Skip to main content
Log in

The Need for Eccentric Speed: A Narrative Review of the Effects of Accelerated Eccentric Actions During Resistance-Based Training

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Eccentric training as a method to enhance athletic performance is a topic of increasing interest to both practitioners and researchers. However, data regarding the effects of performing the eccentric actions of an exercise at increased velocities are limited. This narrative review aimed to provide greater clarity for eccentric methods and classification with regard to temporal phases of exercises. Between March and April 2021, we used key terms to search the PubMed, SPORTDiscus, and Google Scholar databases within the years 1950–2021. Search terms included ‘fast eccentric’, ‘fast velocity eccentric’, ‘dynamic eccentric’, ‘accentuated eccentric loading’, and ‘isokinetic eccentric’, analysing both the acute and the chronic effects of accelerated eccentric training in human participants. Review of the 26 studies that met the inclusion criteria identified that completing eccentric tempos of < 2 s increased subsequent concentric one repetition maximum performance, velocity, and power compared with > 4 s tempos. Tempos of > 4 s duration increased time under tension (TUT), whereas reduced tempos allowed for greater volume to be completed. Greater TUT led to larger accumulation of blood lactate, growth hormone, and testosterone when volume was matched to that of the reduced tempos. Overall, evidence supports eccentric actions of < 2 s duration to improve subsequent concentric performance. There is no clear difference between using eccentric tempos of 2–6 s if the aim is to increase hypertrophic response and strength. Future research should analyse the performance of eccentric actions at greater velocities or reduced time durations to determine more factors such as strength response. Tempo studies should aim to complete the same TUT for protocols to determine measures for hypertrophic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lindstedt SL, LaStayo PC, Reich TE. When active muscles lengthen: properties and consequences of eccentric contractions. News Physiol Sci. 2001;16:256–61.

    CAS  PubMed  Google Scholar 

  2. Harris-Love MO, Seamon BA, Gonzales TI, Hernandez HJ, Pennington D, Hoover BM. Eccentric exercise program design: a periodization model for rehabilitation applications. Front Physiol. 2017;8:1–16.

    Article  Google Scholar 

  3. Douglas J, Pearson S, Ross A, McGuigan M. Eccentric exercise: physiological characteristics and acute responses. Sport Med. 2017;47:663–75.

    Article  Google Scholar 

  4. Verkhoshansky Y. Fundamentals of special strength-training in sport. 1986.

  5. Isner-Horobeti ME, Dufour SP, Vautravers P, Geny B, Coudeyre E, Richard R. Eccentric exercise training: modalities, applications and perspectives. Sport Med. 2013;43:483–512.

    Article  Google Scholar 

  6. Katz BYB. The relation between force and speed in muscular contraction. J Physiol. 1939;96:45–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mcneill C, Beaven CM, Mcmaster DT, Gill N. Eccentric force-velocity characteristics during a novel squat protocol in trained rugby union athletes—pilot study. J Funct Morphol Kinesiol. 2021;6:1–10.

    Google Scholar 

  8. Tobin DP. Advanced strength and power training for the elite athlete. Strength Cond J. 2014;36:59–65.

    Article  Google Scholar 

  9. Wagle JP, Taber CB, Cunanan AJ, Bingham GE, Carroll KM, DeWeese BH, et al. Accentuated eccentric loading for training and performance: a review. Sport Med. 2017;47:2473–95.

    Article  Google Scholar 

  10. Wagle J, Cunanan A, Carroll K, Sams M, Wetmore A, Bingham G, et al. Accentuated eccentric loading and cluster set configurations in the back squat: a kinetic and kinematic anaylsis. J Strength Cond Res. 2018;00:1–8.

    Google Scholar 

  11. Watkins PH. Augmented eccentric loading: theoretical and practical applications. UKSCA J. 2010;3–11. http://www.scopus.com/inward/record.url?eid=2-s2.0-84896553908&partnerID=40&md5=f39fed844b11d966ba71c100bee3d146

  12. Douglas J. The role of eccentric muscle function and training in athletic performance. Doctoral dissertation. Auckland University of Technology; 2018.

