Skip to main content
Log in

Genes for Elite Power and Sprint Performance: ACTN3 Leads the Way

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

The ability of skeletal muscles to produce force at a high velocity, which is crucial for success in power and sprint performance, is strongly influenced by genetics and without the appropriate genetic make-up, an individual reduces his/her chances of becoming an exceptional power or sprinter athlete. Several genetic variants (i.e. polymorphisms) have been associated with elite power and sprint performance in the last few years and the current paradigm is that elite performance is a polygenic trait, with minor contributions of each variant to the unique athletic phenotype. The purpose of this review is to summarize the specific knowledge in the field of genetics and elite power performance, and to provide some future directions for research in this field. Of the polymorphisms associated with elite power and sprint performance, the α-actinin-3 R577X polymorphism provides the most consistent results. ACTN3 is the only gene that shows a genotype and performance association across multiple cohorts of elite power athletes, and this association is strongly supported by mechanistic data from an Actn3 knockout mouse model. The angiotensin-1 converting enzyme insertion/deletion polymorphism (ACE I/D, registered single nucleotide polymorphism [rs]4646994), angiotensinogen (AGT Met235Thr rs699), skeletal adenosine monophosphate deaminase (AMPD1) Gln(Q)12Ter(X) [also termed C34T, rs17602729], interleukin-6 (IL-6 −174 G/C, rs1800795), endothelial nitric oxide synthase 3 (NOS3 −786 T/C, rs2070744; and Glu298Asp, rs1799983), peroxisome proliferator-activated receptor-α (PPARA Intron 7 G/C, rs4253778), and mitochondrial uncoupling protein 2 (UCP2 Ala55Val, rs660339) polymorphisms have also been associated with elite power performance, but the findings are less consistent. In general, research into the genetics of athletic performance is limited by a small sample size in individual studies and the heterogeneity of study samples, often including athletes from multiple-difference sporting disciplines. In the future, large, homogeneous, strictly defined elite power athlete cohorts need to be established though multinational collaboration, so that meaningful genome-wide association studies can be performed. Such an approach would provide unbiased identification of potential genes that influence elite athletic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Macarthur DG, North KN. Genes and human elite athletic performance. Hum Genet. 2005;116(5):331–9.

    Article  CAS  PubMed  Google Scholar 

  2. Druzhevskaya AM, Ahmetov II, Astratenkova IV, et al. Association of the ACTN3 R577X polymorphism with power athlete status in Russians. Eur J Appl Physiol. 2008;103(6):631–4.

    Article  CAS  PubMed  Google Scholar 

  3. Eynon N, Ruiz JR, Oliveira J, et al. Genes and elite athletes: a roadmap for future research. J Physiol. 2011;589(13):3063–70.

    Article  CAS  PubMed  Google Scholar 

  4. Stubbe JH, Boomsma DI, Vink JM, et al. Genetic influences on exercise participation in 37,051 twin pairs from seven countries. PloS one. 2006;1:e22.

    Article  PubMed  Google Scholar 

  5. De Moor MH, Spector TD, Cherkas LF, et al. Genome-wide linkage scan for athlete status in 700 British female DZ twin pairs. Twin Res Hum Genet. 2007;10(6):812–20.

    Article  PubMed  Google Scholar 

  6. Bouchard C, Sarzynski MA, Rice TK, et al. Genomic predictors of the maximal O uptake response to standardized exercise training programs. J Appl Physiol. 2011;110(5):1160–70.

    Article  CAS  PubMed  Google Scholar 

  7. Peeters MW, Thomis MA, Beunen GP, et al. Genetics and sports: an overview of the pre-molecular biology era. Med Sport Sci. 2009;54:28–42.

    Article  CAS  PubMed  Google Scholar 

  8. Calvo M, Rodas G, Vallejo M, et al. Heritability of explosive power and anaerobic capacity in humans. Eur J Appl Physiol. 2002;86(3):218–25.

