Skip to main content
Log in

When Jump Height is not a Good Indicator of Lower Limb Maximal Power Output: Theoretical Demonstration, Experimental Evidence and Practical Solutions

  • Current Opinion
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Lower limb external maximal power output capacity is a key physical component of performance in many sports. During squat jump and countermovement jump tests, athletes produce high amounts of mechanical work over a short duration to displace their body mass (i.e. the dimension of mechanical power). Thus, jump height has been frequently used by the sports science and medicine communities as an indicator of the power output produced during the jump and by extension, of maximal power output capacity. However, in this article, we contend that squat jump and countermovement jump height are not systematically good indicators of power output produced during the jump and maximal power output capacity. To support our opinion, we first detail why, theoretically, jump height and maximal power output capacity are not fully related. Specifically, we demonstrate that individual body mass, push-off distance, optimal loading and the force-velocity profile confound the jump height–power relationship. We also discuss the relationship between squat jump or countermovement jump height and maximal power output capacity measured with a force plate based on data reported in the literature, which added to our own experimental evidence. Finally, we discuss the limitations of existing practical solutions (regression-based estimation equations and allometric scaling), and advocate using a valid, reliable and simple field-based procedure to compute individual power output produced during the jump and maximal power output capacity directly from jump height, body mass and push-off distance. The latter may allow researchers and practitioners to reduce bias in their assessment of lower limb mechanical power output by using jump height as an input with a simple yet accurate computation method, and not as the first/only variable of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cronin J, Sleivert G. Challenges in understanding the influence of maximal power training on improving athletic performance. Sports Med. 2005;35:213–34.

    Article  PubMed  Google Scholar 

  2. McMaster DT, Gill N, Cronin J, McGuigan M. A brief review of strength and ballistic assessment methodologies in sport. Sports Med. 2014;44:603–23.

    Article  PubMed  Google Scholar 

  3. Vandewalle H, Pérès G, Monod H. Standard anaerobic exercise tests. Sports Med. 1987;4:268–89.

    Article  CAS  PubMed  Google Scholar 

  4. Jones TW, Smith A, Macnaughton LS, French DN. Strength and conditioning and concurrent training practices in elite rugby union. J Strength Cond Res. 2016;30:3354–66.

    Article  PubMed  Google Scholar 

  5. Sargent DA. The physical test of a man. Am Phys Educ Rev. 1921;26:188–94.

    Article  Google Scholar 

  6. Bosco C, Komi PV. Potentiation of the mechanical behavior of the human skeletal muscle through prestretching. Acta Physiol Scand. 1979;106:467–72.

    Article  CAS  PubMed  Google Scholar 

  7. Jiménez-Reyes P, Samozino P, Pareja-Blanco F, Conceição F, Cuadrado-Peñafiel V, González-Badillo JJ, et al. Validity of a simple method for measuring force-velocity-power profile in countermovement jump. Int J Sports Physiol Perform. 2017;12:36–43.

    Article  PubMed  Google Scholar 

  8. Samozino P, Morin JB, Hintzy F, Belli A. A simple method for measuring force, velocity and power output during squat jump. J Biomech. 2008;41:2940–5.

    Article  PubMed  Google Scholar 

  9. Samozino P. A simple method for measuring lower limb force, velocity and power capabilities during jumping. In: Morin JB, Samozino P, editors. Biomechanics of training and testing. New York: Springer International Publishing; 2018. p. 65–96.

    Chapter  Google Scholar 

  10. Samozino P, Morin JB, Hintzy F, Belli A. Jumping ability: a theoretical integrative approach. J Theor Biol. 2010;264:11–8.

    Article  PubMed  Google Scholar 

  11. Markovic S, Mirkov DM, Nedeljkovic A, Jaric S. Body size and countermovement depth confound relationship between muscle power output and jumping performance. Hum Mov Sci. 2014;33:203–10.

    Article  PubMed  Google Scholar 

  12. Channon AJ, Usherwood JR, Crompton RH, Gunther MM, Vereecke EE. The extraordinary athletic performance of leaping gibbons. Biol Lett. 2012;8:46–9.

    Article  PubMed  Google Scholar 

  13. Jaric S, Markovic G. Leg muscles design: the maximum dynamic output hypothesis. Med Sci Sports Exerc. 2009;41:780–7.

    Article  PubMed  Google Scholar 

  14. Markovic G, Jaric S. Positive and negative loading and mechanical output in maximum vertical jumping. Med Sci Sports Exerc. 2007;39:1757–64.

    Article  PubMed  Google Scholar 

  15. Soriano MA, Jiménez-Reyes P, Rhea MR, Marín PJ. The optimal load for maximal power production during lower-body resistance exercises: a meta-analysis. Sports Med. 2015;45:1191–205.