  13. Verkhoshansky, Y & Siff M. Supertraining. Rome, Italy: Verkhoshanky SSTM; 2009.

  14. Suchomel TJ, Wagle JP, Douglas J, Taber CB, Harden M, Haff GG, et al. Implementing eccentric resistance training—part 1: a brief review of existing methods. J Funct Morphol Kinesiol. 2019;4:1–25.

    Google Scholar 

  15. Suchomel TJ, Nimphius S, Bellon CR, Stone MH. The importance of muscular strength: training considerations. Sport Med. 2018;48:765–85. https://doi.org/10.1007/s40279-018-0862-z.

    Article  Google Scholar 

  16. Zatsiorsky MV, Kraemer WJ. Science and practice of strength training. 2006. p. 264. http://books.google.com/books?hl=en&lr=&id=QWSn4iKgNo8C&oi=fnd&pg=PR8&dq=Science+and+Practice+of+Strength+Training&ots=v46bUiOLDs&sig=qduV5QRbeak7oxUarrpS0XNBixY%5Cnhttps://books.google.com/books?id=QWSn4iKgNo8C&pgis=1

  17. McNeill C, Beaven CM, McMaster DT, Gill N. Eccentric training interventions and team sport athletes. J Funct Morphol Kinesiol. 2019;4:67.

    Article  PubMed Central  Google Scholar 

  18. Pereira MIR, Gomes PSC. Movement velocity in resistance training. Sport Med. 2003;33:427–38.

    Article  Google Scholar 

  19. Wilkie DR. The relation between force and velocity in human muscle. J Physiol. 1949;110:249–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haeufle DFB, Günther M, Bayer A, Schmitt S. Hill-type muscle model with serial damping and eccentric force-velocity relation. J Biomech. 2014;47:1531–6.

    Article  CAS  PubMed  Google Scholar 

  21. Brughelli M, Cronin J. Altering the length-tension relationship with eccentric exercise. Sport Med. 2007;37:807–26.

    Article  Google Scholar 

  22. Herzog W. The role of titin in eccentric muscle contraction. J Exp Biol. 2014;217:2825–33.

    Article  PubMed  Google Scholar 

  23. Duncan PW, Chandler JM, Cavanaugh DK, Johnson KR, Buehler AG. Mode and speed specificity of eccentric and concentric exercise training. J Orthop Sports Phys Ther. 1989;11:70–5.

    Article  CAS  PubMed  Google Scholar 

  24. Hildre T. The effects of velocity on force production of the elbow flexors during eccentric isokinetic muscle contraction. 1996.

  25. Cress NM, Peters KS, Chandler JM. Eccentric and concentric force-velocity relationships of the quadriceps femoris muscle. J Orthop Sports Phys Ther. 1992;16:82–6.

    Article  CAS  PubMed  Google Scholar 

  26. Cabri JMH. Isokinetic strength aspects of human joints and muscles. Crit Rev Biomed Eng. 1991;19:231–59.

    CAS  PubMed  Google Scholar 

  27. Chapman D, Newton M, Nosaka K. Eccentric torque-velocity relationship of the elbow flexors. Isokinet Exerc Sci. 2005;13:139–45.

    Article  Google Scholar 

  28. Yeadon MR, King MA, Wilson C. Modelling the maximum voluntary joint torque/angular velocity relationship in human movement. J Biomech. 2006;39:476–82.

    Article  PubMed  Google Scholar 

  29. Cowell JF, Cronin J, Brughelli M. Eccentric muscle actions and how the strength and conditioning specialist might use them for a variety of purposes. Strength Cond J. 2012;34:33–48.

    Article  Google Scholar 

  30. Lee EJ, Joumaa V, Herzog W. New insights into the passive force enhancement in skeletal muscles. J Biomech. 2007;40:719–27.