    Article  CAS  PubMed  Google Scholar 

  9. Hagberg JM, Rankinen T, Loos RJ, et al. Advances in exercise, fitness, and performance genomics in 2010. Med Sci Sports Exerc. 2011;43(5):743–52.

    Article  PubMed  Google Scholar 

  10. Rankinen T, Roth SM, Bray MS, et al. Advances in exercise, fitness, and performance genomics. Med Sci Sports Exerc. 2010;42(5):835–46.

    Article  PubMed  Google Scholar 

  11. Roth SM, Rankinen T, Hagberg JM, et al. Advances in exercise, fitness, and performance genomics in 2011. Med Sci Sports Exerc. 2012;44(5):809–17.

    Article  PubMed  Google Scholar 

  12. Ahmetov II, Williams AG, Popov DV, et al. The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes. Hum Genet. 2009;126(6):751–61.

    Article  CAS  PubMed  Google Scholar 

  13. Ruiz JR, Gomez-Gallego F, Santiago C, et al. Is there an optimum endurance polygenic profile? J Physiol. 2009;587(Pt 7):1527–34.

    Article  CAS  PubMed  Google Scholar 

  14. Mole PA, Oscai LB, Holloszy JO. Adaptation of muscle to exercise: increase in levels of palmityl Coa synthetase, carnitine palmityltransferase, and palmityl Coa dehydrogenase, and in the capacity to oxidize fatty acids. J Clin Invest. 1971;50(11):2323–30.

    Article  CAS  PubMed  Google Scholar 

  15. Spencer MR, Gastin PB. Energy system contribution during 200- to 1500-m running in highly trained athletes. Med Sci Sports Exerc. 2001;33(1):157–62.

    CAS  PubMed  Google Scholar 

  16. Ahmetov, II, Druzhevskaya AM, Lyubaeva EV, et al. The dependence of preferred competitive racing distance on muscle fibre type composition and ACTN3 genotype in speed skaters. Exp Physiol. 2011;96(12):1302–10

    Google Scholar 

  17. Van Damme R, Wilson RS, Vanhooydonck B, et al. Performance constraints in decathletes. Nature. 2002;415(6873):755–6.

    Article  PubMed  CAS  Google Scholar 

  18. Seeman E, Hopper JL, Young NR, et al. Do genetic factors explain associations between muscle strength, lean mass, and bone density? A twin study. Am J Physiol. 1996;270(2 Pt 1):E320–7.

    CAS  PubMed  Google Scholar 

  19. Thomis MA, Beunen GP, Maes HH, et al. Strength training: importance of genetic factors. Med Sci Sports Exerc. 1998;30(5):724–31.

    Article  CAS  PubMed  Google Scholar 

  20. Thomis MA, Beunen GP, Van Leemputte M, et al. Inheritance of static and dynamic arm strength and some of its determinants. Acta Physiol Scand. 1998;163(1):59–71.

    Article  CAS  PubMed  Google Scholar 

  21. MacArthur DG, North KN. A gene for speed? The evolution and function of alpha-actinin-3. Bioessays. 2004;26(7):786–95.

    Article  CAS  PubMed  Google Scholar 

  22. Mills M, Yang N, Weinberger R, et al. Differential expression of the actin-binding proteins, alpha-actinin-2 and -3, in different species: implications for the evolution of functional redundancy. Hum Mol Genet. 2001;10(13):1335–46.

    Article  CAS  PubMed  Google Scholar 

  23. North KN, Yang N, Wattanasirichaigoon D, et al. A common nonsense mutation results in alpha-actinin-3 deficiency in the general population. Nat Genet. 1999;21(4):353–4.

    Article  CAS  PubMed  Google Scholar 

  24. Yang N, MacArthur DG, Gulbin JP, et al. ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet. 2003;73(3):627–31.

    Article  CAS  PubMed  Google Scholar 

  25. Eynon N, Duarte JA, Oliveira J, et al. ACTN3 R577X polymorphism and Israeli top-level athletes. Int J Sports Med. 2009;30(9):695–8.

