous thromboembolism (EINSTEIN-Jr): results from three multicentre, single-arm, phase 2 studies. Lancet Haematol. 2019;6:e500–e509509. https://doi.org/10.1016/S2352-3026(19)30161-9.

    Article  PubMed  Google Scholar 

  76. Male C, Lensing AWA, Palumbo JS, Kumar R, Nurmeev I, Hege K, et al. Rivaroxaban compared with standard anticoagulants for the treatment of acute venous thromboembolism in children: a randomised, controlled, phase 3 trial. Lancet Haematol. 2020;7:e18–27. https://doi.org/10.1016/S2352-3026(19)30219-4.

    Article  PubMed  Google Scholar 

  77. De Crem N, Peerlinck K, Vanassche T, Vanheule K, Debaveye B, Middeldorp S, et al. Abnormal uterine bleeding in VTE patients treated with rivaroxaban compared to vitamin K antagonists. Thromb Res. 2015;136:749–53. https://doi.org/10.1016/j.thromres.2015.07.030.

    Article  PubMed  CAS  Google Scholar 

  78. Pharmacokinetic, Pharmacodynamic, Safety, and Efficacy Study of Rivaroxaban for Thromboprophylaxis in Pediatric Participants 2 to 8 Years of Age After the Fontan Procedure (UNIVERSE). ClinicalTrialsGov. 2016. https://clinicaltrials.gov/ct2/show/NCT02846532. Accessed 13 May 2020.

  79. Antonijevic NM, Zivkovic ID, Jovanovic LM, Matic DM, Kocica MJ, Mrdovic IB, et al. Dabigatran—metabolism, pharmacologic properties and drug interactions. Curr Drug Metab. 2017. https://doi.org/10.2174/1389200218666170427113504.

    Article  PubMed  Google Scholar 

  80. Schulman S, Kearon C, Kakkar AK, Mismetti P, Schellong S, Eriksson H, et al. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N Engl J Med. 2009;361:2342–52. https://doi.org/10.1056/NEJMoa0906598.

    Article  PubMed  CAS  Google Scholar 

  81. Halton JML, Albisetti M, Biss B, Bomgaars L, Brueckmann M, Gropper S, et al. Phase IIa study of dabigatran etexilate in children with venous thrombosis: pharmacokinetics, safety, and tolerability. J Thromb Haemost. 2017;15:2147–57. https://doi.org/10.1111/jth.13847.

    Article  PubMed  CAS  Google Scholar 

  82. Albisetti M, Biss B, Bomgaars L, Brandão LR, Brueckmann M, Chalmers E, et al. Design and rationale for the DIVERSITY study: an open-label, randomized study of dabigatran etexilate for pediatric venous thromboembolism. Res Pract Thromb Haemost. 2018;2:347–56. https://doi.org/10.1002/rth2.12086.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Brandão LR, Albisetti M, Halton J, Bomgaars L, Chalmers E, Mitchell LG, et al. Safety of dabigatran etexilate for the secondary prevention of venous thromboembolism in children. Blood. 2020;135:491–504. https://doi.org/10.1182/blood.2019000998.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Pollack CV, Reilly PA, van Ryn J, Eikelboom JW, Glund S, Bernstein RA, et al. Idarucizumab for dabigatran reversal—full cohort analysis. N Engl J Med. 2017;377:431–41. https://doi.org/10.1056/NEJMoa1707278.

    Article  PubMed  CAS  Google Scholar 

  85. Shapiro S, Bhatnagar N, Khan A, Beavis J, Keeling D. Idarucizumab for dabigatran overdose in a child. Br J Haematol. 2018;180:457–9. https://doi.org/10.1111/bjh.14371.

    Article  PubMed  Google Scholar 

  86. The Hokusai-VTE Investigators. Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism. N Engl J Med. 2013;369:1406–15. https://doi.org/10.1056/NEJMoa1306638.

    Article  CAS  Google Scholar 

  87. Phase 1 Pediatric Pharmacokinetics/Pharmacodynamics (PK/PD) Study. ClinicalTrialsGov. 2014. https://clinicaltrials.gov/ct2/show/NCT02303431. Accessed 17 Feb 2020.

  88. Hokusai Study in Pediatric Patients With Confirmed Venous Thromboembolism (VTE). ClinicalTrialsGov. 2016. https://clinicaltrials.gov/ct2/show/NCT02798471. Accessed 17 Feb 2020.

  89. Edoxaban for Prevention of Blood Vessels Being Blocked by Clots (Thrombotic Events) in Children at Risk Because of Cardiac Disease. ClinicalTrialsGov. 2018. https://clinicaltrials.gov/ct2/show/NCT03395639. Accessed 13 May 2020.

  90. Siontis KC, Zhang X, Eckard A, Bhave N, Schaubel DE, He K, et al. Outcomes associated with apixaban use in patients with end-stage kidney disease and atrial fibrillation in the United States. Circulation. 2018;138:1519–29. https://doi.org/10.1161/CIRCULATIONAHA.118.035418.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Agnelli G, Buller HR, Cohen A, Curto M, Gallus AS, Johnson M, et al. Oral apixaban for the treatment of acute venous thromboembolism. N Engl J Med. 2013;369:799–808. https://doi.org/10.1056/NEJMoa1302507.