    Article  PubMed  Google Scholar 

  31. Herzog W, Schappacher G, DuVall M, Leonard T, Hezong J. Residual force enhancement following eccentric contractions: a new mechanism involving titin. Physiology. 2016;31:300–12.

    Article  CAS  PubMed  Google Scholar 

  32. Powers K, Schappacher-Tilp G, Jinha A, Leonard T, Nishikawa K, Herzog W. Titin force is enhanced in actively stretched skeletal muscle. J Exp Biol. 2014;217:3629–36.

    PubMed  Google Scholar 

  33. Leonard TR, Herzog W. Regulation of muscle force in the absence of actin-myosin-based cross-bridge interaction. Am J Physiol Cell Physiol. 2010;299:14–20.

    Article  CAS  Google Scholar 

  34. Zatsiorsky V. Biomechanics in sport: performance enhancement and injury prevention. Oxford: Blackwell Science Ltd.; 2000.

    Book  Google Scholar 

  35. Verkhoshansky Y V. Shock method. Rome, Italy: Verkhoshansky SSTM; 2018.

  36. Verkhoshansky, Y. Verkhoshansky N. Special strength training manual for coches. Rome, Italy: Verkhoshansky SSTM; 2011.

  37. Handford MJ, Rivera FM, Maroto-Izquierdo SHJ. Plyo-accentuated eccentric loading methods to enhance lower limb muscle power. Strength Cond J. 2021;43:54–64.

    Article  Google Scholar 

  38. Wagle J, Taber C, Carroll K, Cunanan A, Sams M, Wetmore A, et al. Repetition-to-repetition differences using cluster and accentuated eccentric loading in the back squat. Sports. 2018;6:59. http://www.mdpi.com/2075-4663/6/3/59

  39. Lates AD, Greer BK, Wagle JP, Taber CB. Accentuated eccentric loading and cluster set configurations in the bench press. J Strength Cond Res. 2020:1–5. Epub ahead of print.

  40. Douglas J, Pearson S, Ross A, McGugan M. Effects of accentuated eccentric loading on muscle properties, strength, power, and speed in resistance-trained rugby players. J Strength Cond Res. 2018;32:2750–61.

    Article  PubMed  Google Scholar 

  41. Harden M, Worf A, Russell M, Hicks K, French D, Howatson G. An evaluation of supramaximally loaded eccentric leg press exercis. J Strength Cond Res. 2018;32:2708–14.

    Article  PubMed  Google Scholar 

  42. Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health. 1998;52:377–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Van den Tillaar R. Effect of descent velocity upon muscle activation and performance in two-legged free weight back squats. Sports. 2019;7:15.

    Article  PubMed Central  Google Scholar 

  44. Wilk M, Golas A, Krzysztofik M, Nawrocka M, Zajac A. The effects of eccentric cadence on power and velocity of the bar during the concentric phase of the bench press movement. J Sport Sci Med. 2019;18:191–7.

    Google Scholar 

  45. Carzoli JP, Sousa CA, Belcher DJ, Helms ER, Khamoui AV, Whitehurst M, Zourdos M. The effects of eccentric phase duration on concentric outcomes in the back squat and bench press in well-trained males. J Sports Sci. 2019;37:2676–84.

    Article  PubMed  Google Scholar 

  46. Pryo RR, Sforz GA, Kin DL. Optimizing power output by varying repetition tempo. J Strength Cond Res. 2011;25:3029–34.

    Article  Google Scholar 

  47. Wilk M, Gepfert M, Krzysztofik M, Golas A, Mostowik A, Maszczyk A, et al. The influence of grip width on training volume during the bench press with different movement tempos. J Hum Kinet. 2019;68:49–57.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sampson JA, Donohoe A, Groeller H. Effect of concentric and eccentric velocity during heavy-load non-ballistic elbow flexion resistance exercise. J Sci Med Sport. 2014;17:306–11.

