Skip to main content

Advertisement

Log in

Effectiveness of Fixed-Dose Combination Therapy (Polypill) Versus Exercise to Improve the Blood-Lipid Profile: A Network Meta-analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Both exercise and polypills are recommended treatments to improve the blood-lipid profile.

Objective

The aim of this study was to compare head-to-head the effectiveness of polypill and exercise strategies in improving the blood-lipid profile in high-risk cardiovascular patients.

Methods

We performed an electronic search in Web of Science, EMBASE, Cochrane Database of Systematic Reviews, MEDLINE and SPORTDiscus, from inception to August 2021. Randomized controlled trials (RCTs) testing the effectiveness of exercise interventions or treatment with fixed-dose combination therapy (polypill) in improving the blood-lipid profile in adults with atherosclerotic cardiovascular disease or presenting at least one well recognized cardiovascular risk factor were included.

Results

A total of 131 RCTs were included: 15 and 116 studies analyzing the effects of polypills and exercise, respectively, on blood-lipid levels. Both exercise and polypill strategies were effective in reducing low-density lipoprotein cholesterol (LDL-c) and total cholesterol (TC), but only exercise interventions improved high-density lipoprotein cholesterol (HDL-c) and triglyceride levels compared with the control group. The results of the network meta-analyses showed that the polypill without antiplatelet therapy was the most effective pharmacological treatment for improving the lipid profile, while aerobic interval exercise was the most effective exercise intervention.

Conclusions

Considering that both polypills and exercise are effective in reducing LDL-c and TC but only exercise improves HDL-c and triglycerides, and that exercise provides further health benefits (e.g., increases in physical fitness and decreases in adiposity), it seems reasonable to recommend exercise as the first treatment option in dyslipidemia when the patient’s general condition and symptoms allow it.

PROSPERO Registration Number

CRD42019122794.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed 30 Jan 2021.

  2. Piepoli MF, Hoes AW, Agewall S, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts). Eur J Prev Cardiol. 2016;23:1–96. https://doi.org/10.1177/2047487316653709.

    Article  Google Scholar 

  3. National Institute for Health and Care Excellence: Clinical Guidelines. Cardiovascular disease: risk assessment and reduction, including lipid modification. London: National Institute for Health and Care Excellence (UK). 2016.

  4. Kannel WB. Blood pressure as a cardiovascular risk factor: prevention and treatment. JAMA. 1996;275:1571–6. https://doi.org/10.1001/jama.275.20.1571.

    Article  CAS  PubMed  Google Scholar 

  5. Wilson PW, Kannel WB, Silbershatz H, et al. Clustering of metabolic factors and coronary heart disease. Arch Intern Med. 1999;159:1104–9. https://doi.org/10.1001/archinte.159.10.1104.

    Article  CAS  PubMed  Google Scholar 

  6. Johnson ML, Pietz K, Battleman DS, et al. Prevalence of comorbid hypertension and dyslipidemia and associated cardiovascular disease. Am J Manag Care. 2004;10:926–32.

    PubMed  Google Scholar 

  7. Wong ND, Lopez V, Tang S, et al. Prevalence, treatment, and control of combined hypertension and hypercholesterolemia in the United States. Am J Cardiol. 2006;98:204–8. https://doi.org/10.1016/j.amjcard.2006.01.079.

    Article  PubMed  Google Scholar 

  8. World Health Organization (2002) Secondary prevention of non-communicable disease in low and middle income countries through community-based and health service interventions. World Health Organization—Wellcome Trust meeting report 1–3 August 2001, Geneva. WHO website. http://www.who.int/cardiovascular_diseases/media/en/615.pdf. Accessed Feb 2021.

  9. Wald NJ, Law MR. A strategy to reduce cardiovascular disease by more than 80%. BMJ. 2003;326:1419–23. https://doi.org/10.1136/bmj.326.7404.1419.PMID:WOS:000183931800015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140(11):E596–646. https://doi.org/10.1161/cir.0000000000000678.PMID:WOS:000484975900006.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Eckel RH, Jakicic JM, Ard JD, et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(25 Suppl 2):S76-99. https://doi.org/10.1161/01.cir.0000437740.48606.d1.