    Article  CAS  PubMed  Google Scholar 

  26. Niemi AK, Majamaa K. Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Eur J Hum Genet. 2005;13(8):965–9.

    Article  CAS  PubMed  Google Scholar 

  27. Doring FE, Onur S, Geisen U, et al. ACTN3 R577X and other polymorphisms are not associated with elite endurance athlete status in the Genathlete study. J Sports Sci. 2010;28(12):1355–9.

    Article  PubMed  Google Scholar 

  28. Muniesa CA, Gonzalez-Freire M, Santiago C, et al. World-class performance in lightweight rowing: is it genetically influenced? A comparison with cyclists, runners and non-athletes. Br J Sports Med. 2010;44(12):898–901.

    Article  PubMed  Google Scholar 

  29. Saunders CJ, September AV, Xenophontos SL, et al. No association of the ACTN3 gene R577X polymorphism with endurance performance in Ironman Triathlons. Ann Hum Genet. 2007;71(Pt 6):777–81.

    Article  CAS  PubMed  Google Scholar 

  30. Scott RA, Irving R, Irwin L, et al. ACTN3 and ACE genotypes in elite Jamaican and US sprinters. Med Sci Sports Exerc. 2010;42(1):107–12.

    Article  CAS  PubMed  Google Scholar 

  31. Yang N, MacArthur DG, Wolde B, et al. The ACTN3 R577X polymorphism in East and West African athletes. Med Sci Sports Exerc. 2007;39(11):1985–8.

    Article  PubMed  Google Scholar 

  32. Ruiz JR, Fernández del Valle M, Verde Z, et al. ACTN3 R577X polymorphism does not influence explosive leg muscle power in elite volleyball players. Scand J Med Sci Sports. 2011;21(6):e34–41.

    Article  CAS  PubMed  Google Scholar 

  33. Papadimitriou ID, Papadopoulos C, Kouvatsi A, et al. The ACTN3 gene in elite Greek track and field athletes. Int J Sports Med. 2008;29(4):352–5.

    Article  CAS  PubMed  Google Scholar 

  34. Gineviciene V, Pranculis A, Jakaitiene A, et al. Genetic variation of the human ACE and ACTN3 genes and their association with functional muscle properties in Lithuanian elite athletes. Medicina. 2011;47(5):284–90.

    PubMed  Google Scholar 

  35. Roth SM, Walsh S, Liu D, et al. The ACTN3 R577X nonsense allele is under-represented in elite-level strength athletes. Eur J Hum Genet. 2008;16(3):391–4.

    Article  CAS  PubMed  Google Scholar 

  36. Eynon N, Ruiz JR, Femia P, et al. The ACTN3 R577X polymorphism across three groups of elite male European athletes. PloS one. 2012;7(8):e43132.

    Article  CAS  PubMed  Google Scholar 

  37. Chiu LL, Wu YF, Tang MT, et al. ACTN3 genotype and swimming performance in Taiwan. Int J Sports Med. 2011;32(6):476–80.

    Article  CAS  PubMed  Google Scholar 

  38. Eynon N, Alves AJ, Meckel Y, et al. Is the interaction between HIF1A P582S and ACTN3 R577X determinant for power/sprint performance? Metabolism. 2010;59(6):861–5.

    Article  CAS  PubMed  Google Scholar 

  39. Eynon N, Alves AJ, Yamin C, et al. Is there an ACE ID—ACTN3 R577X polymorphisms interaction that influences sprint performance? Int J Sports Med. 2009;30(12):888–91.

    Article  CAS  PubMed  Google Scholar 

  40. Ruiz JR, Arteta D, Buxens A, et al. Can we identify a power-oriented polygenic profile? J Appl Physiol. 2010;108(3):561–6.

    Article  PubMed  Google Scholar 

  41. MacArthur DG, Seto JT, Raftery JM, et al. Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nat Genet. 2007;39(10):1261–5.