    Article  PubMed  Google Scholar 

  49. Wilk M, Golas A, Zmijewski P, Krzysztofik M, Filip A, Del CJ, et al. The effects of the movement tempo on the one-repetition maximum bench press results. J Hum Kinet. 2020;72:151–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wilk M, Gepfert M, Krzysztofik M, Mostowik A, Filip A, Hajduk G, et al. Impact of duration of eccentric movement in the one-repetition maximum test result in the bench press among women. J Sport Sci Med. 2020;19:317–22.

    Google Scholar 

  51. Calixto RD, Verlengia R, Crisp AH, Carvalho TB, Crepaldi MD, Pereira AA, et al. Acute effects of movement velocity on blood lactate and growth hormone responses after eccentric bench press exercise in resistance-trained men. Biol Sport. 2014;31:289–294

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wilk M, Stastny P, Golas A, Nawrocka M, Jelen K, Zajac A, et al. Physiological responses to different neuromuscular movement task during eccentric bench press. Neuroendocrinol Lett. 2018;39:26–32.

    CAS  PubMed  Google Scholar 

  53. Martins-Costa HC, Diniz RCR, Lima FV, Machado SC, De Almeida RSV, De Andrade AGP, et al. Longer repetition duration increases muscle activation and blood lactate response in matched resistance training protocols. Motriz Rev Educ Fis. 2016;22:35–41.

    Article  Google Scholar 

  54. Shepstone TN, Tang JE, Dallaire S, Schuenke MD, Staron RS, Phillips SM. Short-term high- vs. low-velocity isokinetic lengthening training results in greater hypertrophy of the elbow flexors in young men. J Appl Physiol. 2005;98:1768–76.

    Article  PubMed  Google Scholar 

  55. Roschel H, Ugrinowistch C, Barroso R, Batista MAB, Souza EO, Aoki MS, et al. Effect of eccentric exercise velocity on akt/mtor/p70s6k signaling in human skeletal muscle. Appl Physiol Nutr Metab. 2011;36:283–90.

    Article  CAS  PubMed  Google Scholar 

  56. Drury DG, Stuempfle KJ, Mason CW, Girman JC. The effects of isokinetic contraction velocity on concentric and eccentric strength of the biceps brachii. J Strength Cond Res. 2006;20:390–5.

    PubMed  Google Scholar 

  57. Hortobágyi T, Katch FI. Eccentric and concentric torque-velocity relationships during arm flexion and extension—influence of strength level. Eur J Appl Physiol Occup Physiol. 1990;60:395–401.

    Article  PubMed  Google Scholar 

  58. Mike JN, Cole N, Herrera C, Vandusseldorp T, Kravitz L, Kerksick CM. The effects of eccentric contraction duration on muscle strength, power production, vertical jump, and soreness. J Strength Cond Res. 2017;31:773–86.

    Article  PubMed  Google Scholar 

  59. Pereira PE, Motoyama Y, Tanaka K. Resistance training with slow speed of movement is better for hypertrophy and muscle strength gains than fast speed of movement. Int J Appl Exerc Physiol. 2016;13:466.

    Google Scholar 

  60. Stasinaki A-N, Zaras N, Methenitis S, Bogdanis G, Terzis G. Rate of force development and muscle architecture after fast and slow velocity eccentric training. Sports. 2019;7:1–12.

    Article  Google Scholar 

  61. Shibata K, Takzawa K, Noska KMM. Effects of prolonging eccentric phase duration in parallel back-squat training to momentary failure on muscle cross-sectional area, squat one repetition maximum, and performance tests in university soccer players. J Strength Cond Res. 2018;35:668–74.

    Article  Google Scholar 

  62. Kojić F, Ranisavljev I, Ćosić D, Popović D, Stojiljković S, Ilić V. Effects of resistance training on hypertrophy, strength and tensiomyography parameters of elbow flexors: role of eccentric phase duration. Biol Sport. 2021;38:587–94.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Farthing JP, Chilibeck PD. The effect of eccentric training at different velocities on cross-education. Eur J Appl Physiol. 2003;89:570–7.

