Skip to main content
Log in

Somatic Mutations in Prostate Cancer: Closer to Personalized Medicine

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

The molecular cause of prostate cancer (PCa) is still unclear; however, its progression involves androgen, PI3K/Akt, and PTEN signaling, as cycle and apoptotic pathways. Alterations in oncogenes and tumor suppressor genes as PIK3CA, BRAF, KRAS and TP53 are not very common. Recently, somatic mutations have been discovered in relation to cancer progression mainly in genes such as PIK3CA; however, little data has been described in PCa. Nowadays genetic tools allow us to investigate multiple details about the biological heterogeneity of PCa, to better understand the mechanisms of disease progression and treatment resistance. Therefore, if the most relevant somatic mutations were included during screening, we could identify the best treatment for the right patient, bringing us closer to personalized medicine. The main objective of this article is to provide a review of the principal somatic mutations that appear to have a relevant role in hormonal cancers, like prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kral M, Rosinska V, Student V, Grepl M, Hrabec M, Bouchal J. Genetic determinants of prostate cancer: a review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2011;155(1):3–9.

    Article  PubMed  Google Scholar 

  2. Ostrander EA, Markianos K, Stanford JL. Finding prostate cancer susceptibility genes. Annu Rev Genomics Hum Genet. 2004;5:151–75.

    Article  CAS  PubMed  Google Scholar 

  3. Paolillo C, Londin E, Fortina P. Next generation sequencing in cancer: opportunities and challenges for precision cancer medicine. Scand J Clin Lab Invest Suppl. 2016;245:S84–91.

    Article  PubMed  CAS  Google Scholar 

  4. Aung KL, Board RE, Ellison G, Donald E, Ward T, Clack G, et al. Current status and future potential of somatic mutation testing from circulating free DNA in patients with solid tumours. Hugo J. 2010;4(1–4):11–21.

    Article  CAS  PubMed  Google Scholar 

  5. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fröhling S, Scholl C, Levine RL, Loriaux M, Boggon TJ, Bernard OA, et al. Identification of driver and passenger mutations of FLT3 by high-throughput DNA sequence analysis and functional assessment of candidate alleles. Cancer Cell. 2007;12(6):501–13.

    Article  PubMed  CAS  Google Scholar 

  7. Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature. 2010;463(7278):191–6.

    Article  CAS  PubMed  Google Scholar 

  8. Jackson BL, Grabowska A, Ratan HL. MicroRNA in prostate cancer: functional importance and potential as circulating biomarkers. BMC Cancer. 2014;14:930.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lai CH, Huang SF, Liao CT, Chen IH, Wang HM, Hsieh LL. Clinical significance in oral cavity squamous cell carcinoma of pathogenic somatic mitochondrial mutations. PLoS One. 2013;8(6):e65578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lindberg J, Mills IG, Klevebring D, Liu W, Neiman M, Xu J, et al. The mitochondrial and autosomal mutation landscapes of prostate cancer. Eur Urol. 2013;63(4):702–8.

    Article  CAS  PubMed  Google Scholar 

  11. Kloss-Brandstätter A, Schäfer G, Erhart G, Hüttenhofer A, Coassin S, Seifarth C, et al. Somatic mutations throughout the entire mitochondrial genome are associated with elevated PSA levels in prostate cancer patients. Am J Hum Genet. 2010;87(6):802–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. van Gisbergen MW, Voets AM, Starmans MH, de Coo IF, Yadak R, Hoffmann RF, et al. How do changes in the mtDNA and mitochondrial dysfunction influence cancer and cancer therapy? Challenges, opportunities and models. Mutat Res Rev Mutat Res. 2015;764:16–30.

  13. INC MLS. The Prostate Core Mitomic Test™. 2016 [cited 2016 15 March]; Available from: http://mdnalifesciences.com/prostate-core-mitomic-test/.

  14. Shull AY, Clendenning ML, Ghoshal-Gupta S, Farrell CL, Vangapandu HV, Dudas L, et al. Somatic mutations, allele loss, and DNA methylation of the Cub and Sushi Multiple Domains 1 (CSMD1) gene reveals association with early age of diagnosis in colorectal cancer patients. PLoS One. 2013;8(3):e58731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chaiyapan W, Duangpakdee P, Boonpipattanapong T, Kanngern S, Sangkhathat S. Somatic mutations of K-ras and BRAF in Thai colorectal cancer and their prognostic value. Asian Pac J Cancer Prev. 2013;14(1):329–32.