    Article  CAS  PubMed  Google Scholar 

  42. MacArthur DG, Seto JT, Chan S, et al. An Actn3 knockout mouse provides mechanistic insights into the association between alpha-actinin-3 deficiency and human athletic performance. Hum Mol Genet. 2008;17(8):1076–86.

    Article  CAS  PubMed  Google Scholar 

  43. Chan S, Seto JT, MacArthur DG, et al. A gene for speed: contractile properties of isolated whole EDL muscle from an alpha-actinin-3 knockout mouse. Am J Physiol Cell Physiol. 2008;295(4):C897–904.

    Article  CAS  PubMed  Google Scholar 

  44. Berman Y, North KN. A gene for speed: the emerging role of alpha-actinin-3 in muscle metabolism. Physiology. 2010;25(4):250–9.

    Article  CAS  PubMed  Google Scholar 

  45. Vincent B, De Bock K, Ramaekers M, et al. ACTN3 (R577X) genotype is associated with fiber type distribution. Physiol Genomics. 2007;32(1):58–63.

    Article  CAS  PubMed  Google Scholar 

  46. Rigat B, Hubert C, Alhenc-Gelas F, et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990;86(4):1343–6.

    Article  CAS  PubMed  Google Scholar 

  47. Danser AH, Schalekamp MA, Bax WA, et al. Angiotensin-converting enzyme in the human heart: effect of the deletion/insertion polymorphism. Circulation. 1995;92(6):1387–8.

    Article  CAS  PubMed  Google Scholar 

  48. Myerson S, Hemingway H, Budget R, et al. Human angiotensin I-converting enzyme gene and endurance performance. J Appl Physiol. 1999;87(4):1313–6.

    CAS  PubMed  Google Scholar 

  49. Costa AM, Silva AJ, Garrido ND, et al. Association between ACE D allele and elite short distance swimming. Eur J Appl Physiol. 2009;106(6):785–90.

    Article  CAS  PubMed  Google Scholar 

  50. Juffer P, Furrer R, Gonzalez-Freire M, et al. Genotype distributions in top-level soccer players: a role for ACE? Int J Sports Med. 2009;30(5):387–92.

    Article  CAS  PubMed  Google Scholar 

  51. Nazarov IB, Woods DR, Montgomery HE, et al. The angiotensin converting enzyme I/D polymorphism in Russian athletes. Eur J Hum Genet. 2001;9(10):797–801.

    Article  CAS  PubMed  Google Scholar 

  52. Woods D, Hickman M, Jamshidi Y, et al. Elite swimmers and the D allele of the ACE I/D polymorphism. Hum Genet. 2001;108(3):230–2.

    Article  CAS  PubMed  Google Scholar 

  53. Papadimitriou ID, Papadopoulos C, Kouvatsi A, et al. The ACE I/D polymorphism in elite Greek track and field athletes. J Sports Med Phys Fitness. 2009;49(4):459–63.

    CAS  PubMed  Google Scholar 

  54. Sessa F, Chetta M, Petito A, et al. Gene polymorphisms and sport attitude in Italian athletes. Genet Test Mol Biomarkers. 2011;15(4):285–90.

    Article  CAS  PubMed  Google Scholar 

  55. Amir O, Amir R, Yamin C, et al. The ACE deletion allele is associated with Israeli elite endurance athletes. Exp Physiol. 2007;92(5):881–6.

    Article  CAS  PubMed  Google Scholar 

  56. Kim CH, Cho JY, Jeon JY, et al. ACE DD genotype is unfavorable to Korean short-term muscle power athletes. Int J Sports Med. 2010;31(1):65–71.

    Article  CAS  PubMed  Google Scholar 

  57. Zoossmann-Diskin A. The association of the ACE gene and elite athletic performance in Israel may be an artifact. Exp Physiol. 2008;93(11):1220 (author reply 1).

    Google Scholar 

  58. Montgomery HE, Clarkson P, Dollery CM, et al. Association of angiotensin-converting enzyme gene I/D polymorphism with change in left ventricular mass in response to physical training. Circulation. 1997;96(3):741–7.