    Article  PubMed  Google Scholar 

  64. Farthing JP, Chilibeck PD. The effects of eccentric and concentric training at different velocities on muscle hypertrophy. Eur J Appl Physiol. 2003;89:578–86.

    Article  PubMed  Google Scholar 

  65. Paddon-Jones D, Leveritt M, Lonergan A, Abernethy P. Adaptation to chronic eccentric exercise in humans: the influence of contraction velocity. Eur J Appl Physiol. 2001;85:466–71.

    Article  CAS  PubMed  Google Scholar 

  66. Ünlü G, Çevikol C, Melekoğlu T. Comparison of the effects of eccentric, concentric, and eccentric-concentric isotonic resistance training at two velocities on strength and muscle hypertrophy. J strength Cond Res. 2020;34:337–44.

    Article  PubMed  Google Scholar 

  67. Guilhem G, Cornu C, Gue A. Neuromuscular and muscle-tendon system adaptations to isotonic and isokinetic eccentric exercise. Ann Phys Rehabil Med. 2010;53:319–41.

    Article  CAS  PubMed  Google Scholar 

  68. Y.Yamada NI. Differences in eccentric force-velocity characteristics between isotonic and isokinetic contractions. J Sport Health Sci. 2018;121.

  69. Roig M, O’Brien K, Kirk G, Murray R, McKinnon P, Shadgan B, et al. The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analysis. Br J Sports Med. 2009;43:556–68.

    Article  CAS  PubMed  Google Scholar 

  70. Kellis E, Baltzopoulos V. Isokinetic eccentric exercise. Sport Med. 1995;19:202–22.

    Article  CAS  Google Scholar 

  71. Douglas J, Pearson S, Ross A, McGuigan M. Chronic adaptations to eccentric training: a systematic review. Sport Med. 2017;47:917–41.

    Article  Google Scholar 

  72. Hody S, Croisier JL, Bury T, Rogister B, Leprince P. Eccentric muscle contractions: Risks and benefits. Front Physiol. 2019;10:1–18.

    Article  Google Scholar 

  73. Ryan LM, Magidow PS, Duncan PTPW. Velocity-specif ic and mode-specif ic effects of eccentric lsokinetic training of the hamstrings. J Orthop Sport Phys Ther. 1991;13:33–9.

    Article  CAS  Google Scholar 

  74. Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res. 2010;24:2857–72.

    Article  PubMed  Google Scholar 

  75. Richards CT, Sawicki GS. Elastic recoil can either amplify or attenuate muscle-tendon power, depending on inertial vs. fluid dynamic loading. J Theor Biol. 2012;313:68–78.

    Article  PubMed  Google Scholar 

  76. Lopes CR, Crisp AH, Rodrigues AL, Teixeira AG, Da Mota GR, Verlengia R. Fast contraction velocity in resistance exercise induces greater total volume load lifted and muscle strength loss in resistance-trained men. Rev Andaluza Med del Deport. 2012;5:123–6.

    Article  Google Scholar 

  77. Lindstedt SL, Reich TE, Keim P, LaStayo PC. Do muscles function as adaptable locomotor springs? J Exp Biol. 2002;205:2211–6.

    Article  PubMed  Google Scholar 

  78. Behm DG, Sale DG. Velocity specificity of resistance training. Sports Med. 1993;15:374–88.

    Article  CAS  PubMed  Google Scholar 

  79. Nardone A, Romano C, Schieppati M. Selective recruitment of high-threshold human motor units during voluntary isotonic lengthening of active muscles. J Physiol. 1989;409:451–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wilk M, Tufano JJ, Zajac A. The influence of movement tempo on acute neuromuscular, hormonal, and mechanical responses to resistance exercise-a mini review. J Strength Cond Res. 2020;34:2369–83.

    Article  PubMed  Google Scholar 

  81. Krzysztofik M, Wilk M, Wojdała G, Gołaś A. Maximizing muscle hypertrophy: a systematic review of advanced resistance training techniques and methods. Int J Environ Res Public Health. 2019;16.