    Article  PubMed  Google Scholar 

  16. Wood LD, Parsons DW, Jones S, Lin J, Sjöblom T, Leary RJ, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318(5853):1108–13.

    Article  CAS  PubMed  Google Scholar 

  17. Barbieri CE, Tomlins SA. The prostate cancer genome: perspectives and potential. Urol Oncol. 2014;32(1):53.e15–22.

  18. Rubin MA, Girelli G, Demichelis F. Genomic correlates to the newly proposed grading prognostic groups for prostate cancer. Eur Urol. 2016;69(4):557–60.

    Article  PubMed  Google Scholar 

  19. Miyagi Y, Sasaki T, Fujinami K, Sano J, Senga Y, Miura T, et al. ETS family-associated gene fusions in Japanese prostate cancer: analysis of 194 radical prostatectomy samples. Mod Pathol. 2010;23(11):1492–8.

    Article  PubMed  Google Scholar 

  20. Tapia-Laliena MA, Korzeniewski N, Hohenfellner M, Duensing S. High-risk prostate cancer: a disease of genomic instability. Urol Oncol. 2014;32(8):1101–7.

    Article  PubMed  Google Scholar 

  21. Robbins CM, Tembe WA, Baker A, Sinari S, Moses TY, Beckstrom-Sternberg S, et al. Copy number and targeted mutational analysis reveals novel somatic events in metastatic prostate tumors. Genome Res. 2011;21(1):47–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mehra R, Kumar-Sinha C, Shankar S, Lonigro RJ, Jing X, Philips NE, et al. Characterization of bone metastases from rapid autopsies of prostate cancer patients. Clin Cancer Res. 2011;17(12):3924–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mitchell T, Neal DE. The genomic evolution of human prostate cancer. Br J Cancer. 2015;113(2):193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JM, Papaemmanuil E, et al. The evolutionary history of lethal metastatic prostate cancer. Nature. 2015;520(7547):353–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cooper CS, Eeles R, Wedge DC, Van Loo P, Gundem G, Alexandrov LB, et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat Genet. 2015;47(4):367–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Network CGAR. The molecular taxonomy of primary prostate cancer. Cell. 2015;163(4):1011–25.

    Article  CAS  Google Scholar 

  27. Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007;26(15):2157–65.

    Article  CAS  PubMed  Google Scholar 

  28. Richardson RB. p53 mutations associated with aging-related rise in cancer incidence rates. Cell Cycle. 2013;12(15):2468–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010;2(1):a001008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2015;43(Database issue):D805–11.

  31. Morris EV, Cerundolo L, Lu M, Verrill C, Fritzsche F, White MJ, et al. Nuclear iASPP may facilitate prostate cancer progression. Cell Death Dis. 2014;5:e1492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Robles AI, Harris CC. Clinical outcomes and correlates of TP53 mutations and cancer. Cold Spring Harb Perspect Biol. 2010;2(3):a001016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161(5):1215–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shi XB, Xue L, Ma AH, Tepper CG, Gandour-Edwards R, Kung HJ, et al. Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells. Oncogene. 2013;32(35):4130–8.

    Article  CAS  PubMed  Google Scholar 

  35. Huang L, Carney J, Cardona DM, Counter CM. Decreased tumorigenesis in mice with a Kras point mutation at C118. Nat Commun. 2014;5:5410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nodin B, Zendehrokh N, Sundström M, Jirström K. Clinicopathological correlates and prognostic significance of KRAS mutation status in a pooled prospective cohort of epithelial ovarian cancer. Diagn Pathol. 2013;8:106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yuan F, Shi M, Ji J, Shi H, Zhou C, Yu Y, et al. KRAS and DAXX/ATRX gene mutations are correlated with the clinicopathological features, advanced diseases, and poor prognosis in Chinese patients with pancreatic neuroendocrine tumors. Int J Biol Sci. 2014;10(9):957–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wang XS, Shankar S, Dhanasekaran SM, Ateeq B, Sasaki AT, Jing X, et al. Characterization of KRAS rearrangements in metastatic prostate cancer. Cancer Discov. 2011;1(1):35–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Fu M, Zhang W, Shan L, Song J, Shang D, Ying J, et al. Mutation status of somatic EGFR and KRAS genes in Chinese patients with prostate cancer (PCa). Virchows Arch. 2014;464(5):575–81.

