Skip to main content
Log in

Preimplantation Genetic Testing for Monogenic Conditions: Is Cell-Free DNA Testing the Next Step?

  • Current Opinion
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Genetic assessment of an embryo via preimplantation genetic testing (PGT) represents an important reproductive option for couples wanting to try and improve success rates from in vitro fertilisation (IVF) cycles, as well as reduce their risk of having a child born with a genetic condition. Currently, biopsy of the developing embryo prior to transfer allows genetic assessment of an embryo for either chromosome copy number (aneuploidy [PGT-A] or segmental rearrangement [PGT-SR]) or to avoid the transmission of a single gene condition (monogenic conditions [PGT-M]). However, this technology is invasive and commands considerable resources. Non-invasive PGT (niPGT) offers a potential alternate mode of embryonic analysis. Whilst the utility of niPGT-A has been recently explored, there has been limited consideration of niPGT-M as an option for couples at risk of passing on a single gene or chromosomal condition. This review examines the historical and current clinical context of preimplantation embryonic analysis for monogenic conditions, in addition to important considerations surrounding the origin and analysis of cell-free deoxyribose nucleic acid (cfDNA), whether it is sourced via blastocentesis or spent embryonic culture medium (SCM). Future capabilities of this testing modality will almost certainly be enhanced by integration of whole genome sequencing into everyday practice. In addition, the increased utilisation of reproductive carrier screening as part of standard reproductive healthcare will likely result in the identification of a larger high-risk population. As a result, stratification of limited and highly specialised reproductive genetic resources will be required. Prospective parents should continue to be made aware of the limitations of this technology, with prenatal confirmatory testing remaining an essential part of antenatal care in these patients. However, niPGT-M poses an important alternate testing modality for high-risk couples, particularly in the setting of embryos that cannot be biopsied for traditional PGT-M and as demand for this treatment continues to grow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Handyside AH, Pattinson JK, Penketh RJ, Delhanty JD, Winston RM, Tuddenham EG. Biopsy of human preimplantation embryos and sexing by DNA amplification. Lancet. 1989;1(8634):347–9.

    Article  PubMed  CAS  Google Scholar 

  2. Dahdouh EM. Preimplantation genetic testing for aneuploidy: a review of the evidence. Obstet Gynecol. 2021;137(3):528–34.

    Article  PubMed  Google Scholar 

  3. Poulton A, Lewis S, Hui L, Halliday JL. Prenatal and preimplantation genetic diagnosis for single gene disorders: a population-based study from 1977 to 2016. Prenat Diagn. 2018;38(12):904–10.

    Article  PubMed  Google Scholar 

  4. Hardy T. The role of prenatal diagnosis following preimplantation genetic testing for single-gene conditions: a historical overview of evolving technologies and clinical practice. Prenat Diagn. 2020;40(6):647–51.

    Article  PubMed  Google Scholar 

  5. Shamonki MI, Jin H, Haimowitz Z, Liu L. Proof of concept: preimplantation genetic screening without embryo biopsy through analysis of cell-free DNA in spent embryo culture media. Fertil Steril. 2016;106(6):1312–8.

    Article  PubMed  CAS  Google Scholar 

  6. Rubio C, Racowsky C, Barad DH, Scott RT Jr, Simon C. Noninvasive preimplantation genetic testing for aneuploidy in spent culture medium as a substitute for trophectoderm biopsy. Fertil Steril. 2021;115(4):841–9.

    Article  PubMed  Google Scholar 

  7. Leaver M, Wells D. Non-invasive preimplantation genetic testing (niPGT): the next revolution in reproductive genetics? Hum Reprod Update. 2020;26(1):16–42.

    Article  PubMed  CAS  Google Scholar 

  8. Handyside AH, Kontogianni EH, Hardy K, Winston RML. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature. 1990;344(6268):768–70.

    Article  PubMed  CAS  Google Scholar 

  9. Handyside AH, Lesko JG, Tarín JJ, Winston RML, Hughes MR. Birth of a normal girl after in vitro fertilization and preimplantation diagnostic testing for cystic fibrosis. N Engl J Med. 1992;327(13):905–9.

    Article  PubMed  CAS  Google Scholar 

  10. Findlay I, Matthews P, Quirke P. Multiple genetic diagnoses from single cells using multiplex PCR: reliability and allele dropout. Prenat Diagn. 1998;18(13):1413–21.