    Article  PubMed  Google Scholar 

  12. Piercy KL, Troiano RP. Physical activity guidelines for Americans from the US Department of Health and Human Services. Circ-Cardiovasc Qual. 2018;11: e005263. https://doi.org/10.1161/CIRCOUTCOMES.118.005263.

    Article  Google Scholar 

  13. Hansen D, Niebauer J, Cornelissen V, et al. Exercise prescription in patients with different combinations of cardiovascular disease risk factors: a consensus statement from the EXPERT Working Group. Sports Med. 2018;48:1781–97. https://doi.org/10.1007/s40279-018-0930-4.

    Article  PubMed  Google Scholar 

  14. Lee DC, Sui X, Church TS, et al. Changes in fitness and fatness on the development of cardiovascular disease risk factors hypertension, metabolic syndrome, and hypercholesterolemia. J Am Coll Cardiol. 2012;59:665–72. https://doi.org/10.1016/j.jacc.2011.11.013.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mora S, Cook N, Buring JE, et al. Physical activity and reduced risk of cardiovascular events: potential mediating mechanisms. Circulation. 2007;116:2110–8. https://doi.org/10.1161/circulationaha.107.729939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rubin DA, Hackney AC. Inflammatory cytokines and metabolic risk factors during growth and maturation: influence of physical activity. Med Sport Sci. 2010;55:43–55. https://doi.org/10.1159/000321971.

    Article  CAS  PubMed  Google Scholar 

  17. Kostis JB. The importance of managing hypertension and dyslipidemia to decrease cardiovascular disease. Cardiovasc Drugs Ther. 2007;21:297–309. https://doi.org/10.1007/s10557-007-6032-4.

    Article  PubMed  Google Scholar 

  18. Bahiru E, de Cates AN, Farr MRB, et al. Fixed-dose combination therapy for the prevention of atherosclerotic cardiovascular diseases. Cochrane Database Syst Rev. 2017. https://doi.org/10.1002/14651858.CD009868.pub3.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bramlage P, Sims H, Minguet J, et al. The polypill: an effective approach to increasing adherence and reducing cardiovascular event risk. Eur J Prev Cardiol. 2017;24:297–310. https://doi.org/10.1177/2047487316674817.

    Article  PubMed  Google Scholar 

  20. Elley CR, Gupta AK, Webster R, et al. The efficacy and tolerability of “Polypills”: meta-analysis of randomised controlled trials. PLoS One. 2012. https://doi.org/10.1371/journal.pone.0052145.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wahid A, Manek N, Nichols M, et al. Quantifying the association between physical activity and cardiovascular disease and diabetes: a systematic review and meta-analysis. JAHA. 2016;5: e002495.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Naci H, John PA. Comparative effectiveness of exercise and drug interventions on mortality outcomes: metaepidemiological study. BMJ (Online). 2013. https://doi.org/10.1136/bmj.f5577.

    Article  Google Scholar 

  23. Naci H, Salcher-Konrad M, Dias S, et al. How does exercise treatment compare with antihypertensive medications? A network meta-analysis of 391 randomised controlled trials assessing exercise and medication effects on systolic blood pressure. Br J Sports Med. 2019;53:859–69. https://doi.org/10.1136/bjsports-2018-099921.

    Article  PubMed  Google Scholar 

  24. Higgins JPTTJ, Chandler J, Cumpston M, et al. (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.2 (updated February 2021). www.training.cochrane.org/handbook. Cochrane, 2021.

  25. Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162:777–84. https://doi.org/10.7326/m14-2385.

    Article  PubMed  Google Scholar 

  26. Pozuelo-Carrascosa DP, Cavero-Redondo I, Fernández Rodríguez R, et al. Exercise versus fixed-dose combination therapy for cardiovascular risk factors control and atherosclerotic disease prevention: a network meta-analysis protocol. BMJ Open. 2020;10(7): e036734. https://doi.org/10.1136/bmjopen-2019-036734.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Morris SB. Estimating effect sizes from pretest-posttest-control group designs. Organ Res Method. 2007;11:364–86. https://doi.org/10.1177/1094428106291059.