    Article  CAS  PubMed  Google Scholar 

  40. Reis ST, Timoszczuk LS, Pontes-Junior J, Viana N, Silva IA, Dip N, et al. The role of micro RNAs let7c, 100 and 218 expression and their target RAS, C-MYC, BUB1, RB, SMARCA5, LAMB3 and Ki-67 in prostate cancer. Clinics (Sao Paulo). 2013;68(5):652–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cai H, Memarzadeh S, Stoyanova T, Beharry Z, Kraft AS, Witte ON. Collaboration of Kras and androgen receptor signaling stimulates EZH2 expression and tumor-propagating cells in prostate cancer. Cancer Res. 2012;72(18):4672–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aytes A, Mitrofanova A, Kinkade CW, Lefebvre C, Lei M, Phelan V, et al. ETV4 promotes metastasis in response to activation of PI3-kinase and Ras signaling in a mouse model of advanced prostate cancer. Proc Natl Acad Sci. 2013;110(37):E3506–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Blair BG, Wu X, Zahari MS, Mohseni M, Cidado J, Wong HY, et al. A phosphoproteomic screen demonstrates differential dependence on HER3 for MAP kinase pathway activation by distinct PIK3CA mutations. Proteomics. 2015;15(2–3):318–26.

    Article  CAS  PubMed  Google Scholar 

  44. Karakas B, Bachman KE, Park BH. Mutation of the PIK3CA oncogene in human cancers. Br J Cancer. 2006;94(4):455–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gabelli SB, Echeverria I, Alexander M, Duong-Ly KC, Chaves-Moreira D, Brower ET, et al. Activation of PI3Kα by physiological effectors and by oncogenic mutations: structural and dynamic effects. Biophys Rev. 2014;6(1):89–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hou W, Liu J, Chen P, Wang H, Ye BC, Qiang F. Mutation analysis of key genes in RAS/RAF and PI3K/PTEN pathways in Chinese patients with hepatocellular carcinoma. Oncol Lett. 2014;8(3):1249–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 2008;68(15):6084–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Qiu W, Schönleben F, Li X, Ho DJ, Close LG, Manolidis S, et al. PIK3CA mutations in head and neck squamous cell carcinoma. Clin Cancer Res. 2006;12(5):1441–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mullerad M, Hricak H, Kuroiwa K, Pucar D, Chen HN, Kattan MW, et al. Comparison of endorectal magnetic resonance imaging, guided prostate biopsy and digital rectal examination in the preoperative anatomical localization of prostate cancer. J Urol. 2005;174(6):2158–63.

    Article  PubMed  Google Scholar 

  50. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304(5670):554.

    Article  CAS  PubMed  Google Scholar 

  51. Schönleben F, Qiu W, Ciau NT, Ho DJ, Li X, Allendorf JD, et al. PIK3CA mutations in intraductal papillary mucinous neoplasm/carcinoma of the pancreas. Clin Cancer Res. 2006;12(12):3851–5.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tang KD, Ling MT. Targeting drug-resistant prostate cancer with dual PI3K/mTOR inhibition. Curr Med Chem. 2014;21(26):3048–56.

    Article  CAS  PubMed  Google Scholar 

  53. Wong HL, Peters U, Hayes RB, Huang WY, Schatzkin A, Bresalier RS, et al. Polymorphisms in the adenomatous polyposis coli (APC) gene and advanced colorectal adenoma risk. Eur J Cancer. 2010;46(13):2457–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pećina-Slaus N, Majić Z, Musani V, Zeljko M, Cupić H. Report on mutation in exon 15 of the APC gene in a case of brain metastasis. J Neurooncol. 2010;97(1):143–8.

    Article  PubMed  CAS  Google Scholar 

  55. Ashktorab H, Daremipouran M, Devaney J, Varma S, Rahi H, Lee E, et al. Identification of novel mutations by exome sequencing in African American colorectal cancer patients. Cancer. 2015;121(1):34–42.