    Article  CAS  PubMed  Google Scholar 

  59. Sadoshima J, Xu Y, Slayter HS, et al. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993;75(5):977–84.

    Article  CAS  PubMed  Google Scholar 

  60. Silva GJ, Moreira ED, Pereira AC, et al. ACE gene dosage modulates pressure-induced cardiac hypertrophy in mice and men. Physiol Genomics. 2006;27(3):237–44.

    Article  CAS  PubMed  Google Scholar 

  61. Berk BC, Vekshtein V, Gordon HM, et al. Angiotensin II-stimulated protein synthesis in cultured vascular smooth muscle cells. Hypertension. 1989;13(4):305–14.

    Article  CAS  PubMed  Google Scholar 

  62. Geisterfer AA, Peach MJ, Owens GK. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res. 1988;62(4):749–56.

    Article  CAS  PubMed  Google Scholar 

  63. Gordon SE, Davis BS, Carlson CJ, et al. ANG II is required for optimal overload-induced skeletal muscle hypertrophy. Am J Physiol Endocrinol Metab. 2001;280(1):E150–9.

    CAS  PubMed  Google Scholar 

  64. Westerkamp CM, Gordon SE. Angiotensin-converting enzyme inhibition attenuates myonuclear addition in overloaded slow-twitch skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2005;289(4):R1223–31.

    Article  CAS  PubMed  Google Scholar 

  65. Charbonneau DE, Hanson ED, Ludlow AT, et al. ACE genotype and the muscle hypertrophic and strength responses to strength training. Med Sci Sports Exerc. 2008;40(4):677–83.

    Article  CAS  PubMed  Google Scholar 

  66. Folland J, Leach B, Little T, et al. Angiotensin-converting enzyme genotype affects the response of human skeletal muscle to functional overload. Exp Physiol. 2000;85(5):575–9.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang B, Tanaka H, Shono N, et al. The I allele of the angiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle. Clin Genet. 2003;63(2):139–44.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang B, Shono N, Fan P, et al. Histochemical characteristics of soleus muscle in angiotensin-converting enzyme gene knockout mice. Hypertens Res. 2005;28(8):681–8.

    Article  CAS  PubMed  Google Scholar 

  69. Bae JS, Kang BY, Lee KO, et al. Genetic variation in the renin–angiotensin system and response to endurance training. Med Princ Pract. 2007;16(2):142–6.

    Article  PubMed  Google Scholar 

  70. Karjalainen J, Kujala UM, Stolt A, et al. Angiotensinogen gene M235T polymorphism predicts left ventricular hypertrophy in endurance athletes. J Am Coll Cardiol. 1999;34(2):494–9.

    Article  CAS  PubMed  Google Scholar 

  71. Gomez-Gallego F, Santiago C, Gonzalez-Freire M, et al. The C allele of the AGT Met235Thr polymorphism is associated with power sports performance. Appl Physiol Nutr Metab. 2009;34(6):1108–11.

    Article  PubMed  CAS  Google Scholar 

  72. Norman B, Sabina RL, Jansson E. Regulation of skeletal muscle ATP catabolism by AMPD1 genotype during sprint exercise in asymptomatic subjects. J Appl Physiol. 2001;91(1):258–64.

    CAS  PubMed  Google Scholar 

  73. Rubio JC, Martin MA, Rabadan M, et al. Frequency of the C34T mutation of the AMPD1 gene in world-class endurance athletes: does this mutation impair performance? J Appl Physiol. 2005;98(6):2108–12.

    Article  CAS  PubMed  Google Scholar 

  74. Morisaki T, Gross M, Morisaki H, et al. Molecular basis of AMP deaminase deficiency in skeletal muscle. Proc Natl Acad Sci USA. 1992;89(14):6457–61.