    Article  Google Scholar 

  28. Sterne JA, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366: l4898.

    Article  PubMed  Google Scholar 

  29. Guyatt GH, Oxman AD, Schünemann HJ, et al. GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol. 2011;64:380–2. https://doi.org/10.1016/j.jclinepi.2010.09.011.

    Article  PubMed  Google Scholar 

  30. Schünemann HJ, Vist GE, Higgins JP, et al. Interpreting results and drawing conclusions. In: Cochrane handbook for systematic reviews of interventions. 2019. pp 403–31.

  31. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100(2):126–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kohut ML, McCann DA, Russell DW, et al. Aerobic exercise, but not flexibility/resistance exercise, reduces serum IL-18, CRP, and IL-6 independent of β-blockers, BMI, and psychosocial factors in older adults. Brain Behav Immun. 2006;20:201–9. https://doi.org/10.1016/j.bbi.2005.12.002.

    Article  CAS  PubMed  Google Scholar 

  33. Salanti G, Ades A, Ioannidis JP. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol. 2011;64:163–71. https://doi.org/10.1016/j.jclinepi.2010.03.016.

    Article  PubMed  Google Scholar 

  34. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88. https://doi.org/10.1016/0197-2456(86)90046-2.

    Article  CAS  PubMed  Google Scholar 

  35. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60. https://doi.org/10.1136/bmj.327.7414.557.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Stettler C, Allemann S, Wandel S, et al. Drug eluting and bare metal stents in people with and without diabetes: collaborative network meta-analysis. BMJ. 2008;337: a1331. https://doi.org/10.1136/bmj.a1331.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cipriani A, Higgins JP, Geddes JR, et al. Conceptual and technical challenges in network meta-analysis. Ann Intern Med. 2013;159:130–7. https://doi.org/10.7326/0003-4819-159-2-201307160-00008.

    Article  PubMed  Google Scholar 

  38. Brignardello-Petersen R, Izcovich A, Rochwerg B, et al. GRADE approach to drawing conclusions from a network meta-analysis using a partially contextualised framework. BMJ. 2020;371: m3907. https://doi.org/10.1136/bmj.m3907.

    Article  PubMed  Google Scholar 

  39. Chaimani A, Higgins JP, Mavridis D, et al. Graphical tools for network meta-analysis in STATA. PLoS One. 2013;8: e76654. https://doi.org/10.1371/journal.pone.0076654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Veroniki AA, Straus SE, Fyraridis A, et al. The rank-heat plot is a novel way to present the results from a network meta-analysis including multiple outcomes. J Clin Epidemiol. 2016;76:193–9. https://doi.org/10.1016/j.jclinepi.2016.02.016.

    Article  PubMed  Google Scholar 

  41. Sterne JA, Egger M, Smith GD. Systematic reviews in health care: Investigating and dealing with publication and other biases in meta-analysis. BMJ. 2001;323:101–5. https://doi.org/10.1136/bmj.323.7304.101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ramos PM. Del concepto de estatinas de alta potencia a los efectos extralipídicos de las estatinas. Rev Esp Cardiol. 2015;15:22–7. https://doi.org/10.1016/S1131-3587(15)70121-4.

    Article  Google Scholar 

  43. Halle M, Berg A, Garwers U, et al. Influence of 4 weeks’ intervention by exercise and diet on low-density lipoprotein subfractions in obese men with type 2 diabetes. Metabolism. 1999;48:641–4. https://doi.org/10.1016/s0026-0495(99)90064-1.

    Article  CAS  PubMed  Google Scholar 

  44. Kang H-S, Gutin B, Barbeau P, et al. Physical training improves insulin resistance syndrome markers in obese adolescents. Med Sci Sports Exerc. 2002;34:1920–7. https://doi.org/10.1097/00005768-200212000-00010.

    Article  CAS  PubMed  Google Scholar 

  45. Gazi IF, Tsimihodimos V, Tselepis AD, et al. Clinical importance and therapeutic modulation of small dense low-density lipoprotein particles. Expert Opin Biol Ther. 2007;7:53–72. https://doi.org/10.1517/14712598.7.1.53.

