Skip to main content

Advertisement

Log in

What is the Effect of Paracetamol (Acetaminophen) Ingestion on Exercise Performance? Current Findings and Future Research Directions

  • Current Opinion
  • Published:
Sports Medicine Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 31 May 2022

A Letter to the Editor to this article was published on 31 May 2022

Abstract

In recent years, studies have explored the effects of paracetamol (acetaminophen) ingestion on exercise performance. However, due to the contrasting findings, there is still no consensus on this topic. This article provides an overview of the effects of paracetamol on endurance, sprinting, and resistance exercise performance. Studies have reported that paracetamol ingestion may be ergogenic for endurance performance. These effects occur when paracetamol is ingested 45–60 min before exercise and appear to be more pronounced in time-to-exhaustion versus time-trial tests. Besides endurance, paracetamol ingestion 30 min before exercise increases mean power during repeated cycling sprints in interval training involving repeated 30-s all-out bouts. Preliminary data on paracetamol ingestion also suggest: (a) improved endurance performance in the heat; (b) an improvement in single sprint performance, at least when paracetamol is ingested following exercise-induced fatigue; and (c) attenuation of the decline in muscular strength that occurs with repeated maximum contractions. An ergogenic effect of paracetamol is most commonly observed when a dose of 1500 mg is ingested 30–60 min before exercise. Despite these performance-enhancing effects, the aim of this article is not to promote paracetamol use, as side effects associated with its consumption and ethical aspects need to be considered before utilizing paracetamol as an ergogenic aid. Future research on this topic is still needed, particularly related to paracetamol dosing, timing of ingestion, and the effects of paracetamol in females and elite athletes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sood S, Howell J, Sundararajan V, Angus PW, Gow PJ. Paracetamol overdose in Victoria remains a significant health-care burden. J Gastroenterol Hepatol. 2013;28(8):1356–60.

    Article  PubMed  Google Scholar 

  2. Dear JW, Antoine DJ, Park BK. Where are we now with paracetamol? BMJ. 2015;351:h3705.

    Article  PubMed  Google Scholar 

  3. Graham GG, Davies MJ, Day RO, Mohamudally A, Scott KF. The modern pharmacology of paracetamol: therapeutic actions, mechanism of action, metabolism, toxicity and recent pharmacological findings. Inflammopharmacology. 2013;21(3):201–32.

    Article  CAS  PubMed  Google Scholar 

  4. Pickering G, Kastler A, Macian N, Pereira B, Valabrègue R, Lehericy S, et al. The brain signature of paracetamol in healthy volunteers: a double-blind randomized trial. Drug Des Dev Ther. 2015;9:3853–62.

    Article  CAS  Google Scholar 

  5. Garcin M, Mille-Hamard L, Billat V, Imbenotte M, Humbert L, Lhermitte Z. Use of acetaminophen in young subelite athletes. J Sports Med Phys Fit. 2005;45(4):604–7.

    CAS  Google Scholar 

  6. Garcin M, Mille-Hamard L, Billat V, Humbert L, Lhermitte M. Influence of acetaminophen consumption on perceived exertion at the lactate concentration threshold. Percept Mot Skills. 2005;101(3):675–83.

    Article  CAS  PubMed  Google Scholar 

  7. Tscholl PM, Vaso M, Weber A, Dvorak J. High prevalence of medication use in professional football tournaments including the World Cups between 2002 and 2014: a narrative review with a focus on NSAIDs. Br J Sports Med. 2015;49(9):580–2.

    Article  PubMed  Google Scholar 

  8. Sari DM, Rønne Pedersen J, Bloch Thorlund J, Ramer Mikkelsen U, Møller M. Pain medication use in youth athletes: a cross-sectional study of 466 youth handball players. Transl Sports Med. 2021. https://doi.org/10.1002/tsm2.295.

    Article  Google Scholar 

  9. Esh CJ, Mauger AR, Palfreeman RA, Al-Janubi H, Taylor L. Acetaminophen (paracetamol): use beyond pain management and dose variability. Front Physiol. 2017;8:1092.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lundberg TR, Howatson G. Analgesic and anti-inflammatory drugs in sports: Implications for exercise performance and training adaptations. Scand J Med Sci Sports. 2018;28(11):2252–62.