    Article  CAS  PubMed  Google Scholar 

  75. Norman B, Glenmark B, Jansson E. Muscle AMP deaminase deficiency in 2% of a healthy population. Muscle Nerve. 1995;18(2):239–41.

    Article  CAS  PubMed  Google Scholar 

  76. Norman B, Mahnke-Zizelman DK, Vallis A, et al. Genetic and other determinants of AMP deaminase activity in healthy adult skeletal muscle. J Appl Physiol. 1998;85(4):1273–8.

    CAS  PubMed  Google Scholar 

  77. Lucia A, Martin MA, Esteve-Lanao J, et al. C34T mutation of the AMPD1 gene in an elite white runner. Br J Sports Med. 2006;40(3):e7.

    Article  CAS  PubMed  Google Scholar 

  78. Fischer H, Esbjornsson M, Sabina RL, et al. AMP deaminase deficiency is associated with lower sprint cycling performance in healthy subjects. J Appl Physiol. 2007;103(1):315–22.

    Article  CAS  PubMed  Google Scholar 

  79. Cieszczyk P, Ostanek M, Leonska-Duniec A, et al. Distribution of the AMPD1 C34T polymorphism in Polish power-oriented athletes. J Sports Sci. 2012;30(1):31–5.

    Article  PubMed  Google Scholar 

  80. Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol. 2005;98(4):1154–62.

    Article  CAS  PubMed  Google Scholar 

  81. Fishman D, Faulds G, Jeffery R, et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest. 1998;102(7):1369–76.

    Article  CAS  PubMed  Google Scholar 

  82. Terry CF, Loukaci V, Green FR. Cooperative influence of genetic polymorphisms on interleukin 6 transcriptional regulation. J Biol Chem. 2000;275(24):18138–44.

    Article  CAS  PubMed  Google Scholar 

  83. Bennermo M, Held C, Stemme S, et al. Genetic predisposition of the interleukin-6 response to inflammation: implications for a variety of major diseases? Clin Chem. 2004;50(11):2136–40.

    Article  CAS  PubMed  Google Scholar 

  84. Yamin C, Duarte JA, Oliveira JM, et al. IL6 (−174) and TNFA (−308) promoter polymorphisms are associated with systemic creatine kinase response to eccentric exercise. Eur J Appl Physiol. 2008;104(3):579–86.

    Article  PubMed  CAS  Google Scholar 

  85. Ruiz JR, Buxens A, Artieda M, et al. The −174 G/C polymorphism of the IL6 gene is associated with elite power performance. J Sci Med Sport. 2010;13(5):549–53.

    Article  PubMed  Google Scholar 

  86. Eynon N, Ruiz JR, Meckel Y, et al. Is the −174 C/G polymorphism of the IL6 gene associated with elite power performance? A replication study with two different Caucasian cohorts. Exp Physiol. 2011;96(2):156–62.

    CAS  PubMed  Google Scholar 

  87. Cooke JP, Rossitch E Jr, Andon NA, et al. Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. J Clin Invest. 1991;88(5):1663–71.

    Article  CAS  PubMed  Google Scholar 

  88. Quyyumi AA, Dakak N, Andrews NP, et al. Contribution of nitric oxide to metabolic coronary vasodilation in the human heart. Circulation. 1995;92(3):320–6.

    Article  CAS  PubMed  Google Scholar 

  89. Heydemann A, McNally E. NO more muscle fatigue. J Clin Invest. 2009;119(3):448–50.

    Article  CAS  PubMed  Google Scholar 

  90. Hickner RC, Fisher JS, Ehsani AA, et al. Role of nitric oxide in skeletal muscle blood flow at rest and during dynamic exercise in humans. Am J Physiol. 1997;273(1 Pt 2):H405–10.

    CAS  PubMed  Google Scholar 

  91. McConell GK, Kingwell BA. Does nitric oxide regulate skeletal muscle glucose uptake during exercise? Exerc Sport Sci Rev. 2006;34(1):36–41.