    Article  CAS  PubMed  Google Scholar 

  56. Christie M, Jorissen RN, Mouradov D, Sakthianandeswaren A, Li S, Day F, et al. Different APC genotypes in proximal and distal sporadic colorectal cancers suggest distinct WNT/β-catenin signalling thresholds for tumourigenesis. Oncogene. 2013;32(39):4675–82.

    Article  CAS  PubMed  Google Scholar 

  57. Drier Y, Lawrence MS, Carter SL, Stewart C, Gabriel SB, Lander ES, et al. Somatic rearrangements across cancer reveal classes of samples with distinct patterns of DNA breakage and rearrangement-induced hypermutability. Genome Res. 2013;23(2):228–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gerecke C, Mascher C, Gottschalk U, Kleuser B, Scholtka B. Ultrasensitive detection of unknown colon cancer-initiating mutations using the example of the Adenomatous polyposis coli gene. Cancer Prev Res (Phila). 2013;6(9):898–907.

    Article  CAS  PubMed  Google Scholar 

  59. Rogler G. Chronic ulcerative colitis and colorectal cancer. Cancer Lett. 2014;345(2):235–41.

    Article  CAS  PubMed  Google Scholar 

  60. Fox SA, Richards AK, Kusumah I, Perumal V, Bolitho EM, Mutsaers SE, et al. Expression profile and function of Wnt signaling mechanisms in malignant mesothelioma cells. Biochem Biophys Res Commun. 2013;440(1):82–7.

    Article  CAS  PubMed  Google Scholar 

  61. Valkenburg KC, Yu X, De Marzo AM, Spiering TJ, Matusik RJ, Williams BO. Activation of Wnt/β-catenin signaling in a subpopulation of murine prostate luminal epithelial cells induces high grade prostate intraepithelial neoplasia. Prostate. 2014;74(15):1506–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang W, Jiao H, Zhang X, Zhao R, Wang F, He W, et al. Correlation between the expression of DNMT1, and GSTP1 and APC, and the methylation status of GSTP1 and APC in association with their clinical significance in prostate cancer. Mol Med Rep. 2015;12(1):141–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mulholland DJ, Kobayashi N, Ruscetti M, Zhi A, Tran LM, Huang J, et al. Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res. 2012;72(7):1878–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tian L, Fang YX, Xue JL, Chen JZ. Four microRNAs promote prostate cell proliferation with regulation of PTEN and its downstream signals in vitro. PLoS One. 2013;8(9):e75885.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jin G, Kim MJ, Jeon HS, Choi JE, Kim DS, Lee EB, et al. PTEN mutations and relationship to EGFR, ERBB2, KRAS, and TP53 mutations in non-small cell lung cancers. Lung Cancer. 2010;69(3):279–83.

    Article  PubMed  Google Scholar 

  66. Barnett CM, Heinrich MC, Lim J, Nelson D, Beadling C, Warrick A, et al. Genetic profiling to determine risk of relapse-free survival in high-risk localized prostate cancer. Clin Cancer Res. 2014;20(5):1306–12.

    Article  CAS  PubMed  Google Scholar 

  67. Wu Z, He B, He J, Mao X. Upregulation of miR-153 promotes cell proliferation via downregulation of the PTEN tumor suppressor gene in human prostate cancer. Prostate. 2013;73(6):596–604.

    Article  CAS  PubMed  Google Scholar 

  68. Maire CL, Ligon KL. Molecular pathologic diagnosis of epidermal growth factor receptor. Neuro Oncol. 2014;16(Suppl 8):viii1–6.

  69. Cho J, Bass AJ, Lawrence MS, Cibulskis K, Cho A, Lee SN, et al. Colon cancer-derived oncogenic EGFR G724S mutant identified by whole genome sequence analysis is dependent on asymmetric dimerization and sensitive to cetuximab. Mol Cancer. 2014;13:141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Hour TC, Chung SD, Kang WY, Lin YC, Chuang SJ, Huang AM, et al. EGFR mediates docetaxel resistance in human castration-resistant prostate cancer through the Akt-dependent expression of ABCB1 (MDR1). Arch Toxicol. 2015;89(4):591–605.