    Article  PubMed  Google Scholar 

  11. Holgado D, Hopker J, Sanabria D, Zabala M. Analgesics and sport performance: beyond the pain-modulating effects. PM R. 2018;10(1):72–82.

    Article  PubMed  Google Scholar 

  12. O’Connor PJ, Cook DB. Exercise and pain: the neurobiology, measurement, and laboratory study of pain in relation to exercise in humans. Exerc Sport Sci Rev. 1999;27:119–66.

    PubMed  Google Scholar 

  13. Astokorki AH, Mauger AR. Tolerance of exercise-induced pain at a fixed rating of perceived exertion predicts time trial cycling performance. Scand J Med Sci Sports. 2017;27(3):309–17.

    Article  CAS  PubMed  Google Scholar 

  14. Lixandrão ME, Roschel H, Ugrinowitsch C, Miquelini M, Alvarez IF, Libardi CA. Blood-flow restriction resistance exercise promotes lower pain and ratings of perceived exertion compared with either high- or low-intensity resistance exercise performed to muscular failure. J Sport Rehabil. 2019;28(7):706–10.

    Article  PubMed  Google Scholar 

  15. Foster J, Taylor L, Chrismas BC, Watkins SL, Mauger AR. The influence of acetaminophen on repeated sprint cycling performance. Eur J Appl Physiol. 2014;114(1):41–8.

    Article  CAS  PubMed  Google Scholar 

  16. Graven-Nielsen T, Lund H, Arendt-Nielsen L, Danneskiold-Samsøe B, Bliddal H. Inhibition of maximal voluntary contraction force by experimental muscle pain: a centrally mediated mechanism. Muscle Nerve. 2002;26(5):708–12.

    Article  PubMed  Google Scholar 

  17. Astokorki AHY, Mauger AR. Transcutaneous electrical nerve stimulation reduces exercise-induced perceived pain and improves endurance exercise performance. Eur J Appl Physiol. 2017;117(3):483–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stevens CJ, Mauger AR, Hassmèn P, Taylor L. Endurance performance is influenced by perceptions of pain and temperature: theory, applications and safety considerations. Sports Med. 2018;48(3):525–37.

    Article  PubMed  Google Scholar 

  19. Burtscher M, Gatterer H, Philippe M, Krüsmann P, Kernbeiss S, Frontull V, et al. Effects of a single low-dose acetaminophen on body temperature and running performance in the heat: a pilot project. Int J Physiol Pathophysiol Pharmacol. 2013;5(3):190–3.

    PubMed  PubMed Central  Google Scholar 

  20. Chagas TP. Efeito agudo do paracetamol na temperatura corporal, amonemia e desempenho em ciclistas durante exercício em ambiente termoneutro. Universidade Federal de Sergipe. São Cristóvão, Brazil. Thesis. 2018.

  21. Delextrat A, O’Connor EM, Baker CE, Matthew D, Sum A, Hayes LD. Acetaminophen ingestion improves repeated sprint cycling performance in females: a randomized crossover trial. Kinesiology. 2015;47(2):145–50.

    Google Scholar 

  22. Jessen S, Eibye K, Christensen PM, Hostrup M, Bangsbo J. No additive effect of acetaminophen when co-ingested with caffeine on cycling performance in well-trained young men. J Appl Physiol. 2021;131(1):238–49.

    Article  CAS  PubMed  Google Scholar 

  23. Kovaci F, Peja E, Gjerazi R. Paracetamol administration for enhancing recovery and preventing underperformance in athletes. JIARM. 2014;2(3):351–8.

    Google Scholar 

  24. Mauger AR, Jones AM, Williams CA. Influence of acetaminophen on performance during time trial cycling. J Appl Physiol. 2010;108(1):98–104.

    Article  CAS  PubMed  Google Scholar 

  25. Mauger AR, Taylor L, Harding C, Wright B, Foster J, Castle PC. Acute acetaminophen (paracetamol) ingestion improves time to exhaustion during exercise in the heat. Exp Physiol. 2014;99(1):164–71.