    Article  PubMed  Google Scholar 

  92. Nakayama M, Yasue H, Yoshimura M, et al. T-786–>C mutation in the 5′-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation. 1999;99(22):2864–70.

    Article  CAS  PubMed  Google Scholar 

  93. Wang XL, Sim AS, Wang MX, et al. Genotype dependent and cigarette specific effects on endothelial nitric oxide synthase gene expression and enzyme activity. FEBS Lett. 2000;471(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  94. Yoshimura M, Yasue H, Nakayama M, et al. A missense Glu298Asp variant in the endothelial nitric oxide synthase gene is associated with coronary spasm in the Japanese. Hum Genet. 1998;103(1):65–9.

    Article  CAS  PubMed  Google Scholar 

  95. Hand BD, McCole SD, Brown MD, et al. NOS3 gene polymorphisms and exercise hemodynamics in postmenopausal women. Int J Sports Med. 2006;27(12):951–8.

    Article  CAS  PubMed  Google Scholar 

  96. Rankinen T, Rice T, Perusse L, et al. NOS3 Glu298Asp genotype and blood pressure response to endurance training: the HERITAGE family study. Hypertension. 2000;36(5):885–9.

    Article  CAS  PubMed  Google Scholar 

  97. Gomez-Gallego F, Ruiz JR, Buxens A, et al. The −786 T/C polymorphism of the NOS3 gene is associated with elite performance in power sports. Eur J Appl Physiol. 2009;107(5):565–9.

    Article  CAS  PubMed  Google Scholar 

  98. Kawada S, Ishii N. Skeletal muscle hypertrophy after chronic restriction of venous blood flow in rats. Med Sci Sports Exerc. 2005;37(7):1144–50.

    Article  PubMed  Google Scholar 

  99. Smith LW, Smith JD, Criswell DS. Involvement of nitric oxide synthase in skeletal muscle adaptation to chronic overload. J Appl Physiol. 2002;92(5):2005–11.

    CAS  PubMed  Google Scholar 

  100. Liang H, Ward WF. PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ. 2006;30(4):145–51.

    Article  PubMed  Google Scholar 

  101. Jamshidi Y, Montgomery HE, Hense HW, et al. Peroxisome proliferator-activated receptor alpha gene regulates left ventricular growth in response to exercise and hypertension. Circulation. 2002;105(8):950–5.

    Article  CAS  PubMed  Google Scholar 

  102. Flavell DM, Jamshidi Y, Hawe E, et al. Peroxisome proliferator-activated receptor alpha gene variants influence progression of coronary atherosclerosis and risk of coronary artery disease. Circulation. 2002;105(12):1440–5.

    Article  CAS  PubMed  Google Scholar 

  103. Ahmetov II, Mozhayskaya IA, Flavell DM, et al. PPARalpha gene variation and physical performance in Russian athletes. Eur J Appl Physiol. 2006;97(1):103–8.

    Article  CAS  PubMed  Google Scholar 

  104. Eynon N, Meckel Y, Sagiv M, et al. Do PPARGC1A and PPARalpha polymorphisms influence sprint or endurance phenotypes? Scand J Med Sci Sports. 2010;20(1):e145–50.

    Article  CAS  PubMed  Google Scholar 

  105. Rance KA, Johnstone AM, Murison S, et al. Plasma leptin levels are related to body composition, sex, insulin levels and the A55V polymorphism of the UCP2 gene. Int J Obes (Lond). 2007;31(8):1311–8.

    Article  CAS  Google Scholar 

  106. Oktavianthi S, Trimarsanto H, Febinia CA, et al. Uncoupling protein 2 gene polymorphisms are associated with obesity. Cardiovasc Diabetol. 2012;11(1):41.

    Article  CAS  PubMed  Google Scholar 

  107. Martinez-Hervas S, Mansego ML, de Marco G, et al. Polymorphisms of the UCP2 gene are associated with body fat distribution and risk of abdominal obesity in Spanish population. Eur J Clin Invest. 2012;42(2):171–8.