    Article  PubMed  Google Scholar 

  16. Cross MR, Brughelli M, Samozino P, Morin JB. Methods of power-force-velocity profiling during sprint sunning: a narrative review. Sports Med. 2017;47:1255–69.

    Article  PubMed  Google Scholar 

  17. Dorel S, Couturier A, Lacour J-R, Vandewalle H, Hautier C, Hug F. Force-velocity relationship in cycling revisited. Med Sci Sport Exerc. 2010;42:1174–83.

    Google Scholar 

  18. Rabita G, Dorel S, Slawinski J, Sàez-de-Villarreal E, Couturier A, Samozino P, et al. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports. 2015;25:583–94.

    Article  CAS  PubMed  Google Scholar 

  19. Samozino P, Rejc E, Di Prampero PE, Belli A, Morin JB. Optimal force-velocity profile in ballistic movements-altius: citius or fortius? Med Sci Sports Exerc. 2012;44:313–22.

    Article  PubMed  Google Scholar 

  20. Yamauchi J, Ishii N. Relations between force-velocity characteristics of the knee-hip extension movement and vertical jump performance. J Strength Cond Res. 2007;21:703–9.

    PubMed  Google Scholar 

  21. Samozino P. Optimal force-velocity profile in ballistic push-off: measurement and relationship with performance. In: Morin JB, Samozino P, editors. Biomechanics of training and testing. New York: Springer International Publishing; 2018. p. 97–119.

    Chapter  Google Scholar 

  22. Suzovic D, Markovic G, Pasic M, Jaric S. Optimum load in various vertical jumps support the maximum dynamic output hypothesis. Int J Sports Med. 2013;34:1007–14.

    Article  CAS  PubMed  Google Scholar 

  23. Pazin N, Berjan B, Nedeljkovic A, Markovic G, Jaric S. Power output in vertical jumps: does optimum loading depend on activity profiles? Eur J Appl Physiol. 2013;113:577–89.

    Article  PubMed  Google Scholar 

  24. Jaric S, Markovic G. Body mass maximizes power output in human jumping: a strength-independent optimum loading behavior. Eur J Appl Physiol. 2013;113:2913–23.

    Article  PubMed  Google Scholar 

  25. Loturco I, Nakamura FY, Tricoli V, Kobal R, Cal Abad CC, Kitamura K, et al. Determining the optimum power load in jump squat using the mean propulsive velocity. PLoS One. 2015;10:e0140102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Samozino P, Edouard P, Sangnier S, Brughelli M, Gimenez P, Morin JB. Force-velocity profile: imbalance determination and effect on lower limb ballistic performance. Int J Sports Med. 2014;35:505–10.

    CAS  PubMed  Google Scholar 

  27. Bridgeman LA, McGuigan MR, Gill ND, Dulson DK. Relationships between concentric and eccentric strength and countermovement jump performance in resistance trained men. J Strength Cond Res. 2018;32:255–60.

    Article  PubMed  Google Scholar 

  28. Young W, Cormack S, Crichton M. Which jump variables should be used to assess explosive leg muscle function? Int J Sports Physiol Perform. 2011;6:51–7.

    Article  PubMed  Google Scholar 

  29. Amonette WE, Brown LE, De Witt JK, Dupler TL, Tran TT, Tufano JJ, et al. Peak vertical jump power estimations in youths and young adults. J Strength Cond Res. 2012;26:1749–55.

    Article  PubMed  Google Scholar 

  30. Markovic G, Jaric S. Is vertical jump height a body size-independent measure of muscle power? J Sports Sci. 2007;25:1355–63.

    Article  PubMed  Google Scholar 

  31. Jiménez-Reyes P, Samozino P, Brughelli M, Morin JB. Effectiveness of an individualized training based on force-velocity profiling during jumping. Front Physiol. 2017;7:677.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ache-Dias J, Dal Pupo J, Gheller RG, Külkamp W, Moro ARP. Power output prediction from jump height and body mass does not appropriately categorize or rank athletes. J Strength Cond Res. 2016;30:818–24.

    Article  PubMed  Google Scholar 

  33. Kons RL, Ache-Dias J, Detanico D, Barth J, Dal Pupo J. Is vertical jump height an indicator of athletes’ power output in different sport modalities? J Strength Cond Res. 2018;32:708–15.

    PubMed  Google Scholar 

  34. Canavan PK, Vescovi JD. Evaluation of power prediction equations: peak vertical jumping power in women. Med Sci Sports Exerc. 2004;36:1589–93.