    Article  CAS  PubMed  Google Scholar 

  71. National Center for Biotechnology Information USNLoM. ckit gene. http://www.ncbi.nlm.nih.gov/gene?term=(ckit%5bgene.

  72. Database GTHG. kit gene. http://www.genecards.org/cgi-bin/carddisp.pl?gene=KIT&search=kit.

  73. Simak R, Capodieci P, Cohen DW, Fair WR, Scher H, Melamed J, et al. Expression of c-kit and kit-ligand in benign and malignant prostatic tissues. Histol Histopathol. 2000;15(2):365–74.

    CAS  PubMed  Google Scholar 

  74. Dakhova O, Rowley D, Ittmann M. Genes upregulated in prostate cancer reactive stroma promote prostate cancer progression in vivo. Clin Cancer Res. 2014;20(1):100–9.

    Article  CAS  PubMed  Google Scholar 

  75. Won D, Chi HS, Shim H, Jang S, Park CJ, Lee JH. The prognostic impact of c-KIT mutation in systemic mastocytosis associated with acute myeloid leukaemia patients. Leuk Res. 2013;37(8):883–8.

    Article  CAS  PubMed  Google Scholar 

  76. Yu J, Mani RS, Cao Q, Brenner CJ, Cao X, Wang X, et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell. 2010;17(5):443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Segawa N, Nakamura M, Shan L, Utsunomiya H, Nakamura Y, Mori I, et al. Expression and somatic mutation on androgen receptor gene in prostate cancer. Int J Urol. 2002;9(10):545–53.

    Article  CAS  PubMed  Google Scholar 

  78. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18(1):11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell. 2011;19(5):575–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gottlieb B, Beitel LK, Nadarajah A, Paliouras M, Trifiro M. The androgen receptor gene mutations database: 2012 update. Hum Mutat. 2012;33(5):887–94.

    Article  CAS  PubMed  Google Scholar 

  81. Mononen N, Syrjäkoski K, Matikainen M, Tammela TL, Schleutker J, Kallioniemi OP, et al. Two percent of Finnish prostate cancer patients have a germ-line mutation in the hormone-binding domain of the androgen receptor gene. Cancer Res. 2000;60(22):6479–81.

    CAS  PubMed  Google Scholar 

  82. Koochekpour S. Androgen receptor signaling and mutations in prostate cancer. Asian J Androl. 2010;12(5):639–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li W, Cavasotto CN, Cardozo T, Ha S, Dang T, Taneja SS, et al. Androgen receptor mutations identified in prostate cancer and androgen insensitivity syndrome display aberrant ART-27 coactivator function. Mol Endocrinol. 2005;19(9):2273–82.

    Article  CAS  PubMed  Google Scholar 

  84. Zaman N, Giannopoulos PN, Chowdhury S, Bonneil E, Thibault P, Wang E, et al. Proteomic-coupled-network analysis of T877A-androgen receptor interactomes can predict clinical prostate cancer outcomes between White (non-Hispanic) and African-American groups. PLoS One. 2014;9(11):e113190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Steinestel J, Luedeke M, Arndt A, Schnoeller TJ, Lennerz JK, Wurm C, et al. Detecting predictive androgen receptor modifications in circulating prostate cancer cells. Oncotarget. 2015. doi:10.18632/oncotarget.3925.

    PubMed Central  Google Scholar 

  86. Jentzmik F, Azoitei A, Zengerling F, Damjanoski I, Cronauer MV. Androgen receptor aberrations in the era of abiraterone and enzalutamide. World J Urol. 2016;34(3):297–303.

    Article  CAS  PubMed  Google Scholar 

  87. Korpal M, Korn JM, Gao X, Rakiec DP, Ruddy DA, Doshi S, et al. An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). Cancer Discov. 2013;3(9):1030–43.

    Article  CAS  PubMed  Google Scholar 

  88. Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371(11):1028–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. An J, Wang C, Deng Y, Yu L, Huang H. Destruction of full-length androgen receptor by wild-type SPOP, but not prostate-cancer-associated mutants. Cell Rep. 2014;6(4):657–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E, et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 2009;69(1):16–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Steinkamp MP, O’Mahony OA, Brogley M, Rehman H, Lapensee EW, Dhanasekaran S, et al. Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade therapy. Cancer Res. 2009;69(10):4434–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ceder Y. Non-coding RNAs in prostate cancer: from discovery to clinical applications. Adv Exp Med Biol. 2016;886:155–70.