    Article  PubMed  CAS  Google Scholar 

  92. Agnelli G, Buller HR, Cohen A, Curto M, Gallus AS, Johnson M, et al. Apixaban for extended treatment of venous thromboembolism. N Engl J Med. 2013;368:699–708. https://doi.org/10.1056/NEJMoa1207541.

    Article  PubMed  CAS  Google Scholar 

  93. Study to evaluate a single dose of apixaban in pediatric participants at risk for a thrombotic disorder. ClinicalTrialsGov. 2012. https://clinicaltrials.gov/ct2/show/NCT01707394. Accessed 17 Feb 2020.

  94. O’Brien S, Li D, Mitchell L, Hess T, Zee P, Yee D, et al. PREVAPIX-ALL: apixaban compared to standard of care for prevention of venous thrombosis in paediatric acute lymphoblastic leukaemia (ALL)—rationale and design. Thromb Haemost. 2019;119:844–53. https://doi.org/10.1055/s-0039-1679938.

    Article  PubMed  Google Scholar 

  95. Apixaban for the Acute Treatment of Venous Thromboembolism in Children. ClinicalTrialsGov. 2015. https://clinicaltrials.gov/ct2/show/NCT02464969. Accessed 17 Feb 2020.

  96. The Danish Non-vitamin K Antagonist Oral Anticoagulation Study in Patients With Venous Thromboembolism (DANNOAC-VTE). ClinicalTrialsGov. 2017. https://clinicaltrials.gov/ct2/show/NCT03129555. Accessed 17 Feb 2020.

  97. Linkins L-A, Dans AL, Moores LK, Bona R, Davidson BL, Schulman S, et al. Treatment and prevention of heparin-induced thrombocytopenia. Chest. 2012;141:e495S–e530S. https://doi.org/10.1378/chest.11-2303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Young G, Yee DL, O’Brien SH, Khanna R, Barbour A, Nugent DJ. FondaKIDS: a prospective pharmacokinetic and safety study of fondaparinux in children between 1 and 18 years of age. Pediatr Blood Cancer. 2011;57:1049–54. https://doi.org/10.1002/pbc.23011.

    Article  PubMed  Google Scholar 

  99. Ko RH, Michieli C, Lira JL, Young G. FondaKIDS II: long-term follow-up data of children receiving fondaparinux for treatment of venous thromboembolic events. Thromb Res. 2014;134:643–7. https://doi.org/10.1016/j.thromres.2014.07.026.

    Article  PubMed  CAS  Google Scholar 

  100. Nowak G, Schrör K. Hirudin—the long and stony way from an anticoagulant peptide in the saliva of medicinal leech to a recombinant drug and beyond: a historical piece. Thromb Haemost. 2007;98:116–9. https://doi.org/10.1160/TH07-05-0364.

    Article  PubMed  CAS  Google Scholar 

  101. Buck ML. Bivalirudin as an alternative to heparin for anticoagulation in infants and children. J Pediatr Pharmacol Ther JPPT Off J PPAG. 2015;20:408–17. https://doi.org/10.5863/1551-6776-20.6.408.

    Article  Google Scholar 

  102. Oschman A. Survey results: characterization of direct thrombin inhibitor use in pediatric patients. J Pediatr Pharmacol Ther JPPT Off J PPAG. 2014;19:10–5. https://doi.org/10.5863/1551-6776-19.1.10.

    Article  Google Scholar 

  103. Moffett BS, Teruya J. Trends in parenteral direct thrombin inhibitor use in pediatric patients: analysis of a large administrative database. Arch Pathol Lab Med. 2014;138:1229–322. https://doi.org/10.5858/arpa.2013-0436-OA.

    Article  PubMed  Google Scholar 

  104. Forbes TJ, Hijazi ZM, Young G, Ringewald JM, Aquino PM, Vincent RN, et al. Pediatric catheterization laboratory anticoagulation with bivalirudin. Catheter Cardiovasc Interv Off J Soc Card Angiogr Interv. 2011;77:671–9. https://doi.org/10.1002/ccd.22817.

    Article  Google Scholar 

  105. Young G, Tarantino MD, Wohrley J, Weber LC, Belvedere M, Nugent DJ. Pilot dose-finding and safety study of bivalirudin in infants %3c6 months of age with thrombosis: Bivalirudin for thrombosis in infants. J Thromb Haemost. 2007;5:1654–9. https://doi.org/10.1111/j.1538-7836.2007.02623.x.

    Article  PubMed  CAS  Google Scholar 

  106. Barton R, Ignjatovic V, Monagle P. Anticoagulation during ECMO in neonatal and paediatric patients. Thromb Res. 2019;173:172–7. https://doi.org/10.1016/j.thromres.2018.05.009.

    Article  PubMed  CAS  Google Scholar 

  107. Nagle EL, Dager WE, Duby JJ, Roberts AJ, Kenny LE, Murthy MS, et al. Bivalirudin in pediatric patients maintained on extracorporeal life support. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2013;14:e182–188. https://doi.org/10.1097/PCC.0b013e31827200b6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Monagle.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflict of interest

Carly George, Marzia Rahman and Paul Monagle declare that they have no potential conflicts of interest that might be relevant to the contents of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, C., Rahman, M. & Monagle, P. Challenges and Opportunities in the Pharmacological Treatment of Acute Venous Thromboembolism in Children. Pediatr Drugs 22, 385–397 (2020). https://doi.org/10.1007/s40272-020-00403-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-020-00403-5

Navigation