    Article  CAS  PubMed  Google Scholar 

  46. Ponte CI. Redescubriendo los triglicéridos como factor de riesgo cardiovascular. Avances Cardiol. 2009;29:367–76. https://doi.org/10.1186/1741-7015-8-29.

    Article  Google Scholar 

  47. Wang Y, Xu D. Effects of aerobic exercise on lipids and lipoproteins. Lipids Health Dis. 2017;16:1–8. https://doi.org/10.1186/s12944-017-0515-5.

    Article  CAS  Google Scholar 

  48. Ahmed HM, Blaha MJ, Nasir K, et al. Effects of physical activity on cardiovascular disease. Am J Cardiol. 2012;109:288–95. https://doi.org/10.1016/j.amjcard.2011.08.042.

    Article  PubMed  Google Scholar 

  49. Laufs U, Parhofer KG, Ginsberg HN, et al. Clinical review on triglycerides. Eur Heart J. 2019;41(1):99–109c. https://doi.org/10.1093/eurheartj/ehz785.

    Article  CAS  PubMed Central  Google Scholar 

  50. Smilde TJ, van Wissen S, Wollersheim H, et al. Effect of aggressive versus conventional lipid lowering on atherosclerosis progression in familial hypercholesterolaemia (ASAP): a prospective, randomised, double-blind trial. Lancet. 2001;357:577–81. https://doi.org/10.1016/s0140-6736(00)04053-8.

    Article  CAS  PubMed  Google Scholar 

  51. Mach F, Baigent C, Catapano AL, et al. ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur Heart J. 2019;2020(41):111–88. https://doi.org/10.1093/eurheartj/ehz455.

    Article  Google Scholar 

  52. Pattyn N, Cornelissen VA, Eshghi SRT, et al. The effect of exercise on the cardiovascular risk factors constituting the metabolic syndrome: a meta-analysis of controlled trials. Sports Med. 2013;43:121–33. https://doi.org/10.1007/s40279-012-0003-z.

    Article  PubMed  Google Scholar 

  53. Fiuza-Luces C, Garatachea N, Berger NA, et al. Exercise is the real polypill. Physiology. 2013;28:330–58.

    Article  CAS  PubMed  Google Scholar 

  54. Jansen JP, Naci H. Is network meta-analysis as valid as standard pairwise meta-analysis? It all depends on the distribution of effect modifiers. BMC Med. 2013;11:159. https://doi.org/10.1186/1741-7015-11-159.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Amaro-Gahete.

Ethics declarations

Conflict of interest

Vicente Martínez-Vizcaíno, Francisco Amaro-Gahete, Rubén Fernández-Rodríguez, Miriam Garrido-Miguel, Iván Cavero-Redondo, and Diana Pozuelo-Carrascosa declare that they have no conflicts of interest relevant to the content of this review.

Funding

This study was funded by the Consejería de Educación, Cultura y Deportes—Junta de Comunidades de Castilla-La Mancha and FEDER funds (SBPLY/17/180501/000533). The funding source had no involvement in the meta-analysis.

Author contributions

VMV conceptualized and designed the study with the support of DPPC. VMV, and DPPC drafted the initial manuscript and, along with FAG, approved the final manuscript as submitted. DPPC, FAG, and VMV designed the data collection instruments, and coordinated and supervised data collection. DPPC, FAG, and RFR extracted and analyzed the data. DPPC, FAG, ICR, VMV, MGM, and RFR were involved in the analysis and interpretation of data, and reviewed and revised the manuscript, approving the final manuscript as submitted.

Data availability

Data sharing is not applicable to this article as no datasets were generated during the current meta-analysis.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3295 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Vizcaíno, V., Amaro-Gahete, F.J., Fernández-Rodríguez, R. et al. Effectiveness of Fixed-Dose Combination Therapy (Polypill) Versus Exercise to Improve the Blood-Lipid Profile: A Network Meta-analysis. Sports Med 52, 1161–1173 (2022). https://doi.org/10.1007/s40279-021-01607-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01607-6

Navigation