    Article  PubMed  Google Scholar 

  93. Nadiminty N, Tummala R, Lou W, Zhu Y, Zhang J, Chen X, et al. MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells. J Biol Chem. 2012;287(2):1527–37.

    Article  CAS  PubMed  Google Scholar 

  94. Ribas J, Ni X, Haffner M, Wentzel EA, Salmasi AH, Chowdhury WH, et al. miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res. 2009;69(18):7165–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li C, Ao J, Fu J, Lee DF, Xu J, Lonard D, et al. Tumor-suppressor role for the SPOP ubiquitin ligase in signal-dependent proteolysis of the oncogenic co-activator SRC-3/AIB1. Oncogene. 2011;30(42):4350–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 2012;44(6):685–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kim MS, Je EM, Oh JE, Yoo NJ, Lee SH. Mutational and expressional analyses of SPOP, a candidate tumor suppressor gene, in prostate, gastric and colorectal cancers. APMIS. 2013;121(7):626–33.

    Article  CAS  PubMed  Google Scholar 

  98. Zuhlke KA, Johnson AM, Tomlins SA, Palanisamy N, Carpten JD, Lange EM, et al. Identification of a novel germline SPOP mutation in a family with hereditary prostate cancer. Prostate. 2014;74(9):983–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Theurillat JP, Udeshi ND, Errington WJ, Svinkina T, Baca SC, Pop M, et al. Prostate cancer. Ubiquitylome analysis identifies dysregulation of effector substrates in SPOP-mutant prostate cancer. Science. 2014;346(6205):85–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Boysen G, Barbieri CE, Prandi D, Blattner M, Chae SS, Dahija A, et al. SPOP mutation leads to genomic instability in prostate cancer. Elife. 2015;4.

  101. An J, Ren S, Murphy SJ, Dalangood S, Chang C, Pang X, et al. Truncated ERG oncoproteins from TMPRSS2-ERG fusions are resistant to SPOP-mediated proteasome degradation. Mol Cell. 2015;59(6):904–16.

    Article  CAS  PubMed  Google Scholar 

  102. Adamo P, Ladomery MR. The oncogene ERG: a key factor in prostate cancer. Oncogene. 2016;35(4):403–14.

    Article  CAS  PubMed  Google Scholar 

  103. Robinson JL, Holmes KA, Carroll JS. FOXA1 mutations in hormone-dependent cancers. Front Oncol. 2013;3:20.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Barbieri CE, Bangma CH, Bjartell A, Catto JW, Culig Z, Grönberg H, et al. The mutational landscape of prostate cancer. Eur Urol. 2013;64(4):567–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. St John J, Powell K, Conley-Lacomb MK, Chinni SR. TMPRSS2-ERG fusion gene expression in prostate tumor cells and its clinical and biological significance in prostate cancer progression. J Cancer Sci Ther. 2012;4(4):94–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. García-Flores M, Casanova-Salas I, Rubio-Briones J, Calatrava A, Domínguez-Escrig J, Rubio L, et al. Clinico-pathological significance of the molecular alterations of the SPOP gene in prostate cancer. Eur J Cancer. 2014;50(17):2994–3002.

    Article  PubMed  CAS  Google Scholar 

  107. Ueda M, Iguchi T, Masuda T, Nakahara Y, Hirata H, Uchi R, et al. Somatic mutations in plasma cell-free DNA are diagnostic markers for esophageal squamous cell carcinoma recurrence. Oncotarget. 2016. doi:10.18632/oncotarget.11409.

    Google Scholar 

  108. Mooney SM, Jolly MK, Levine H, Kulkarni P. Phenotypic plasticity in prostate cancer: role of intrinsically disordered proteins. Asian J Androl. 2016;18(5):704–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Beltran H, Antonarakis ES, Morris MJ, Attard G. emerging molecular biomarkers in advanced prostate cancer: translation to the clinic. Am Soc Clin Oncol Educ Book. 2016;35:131–41.