    Article  CAS  PubMed  Google Scholar 

  108. Moran CN, Yang N, Bailey ME, et al. Association analysis of the ACTN3 R577X polymorphism and complex quantitative body composition and performance phenotypes in adolescent Greeks. Eur J Hum Genet. 2007;15(1):88–93.

    Article  CAS  PubMed  Google Scholar 

  109. Williams AG, Folland JP. Similarity of polygenic profiles limits the potential for elite human physical performance. J Physiol. 2008;586(1):113–21.

    Article  CAS  PubMed  Google Scholar 

  110. Buxens A, Ruiz JR, Arteta D, et al. Can we predict top-level sports performance in power vs endurance events? A genetic approach. Scand J Med Sci Sports. 2011;21(4):570–9.

    Article  CAS  PubMed  Google Scholar 

  111. Clarkson PM, Devaney JM, Gordish-Dressman H, et al. ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women. J Appl Physiol. 2005;99(1):154–63.

    Article  CAS  PubMed  Google Scholar 

  112. Pimenta EM, Coelho DB, Cruz IR, et al. The ACTN3 genotype in soccer players in response to acute eccentric training. Eur J Appl Physiol. 2012;112(4):1495–503.

    Article  PubMed  Google Scholar 

  113. Seto JT, Chan S, Turner N, et al. The effect of alpha-actinin-3 deficiency on muscle aging. Exp Gerontol. 2011;46(4):292–302.

    Article  CAS  PubMed  Google Scholar 

  114. Alfred T, Ben-Shlomo Y, Cooper R, et al. ACTN3 genotype, athletic status, and life course physical capability: meta-analysis of the published literature and findings from nine studies. Hum Mutat. 2011;32(9):1008–18.

    Google Scholar 

  115. Delmonico MJ, Zmuda JM, Taylor BC, et al. Association of the ACTN3 genotype and physical functioning with age in older adults. J Gerontol A Biol Sci Med Sci. 2008;63(11):1227–34.

    Article  PubMed  Google Scholar 

  116. Garatachea N, Fiuza-Luces C, Torres-Luque G, et al. Single and combined influence of ACE and ACTN3 genotypes on muscle phenotypes in octogenarians. Eur J Appl Physiol. 2012;112(7):2409–20.

    Article  PubMed  Google Scholar 

  117. Seto JT, Lek M, Quinlan KG, et al. Deficiency of alpha-actinin-3 is associated with increased susceptibility to contraction-induced damage and skeletal muscle remodeling. Hum Mol Genet. 2011;20(15):2914–27.

    Article  CAS  PubMed  Google Scholar 

  118. Clarkson PM, Hoffman EP, Zambraski E, et al. ACTN3 and MLCK genotype associations with exertional muscle damage. J Appl Physiol. 2005;99(2):564–9.

    Article  CAS  PubMed  Google Scholar 

  119. MacArthur DG, Balasubramanian S, Frankish A, et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science. 2012;335(6070):823–8.

    Article  CAS  PubMed  Google Scholar 

  120. Hong E, Park J. Sample size and statistical power calculations. Genomics Inform. 2012;10(2):117–22.

    Article  PubMed  Google Scholar 

  121. Santiago C, Gonzalez-Freire M, Serratosa L, et al. ACTN3 genotype in professional soccer players. Br J Sports Med. 2008;42(1):71–3.

    Article  CAS  PubMed  Google Scholar 

  122. Official Oympic Games 2012 Website. Men’s maraton online. http://www.london2012.com/athletics/event/men-marathon/index.html. Accessed 29 Apr 2013.

Download references

Acknowledgments

No funding was received to assist in the preparation of this manuscript. The authors have no conflicts of interest to declare that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nir Eynon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eynon, N., Hanson, E.D., Lucia, A. et al. Genes for Elite Power and Sprint Performance: ACTN3 Leads the Way. Sports Med 43, 803–817 (2013). https://doi.org/10.1007/s40279-013-0059-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-013-0059-4

Keywords

Navigation