    Article  CAS  PubMed  Google Scholar 

  26. Morgan PT, Bailey SJ, Banks RA, Fulford J, Vanhatalo A, Jones AM. Contralateral fatigue during severe-intensity single-leg exercise: influence of acute acetaminophen ingestion. Am J Physiol Regul Integr Comp Physiol. 2019;317(2):R346–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morgan PT, Bowtell JL, Vanhatalo A, Jones AM, Bailey SJ. Acute acetaminophen ingestion improves performance and muscle activation during maximal intermittent knee extensor exercise. Eur J Appl Physiol. 2018;118(3):595–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Morgan PT, Vanhatalo A, Bowtell JL, Jones AM, Bailey SJ. Acetaminophen ingestion improves muscle activation and performance during a 3-min all-out cycling test. Appl Physiol Nutr Metab. 2019;44(4):434–42.

    Article  CAS  PubMed  Google Scholar 

  29. Pagotto FD, Paradisis G, Maridaki M, Papavassiliou T, Zacharogiannis E. Effect of acute acetaminophen injestion on running endurance performance. J Exerc Physiol Online. 2018;21(3):106–18.

    Google Scholar 

  30. Pagotto FD, Zacharogiannis E, Paradisis G, Argeitaki P, Pilianidis T. Influence of acute acetaminophen ingestion on time limit at VO2max velocity. Med Sci Sports Exerc. 2015;47(5S):338.

    Article  Google Scholar 

  31. Park LL, Baker CE, Sum A, Hayes LD. The influence of acetaminophen on sprint interval treadmill running: a randomized crossover trial. Kinesiology. 2016;48(1):58–62.

    Article  Google Scholar 

  32. Petrů D, Pyšný L, Pyšná J. Effect of paracetamol and acetylsalicylic acid intake on short term anaerobic performance. J Phys Educ Sport. 2017;17(4):2669–73.

    Google Scholar 

  33. Tomazini F, Santos-Mariano AC, Andrade-Souza VA, Sebben VC, De Maria CAB, Coelho DB, et al. Caffeine but not acetaminophen increases 4-km cycling time-trial performance. PharmaNutrition. 2020;12:100181.

    Article  Google Scholar 

  34. Zandonai T, Holgado D, Ciria LF, Zabala M, Hopker J, Bekinschtein T, et al. Novel evidence on the effect of tramadol on self-paced high-intensity cycling. J Sports Sci. 2021;39(13):1452–60.

    Article  PubMed  Google Scholar 

  35. Costello JT, Bieuzen F, Bleakley CM. Where are all the female participants in Sports and Exercise Medicine research? Eur J Sport Sci. 2014;14(8):847–51.

    Article  PubMed  Google Scholar 

  36. Templeton KJ. Sex and gender issues in pain management. J Bone Jt Surg Am. 2020;102(Suppl 1):32–5.

    Article  Google Scholar 

  37. Wójcicki J, Gawrońska-Szklarz B, Kazimierczyk J, Baskiewicz Z, Raczyński A. Comparative pharmacokinetics of paracetamol in men and women considering follicular and luteal phases. Arzneimittelforschung. 1979;29(2):350–2.

    PubMed  Google Scholar 

  38. Southward K, Rutherfurd-Markwick KJ, Ali A. The effect of acute caffeine ingestion on endurance performance: a systematic review and meta-analysis. Sports Med. 2018;48(8):1913–28.

    Article  PubMed  Google Scholar 

  39. Southward K, Rutherfurd-Markwick KJ, Ali A. Correction to: the effect of acute caffeine ingestion on endurance performance: a systematic review and meta-analysis. Sports Med. 2018;48(10):2425–41.

    Article  PubMed  Google Scholar 

  40. Grgic J, Pedisic Z, Saunders B, Artioli GG, Schoenfeld BJ, McKenna MJ, et al. International Society of Sports Nutrition position stand: sodium bicarbonate and exercise performance. J Int Soc Sports Nutr. 2021;18(1):61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gough LA, Deb SK, Sparks SA, McNaughton LR. Sodium bicarbonate improves 4 km time trial cycling performance when individualised to time to peak blood bicarbonate in trained male cyclists. J Sports Sci. 2018;36(15):1705–12.