  82. Kraemer RR, Castracane VD. Endocrine alterations from concentric vs. eccentric muscle actions: a brief review. Metabolism. 2015;64:190–201. https://doi.org/10.1016/j.metabol.2014.10.024.

    Article  CAS  PubMed  Google Scholar 

  83. Godfrey RJ, Whyte G, Buckley J, Quinlivan R. The role of lactate in the exercise-induced human growth hormone response: evidence from McArdle disease. Br J Sports Med. 2009;43(7):521–5.

    Article  CAS  PubMed  Google Scholar 

  84. Schoenfeld BJ, Ogborn DI, Vigotsky AD, Franchi MV, Krieger JW. Hypertrophic effects of concentric vs. eccentric muscle actions: a systematic review and meta-analysis. J Strength Cond Res. 2017;31:2599–608.

    Article  PubMed  Google Scholar 

  85. Komi PV. Strength and power in sport. Hoboken: John Wiley & Sons; 2008.

    Google Scholar 

  86. Nogueira FRD, Conceição MS, Vechin FC, Mendes EM, Rodrigues GFC, Fazolin MA, et al. The effect of eccentric contraction velocity on muscle damage: a review. Isokinet Exerc Sci. 2013;21:1–9.

    Article  Google Scholar 

  87. Fisher J, Steele DS. Evidence-based resistance training recommendations for musclar hypertrophy. Med Sport. 2013;17:217–35.

    Google Scholar 

  88. Schoenfeld BJ, Ogborn DI, Krieger JW. Effect of repetition duration during resistance training on muscle hypertrophy: a systematic review and meta-analysis. Sport Med. 2015;45:577–85.

    Article  Google Scholar 

  89. Suchomel TJ, Wagle JP, Douglas J, Taber CB, Harden M, Ha GG, et al. Implementing eccentric resistance training—part 2: practical recommendations. J Funct Morphol Kinesiol. 2019;4:1–20.

    Google Scholar 

  90. Cronin JB, McNair PJ, Marshall RN. Is velocity-specific strength training important in improving functional performance? J Sports Med Phys Fitness. 2002;42:267–73.

    CAS  PubMed  Google Scholar 

  91. Hedrick A. Literature review: high speed resistance training. Natl Strength Cond Assoc J. 1993;15:22–30.

    Article  Google Scholar 

  92. Cronin J, McNair PJ, Marshall RN. Velocity specificity, combination training and sport specific tasks. J Sci Med Sport. 2001;4:168–78.

    Article  CAS  PubMed  Google Scholar 

  93. Andrade MDS, Fleury AM, de Lira CAB, Dubas JP, da Silva AC. Profile of isokinetic eccentric-to-concentric strength ratios of shoulder rotator muscles in elite female team handball players. J Sports Sci. 2010;28:743–9.

    Article  Google Scholar 

  94. Paddon-Jones D, Keech A, Lonergan A, Abernethy P. Differential expression of muscle damage in humans following acute fast and slow velocity eccentric exercise. J Sci Med Sport. 2005;8:255–63.

    Article  CAS  PubMed  Google Scholar 

  95. Chapman D, Newton M, Sacco P, Nosaka K. Greater muscle damage induced by fast versus slow velocity eccentric exercise. Int J Sports Med. 2006;27:591–8.

    Article  CAS  PubMed  Google Scholar 

  96. Aagaard P, Simonsen EB, Andersen JL, Magnusson SP, Halkjær-Kristensen J, Dyhre-Poulsen P. Neural inhibition during maximal eccentric and concentric quadriceps contraction: effects of resistance training. J Appl Physiol. 2000;89:2249–57.

    Article  CAS  PubMed  Google Scholar 

  97. Davies TB, Kuang K, Orr R, Halaki M, Hackett D. Effect of movement velocity during resistance training on dynamic muscular strength: a systematic review and meta-analysis. Sports Med. 2017;47:1603–17.