    Article  PubMed  Google Scholar 

  35. Johnson D, Bahamonde R. Power output estimates in university athletes. J Strength Cond Res. 1996;10:161–6.

    Google Scholar 

  36. Lara-Sánchez AJ, Zagalaz ML, Berdejo-Del-Fresno D, Martínez-López EJ. Jump peak power assessment through power prediction equations in different samples. J Strength Cond Res. 2011;25:1957–62.

    Article  PubMed  Google Scholar 

  37. Lara A, Alegre L, Abian J, Jimenez L, Urena A, Aguado X. The selection of a method for estimating power output from jump performance. J Hum Mov Stud. 2006;50:399–410.

    Google Scholar 

  38. Sayers SP, Harackiewicz DV, Harman EA, Frykman PN, Rosenstein MT. Cross-validation of three jump power equations. Med Sci Sports Exerc. 1999;31:572–7.

    Article  CAS  PubMed  Google Scholar 

  39. Shetty AB. Estimation of leg power: a two-variable model. Sport Biomech. 2002;1:147–55.

    Article  Google Scholar 

  40. Quagliarella L, Sasanelli N, Belgiovine G, Moretti L, Moretti B. Power output estimation in vertical jump performed by young male soccer players. J Strength Cond Res. 2011;25:1638–46.

    Article  PubMed  Google Scholar 

  41. Hertogh C, Hue O. Jump evaluation of elite volleyball players using two methods: jump power equations and force platform. J Sports Med Phys Fitness. 2002;42:300–3.

    CAS  PubMed  Google Scholar 

  42. Tessier J-F, Basset F-A, Simoneau M, Teasdale N. Lower-limb power cannot be estimated accurately from vertical jump tests. J Hum Kinet. 2013;38:5–13.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jaric S. Muscle strength testing: use of normalisation for body size. Sports Med. 2002;32:615–31.

    Article  PubMed  Google Scholar 

  44. Markovic G, Jaric S. Movement performance and body size: the relationship for different groups of tests. Eur J Appl Physiol. 2004;92:139–49.

    Article  PubMed  Google Scholar 

  45. Alexander RM. Principles of animal locomotion. Princeton: Princeton University Press; 2002.

    Google Scholar 

  46. Giroux C, Rabita G, Chollet D, Guilhem G. What is the best method for assessing lower limb force-velocity relationship? Int J Sports Med. 2015;36:143–9.

    CAS  PubMed  Google Scholar 

  47. Palmieri G, Callegari M, Fioretti S. Analytical and multibody modeling for the power analysis of standing jumps. Comput Methods Biomech Biomed Eng. 2015;18:1564–73.

    Article  CAS  Google Scholar 

  48. Hatze H. Validity and reliability of methods for testing vertical jumping performance. J Appl Biomech. 1998;14:127–40.

    Article  Google Scholar 

  49. Barker LA, Harry JR, Mercer JA. Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. J Strength Cond Res. 2018;32:248–54.

    Article  PubMed  Google Scholar 

  50. Andrews JG. Biomechanical measures of muscular effort. Med Sci Sports Exerc. 1983;15:199–207.

    CAS  PubMed  Google Scholar 

  51. Balsalobre-Fernández C, Glaister M, Lockey RA. The validity and reliability of an iPhone app for measuring vertical jump performance. J Sports Sci. 2015;33:1574–9.

    Article  PubMed  Google Scholar 

  52. Stanton R, Kean CO, Scanlan AT. MyJump for vertical jump assessment. Br J Sports Med. 2015;49:1157–8.

    Article  PubMed  Google Scholar 

  53. Stanton R, Wintour S-A, Kean CO. Validity and intra-rater reliability of MyJump app on iPhone 6s in jump performance. J Sci Med Sport. 2017;20:518–23.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Slobodan Jaric, who has influenced some of the concepts and thinking behind this work, through his major contributions to the field and his friendly discussions and remarks. The authors were very sad to learn that Dr. Jaric passed away during the writing process of this paper. Finally, we thank the three reviewers for their constructive comments, and the colleagues who sent us feedback and comments on the pre-print version of this work, ahead of the submission process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Benoit Morin.

Ethics declarations

Funding

No sources of funding were received for the preparation of this article.

Conflict of interest

Jean-Benoit Morin, Pedro Jiménez-Reyes, Matt Brughelli and Pierre Samozino have no conflicts of interest that are directly relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morin, JB., Jiménez-Reyes, P., Brughelli, M. et al. When Jump Height is not a Good Indicator of Lower Limb Maximal Power Output: Theoretical Demonstration, Experimental Evidence and Practical Solutions. Sports Med 49, 999–1006 (2019). https://doi.org/10.1007/s40279-019-01073-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-019-01073-1

Navigation