    Article  PubMed  Google Scholar 

  42. Grgic J, Mikulic P. Effects of paracetamol (acetaminophen) ingestion on endurance performance: a systematic review and meta-analysis. Sports. 2021;9(9):126.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Forrest JA, Clements JA, Prescott LF. Clinical pharmacokinetics of paracetamol. Clin Pharmacokinet. 1982;7(2):93–107.

    Article  CAS  PubMed  Google Scholar 

  44. Prescott LF. Kinetics and metabolism of paracetamol and phenacetin. Br J Clin Pharmacol. 1980;10(Suppl 2):291S-S298.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Coakley SL, Passfield L. Cycling performance is superior for time-to-exhaustion versus time-trial in endurance laboratory tests. J Sports Sci. 2018;36(11):1228–34.

    Article  PubMed  Google Scholar 

  46. Foster J, Mauger A, Thomasson K, White S, Taylor L. Effect of acetaminophen ingestion on thermoregulation of normothermic, non-febrile humans. Front Pharmacol. 2016;7:54.

    PubMed  PubMed Central  Google Scholar 

  47. Janse DE, Jonge XA, Thompson MW, Chuter VH, Silk LN, Thom JM. Exercise performance over the menstrual cycle in temperate and hot, humid conditions. Med Sci Sports Exerc. 2012;44(11):2190–8.

    Article  Google Scholar 

  48. Castle PC, Macdonald AL, Philp A, Webborn A, Watt PW, Maxwell NS. Precooling leg muscle improves intermittent sprint exercise performance in hot, humid conditions. J Appl Physiol. 2006;100(4):1377–84.

    Article  PubMed  Google Scholar 

  49. Coombs GB, Cramer MN, Ravanelli NM, Morris NB, Jay O. Acute acetaminophen ingestion does not alter core temperature or sweating during exercise in hot-humid conditions. Scand J Med Sci Sports. 2015;25(Suppl 1):96–103.

    Article  PubMed  Google Scholar 

  50. Trewin CB, Hopkins WG, Pyne DB. Relationship between world-ranking and Olympic performance of swimmers. J Sports Sci. 2004;22(4):339–45.

    Article  PubMed  Google Scholar 

  51. Smith TB, Hopkins WG. Variability and predictability of finals times of elite rowers. Med Sci Sports Exerc. 2011;43(11):2155–60.

    Article  PubMed  Google Scholar 

  52. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sports Med. 2013;43(5):313–38.

    Article  PubMed  Google Scholar 

  53. Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol. 2006;575:901–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tomazin K, Morin JB, Millet GY. Etiology of neuromuscular fatigue after repeated sprints depends on exercise modality. Int J Sports Physiol Perform. 2017;12(7):878–85.

    Article  PubMed  Google Scholar 

  55. Purpura M, Rathmacher JA, Sharp MH, Lowery RP, Shields KA, Partl JM, et al. Oral adenosine-5′-triphosphate (ATP) administration increases postexercise ATP levels, muscle excitability, and athletic performance following a repeated sprint bout. J Am Coll Nutr. 2017;36(3):177–83.

    Article  PubMed  CAS  Google Scholar 

  56. Mauger AR, Hopker JG. The effect of acetaminophen ingestion on cortico-spinal excitability. Can J Physiol Pharmacol. 2013;91(2):187–9.

    Article  CAS  PubMed  Google Scholar 

  57. Hill-Haas S, Bishop D, Dawson B, Goodman C, Edge J. Effects of rest interval during high-repetition resistance training on strength, aerobic fitness, and repeated-sprint ability. J Sports Sci. 2007;25(6):619–28.

    Article  CAS  PubMed  Google Scholar 

  58. Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, Sanchis-Moysi J, Dorado C, Mora-Custodio R, et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sports. 2017;27(7):724–35.

    Article  CAS  PubMed  Google Scholar 

  59. Galiano C, Pareja-Blanco F, Hidalgo de Mora J, Sáez de Villarreal E. Low-velocity loss induces similar strength gains to moderate-velocity loss during resistance training. J Strength Cond Res. 2020. https://doi.org/10.1519/JSC.0000000000003487.