    Article  PubMed  Google Scholar 

  98. Ratamess NA, Alvar BA, Evetoch TE, Housh TJ, Ben Kibler W, Kraemer WJ, Triplett N. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41:687–708.

    Article  Google Scholar 

  99. Argus CK, Gill ND, Keogh JWL, Blazevich AJ, Hopkins WG. Kinetic and training comparisons between assisted, resisted, and free countermovement jumps. J Strength Cond Res. 2011;25:2219–27.

    Article  PubMed  Google Scholar 

  100. Stien N, Strate M, Andersen V, Saeterbakken AH. Effects of overspeed or overload plyometric training on jump height and lifting velocity. Sport Med Int open. 2020;4:32–8.

    Article  Google Scholar 

  101. Dietz. C PB. Triphasic training. 2012.

  102. Aboodarda S, Byrne J, Samson M, Wilson B, Okhtar A, Behm D. Does performing drop jumps with additional eccentric loading improve jump performance. J Strength Cond Res. 2014;28:2314–23.

    Article  PubMed  Google Scholar 

  103. Aboodarda S, Yusof A, Osman NA, Thompson M, Mokhtar A. Enhanced performance with elastic resistance during the eccentric phase of a countermovement jump. Int J Sport Physiol Perform. 2013;8:181–7.

    Article  Google Scholar 

  104. Frost DM, Cronin J, Newton RU. A biomechanical evaluation of resistance: fundamental concepts for training and sports performance. Sport Med. 2010;40:303–26.

    Article  Google Scholar 

  105. Zatsiorsky, VM, & Prilutsky B. Biomechanics of skeletal muscles. Hum Kinet. 2012. p. 1–519.

  106. Meylan C, Cronin J, Nosaka K. Isoinertial assessment of eccentric muscular strength. Strength Cond J. 2008;30:56–64.

    Article  Google Scholar 

  107. McNeill C, Beaven CM, McMaster DT, Gill N. Survey of eccentric-based strength and conditioning practices in sport. J strength Cond Res. 2020;34:2769–75.

    Article  PubMed  Google Scholar 

  108. Harden. M, Bruce. C, Wolf. A, Hicks. K.M HG. Exploring the practical knowledge of eccentric resistance training in high- performance strength and conditioning practitioners. Int J Sport Sci Coach. 2019;15:1–12.

  109. Coratella G, Milanese C, Schena F. Unilateral eccentric resistance training: a direct comparison between isokinetic and dynamic constant external resistance modalities. Eur J Sport Sci. 2015;15:720–6.

    Article  PubMed  Google Scholar 

  110. Suarez DG, Wagle JP, Cunanan AJ, Sausaman RWSM. Dynamic correspondence of resistance training to sport: a brief review. Strength Cond J. 2019;41:80–8.

    Article  Google Scholar 

  111. Drury B, Clarke H, Moran J, Fernandes JFT, Henry G, Behm DG. Eccentric resistance training in youth: a survey of perceptions and current practices by strength and conditioning coaches. J Funct Morphol Kinesiol. 2021;6:1–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Handford.

Ethics declarations

Funding

No sources of funding were used to conduct this study or prepare this manuscript.

Conflict of interest

Matthew J. Handford, Thomas E. Bright, Peter Mundy, Jason Lake, Nicola Theis, Jonathan D. Hughes have no conflicts of interest that are directly relevant to the content of this article.

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analysed during the current review

Ethics approval

Ethical approval was not required for publication of this review. The authors declare that the findings of this review are presented honestly and without any fabrication, falsification, or inappropriate data manipulation.

Consent to participate

Not applicable.

Consent for publication

All authors declare consent for publication.

Author contribution

All authors declare that they contributed to the completion of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Handford, M.J., Bright, T.E., Mundy, P. et al. The Need for Eccentric Speed: A Narrative Review of the Effects of Accelerated Eccentric Actions During Resistance-Based Training. Sports Med 52, 2061–2083 (2022). https://doi.org/10.1007/s40279-022-01686-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-022-01686-z

Navigation