    Article  PubMed  Google Scholar 

  110. Wang S, Song Y, Yan F, Liu D. Mechanisms of resistance to third-generation EGFR tyrosine kinase inhibitors. Front Med. 2016. doi:10.1007/s11684-016-0488-1.

    Google Scholar 

  111. Pashayan N, Duffy SW, Chowdhury S, Dent T, Burton H, Neal DE, et al. Polygenic susceptibility to prostate and breast cancer: implications for personalised screening. Br J Cancer. 2011;104(10):1656–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cybulski C, Wokołorczyk D, Kluźniak W, Kashyap A, Gołąb A, Słojewski M, et al. A personalised approach to prostate cancer screening based on genotyping of risk founder alleles. Br J Cancer. 2013;108(12):2601–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jackson SE, Chester JD. Personalised cancer medicine. Int J Cancer. 2015;137(2):262–6.

    Article  CAS  PubMed  Google Scholar 

  114. Decker B, Karyadi DM, Davis BW, Karlins E, Tillmans LS, Stanford JL, et al. Biallelic BRCA2 mutations shape the somatic mutational landscape of aggressive prostate tumors. Am J Hum Genet. 2016;98(5):818–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wojnarowicz PM, Oros KK, Quinn MC, Arcand SL, Gambaro K, Madore J, et al. The genomic landscape of TP53 and p53 annotated high grade ovarian serous carcinomas from a defined founder population associated with patient outcome. PLoS One. 2012;7(9):e45484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shanmugam V, Ramanathan RK, Lavender NA, Sinari S, Chadha M, Liang WS, et al. Whole genome sequencing reveals potential targets for therapy in patients with refractory KRAS mutated metastatic colorectal cancer. BMC Med Genomics. 2014;7:36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Nakayama S, Sng N, Carretero J, Welner R, Hayashi Y, Yamamoto M, et al. β-catenin contributes to lung tumor development induced by EGFR mutations. Cancer Res. 2014;74(20):5891–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sun Z, Wang L, Eckloff BW, Deng B, Wang Y, Wampfler JA, et al. Conserved recurrent gene mutations correlate with pathway deregulation and clinical outcomes of lung adenocarcinoma in never-smokers. BMC Med Genomics. 2014;7:32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Muñoz-Moreno L, Arenas MI, Carmena MJ, Schally AV, Prieto JC, Bajo AM. Growth hormone-releasing hormone antagonists abolish the transactivation of human epidermal growth factor receptors in advanced prostate cancer models. Invest New Drugs. 2014;32(5):871–82.

    Article  PubMed  CAS  Google Scholar 

  120. Rapisuwon S, Parks K, Al-Refaie W, Atkins MB. Novel somatic KIT exon 8 mutation with dramatic response to imatinib in a patient with mucosal melanoma: a case report. Melanoma Res. 2014;24(5):509–11.

    Article  PubMed  Google Scholar 

  121. Gavert N, Shvab A, Sheffer M, Ben-Shmuel A, Haase G, Bakos E, et al. c-Kit is suppressed in human colon cancer tissue and contributes to L1-mediated metastasis. Cancer Res. 2013;73(18):5754–63.

    Article  CAS  PubMed  Google Scholar 

  122. Han X, Zhao J, Ji Y, Xu X, Lou W. Expression of CK19 and KIT in resectable pancreatic neuroendocrine tumors. Tumour Biol. 2013;34(5):2881–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. J. Alvarez-Cubero or L. J. Martinez-Gonzalez.

Ethics declarations

Conflict of interest

M. J. Alvarez-Cubero; L. J. Martinez-Gonzalez; I. Robles-Fernandez; J. Martinez-Herrera MS; G. Garcia-Rodriguez; M. Pascual-Geler MD; J. M. Cozar and J. A. Lorente, no have nothing to disclose. The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez-Cubero, M.J., Martinez-Gonzalez, L.J., Robles-Fernandez, I. et al. Somatic Mutations in Prostate Cancer: Closer to Personalized Medicine. Mol Diagn Ther 21, 167–178 (2017). https://doi.org/10.1007/s40291-016-0248-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-016-0248-6

Keywords

Navigation