    Article  Google Scholar 

  60. American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708.

    Article  Google Scholar 

  61. Derry CJ, Derry S, Moore RA. Caffeine as an analgesic adjuvant for acute pain in adults. Cochrane Database Syst Rev. 2012;(3):CD009281.

  62. McLellan TM, Caldwell JA, Lieberman HR. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci Biobehav Rev. 2016;71:294–312.

    Article  CAS  PubMed  Google Scholar 

  63. Grgic J. Effects of caffeine on resistance exercise: a review of recent research. Sports Med. 2021;51(11):2281–98.

    Article  PubMed  Google Scholar 

  64. Lisse JR, MacDonald K, Thurmond-Anderle ME, Fuchs JE Jr. A double-blind, placebo-controlled study of acetylsalicylic acid (ASA) in trained runners. J Sports Med Phys Fit. 1991;31(4):561–4.

    CAS  Google Scholar 

  65. Roi GS, Garagiola U, Verza P, Spadari G, Radice D, Zecca L, et al. Aspirin does not affect exercise performance. Int J Sports Med. 1994;15(5):224–7.

    Article  CAS  PubMed  Google Scholar 

  66. Hudson GM, Green JM, Bishop PA, Richardson MT. Effects of caffeine and aspirin on light resistance training performance, perceived exertion, and pain perception. J Strength Cond Res. 2008;22(6):1950–7.

    Article  PubMed  Google Scholar 

  67. Trappe TA, White F, Lambert CP, Cesar D, Hellerstein M, Evans WJ. Effect of ibuprofen and acetaminophen on postexercise muscle protein synthesis. Am J Physiol Endocrinol Metab. 2002;282(3):E551–6.

    Article  CAS  PubMed  Google Scholar 

  68. D’Lugos AC, Patel SH, Ormsby JC, Curtis DP, Fry CS, Carroll CC, et al. Prior acetaminophen consumption impacts the early adaptive cellular response of human skeletal muscle to resistance exercise. J Appl Physiol. 2018;124(4):1012–24.

    Article  CAS  PubMed  Google Scholar 

  69. Trappe TA, Carroll CC, Dickinson JM, LeMoine JK, Haus JM, Sullivan BE, et al. Influence of acetaminophen and ibuprofen on skeletal muscle adaptations to resistance exercise in older adults. Am J Physiol Regul Integr Comp Physiol. 2011;300(3):R655–62.

    Article  CAS  PubMed  Google Scholar 

  70. Ryder SD, Beckingham IJ. ABC of diseases of liver, pancreas, and biliary system. Other causes of parenchymal liver disease. BMJ. 2001;322(7281):290–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lippi G, Sanchis-Gomar F. Acetaminophen and sport performance: doping or what? Eur J Appl Physiol. 2014;114(4):881–2.

    Article  PubMed  Google Scholar 

  72. Pettersen SD, Aslaksen PM, Pettersen SA. Pain processing in elite and high-level athletes compared to non-athletes. Front Psychol. 2020;11:1908.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Assa T, Geva N, Zarkh Y, Defrin R. The type of sport matters: pain perception of endurance athletes versus strength athletes. Eur J Pain. 2019;23(4):686–96.

    Article  PubMed  Google Scholar 

  74. Bartley EJ, Fillingim RB. Sex differences in pain: a brief review of clinical and experimental findings. Br J Anaesth. 2013;111(1):52–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moller PL, Sindet-Pedersen S, Petersen CT, Juhl GI, Dillenschneider A, Skoglund LA. Onset of acetaminophen analgesia: comparison of oral and intravenous routes after third molar surgery. Br J Anaesth. 2005;94(5):642–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozo Grgic.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Jozo Grgic declares he has no conflicts of interest relevant to the content of this article.

Consent for publication

Not applicable.

Availability of data and materials

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grgic, J. What is the Effect of Paracetamol (Acetaminophen) Ingestion on Exercise Performance? Current Findings and Future Research Directions. Sports Med 52, 431–439 (2022). https://doi.org/10.1007/s40279-021-01633-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01633-4

Navigation