    Article  PubMed  CAS  Google Scholar 

  11. Harper JC, Wilton L, Traeger-Synodinos J, Goossens V, Moutou C, SenGupta SB, Pehlivan Budak T, Renwick P, De Rycke M, Geraedts JP, Harton G. The ESHRE PGD Consortium: 10 years of data collection. Hum Reprod Update. 2012;18(3):234–47.

    Article  PubMed  CAS  Google Scholar 

  12. Wilton L, Thornhill A, Traeger-Synodinos J, Sermon KD, Harper JC. The causes of misdiagnosis and adverse outcomes in PGD. Hum Reprod. 2009;24(5):1221–8.

    Article  PubMed  CAS  Google Scholar 

  13. Handyside AH, Robinson MD, Simpson RJ, Omar MB, Shaw M-A, Grudzinskas JG, Rutherford A. Isothermal whole genome amplification from single and small numbers of cells: a new era for preimplantation genetic diagnosis of inherited disease. Mol Hum Reprod. 2004;10(10):767–72.

    Article  PubMed  CAS  Google Scholar 

  14. Renwick PJ, Trussler J, Ostad-Saffari E, Fassihi H, Black C, Braude P, Ogilvie CM, Abbs S. Proof of principle and first cases using preimplantation genetic haplotyping—a paradigm shift for embryo diagnosis. Reprod Biomed Online. 2006;13(1):110–9.

    Article  PubMed  CAS  Google Scholar 

  15. Harper JC, Aittomäki K, Borry P, Cornel MC, de Wert G, Dondorp W, Geraedts J, Gianaroli L, Ketterson K, Liebaers I, Lundin K, Mertes H, Morris M, Pennings G, Sermon K, Spits C, Soini S, van Montfoort APA, Veiga A, Vermeesch JR, Viville S, Macek M Jr, R. on behalf of the European Society of Human, Embryology and G. European Society of Human. Recent developments in genetics and medically assisted reproduction: from research to clinical applications. Eur J Hum Genet EJHG. 2018;26(1):12–33.

    Article  PubMed  CAS  Google Scholar 

  16. Konstantinidis M, Prates R, Goodall NN, Fischer J, Tecson V, Lemma T, Chu B, Jordan A, Armenti E, Wells D, Munné S. Live births following Karyomapping of human blastocysts: experience from clinical application of the method. Reprod Biomed Online. 2015;31(3):394–403.

    Article  PubMed  Google Scholar 

  17. Gould RL, Griffin DK. Karyomapping and how is it improving preimplantation genetics? Expert Rev Mol Diagn. 2017;17(6):611–21.

    Article  PubMed  CAS  Google Scholar 

  18. Murphy NM, Samarasekera TS, Macaskill L, Mullen J, Rombauts LJF. Genome sequencing of human in vitro fertilisation embryos for pathogenic variation screening. Sci Rep. 2020;10(1):3795.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Yuan P, Xia J, Ou S, Liu P, Du T, Zheng L, Yin X, Xie L, Zhang S, Yan H, Gao Y, Zhang Q, Jiang H, Chen F, Wang W. A whole-genome sequencing–based novel preimplantation genetic testing method for de novo mutations combined with chromosomal balanced translocations. J Assist Reprod Genet. 2020;37(10):2525–33.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hastings RA 2nd, Enders AC, Schlafke S. Permeability of the zona pellucida to protein tracers. Biol Reprod. 1972;7(2):288–96.

    Article  PubMed  Google Scholar 

  21. Legge M. Oocyte and zygote zona pellucida permeability to macromolecules. J Exp Zool. 1995;271(2):145–50.

    Article  PubMed  CAS  Google Scholar 

  22. Idelevich A, Vilella F. Mother and embryo cross-communication. Genes. 2020;11(4):376.

    Article  PubMed Central  CAS  Google Scholar 

  23. Hardy K. Cell death in the mammalian blastocyst. Mol Hum Reprod. 1997;3(10):919–25.

    Article  PubMed  CAS  Google Scholar 

  24. Hardy K, Handyside AH, Winston RM. The human blastocyst: cell number, death and allocation during late preimplantation development in vitro. Development. 1989;107(3):597–604.

    Article  PubMed  CAS  Google Scholar 

  25. Lagalla C, Tarozzi N, Sciajno R, Wells D, Di Santo M, Nadalini M, Distratis V, Borini A. Embryos with morphokinetic abnormalities may develop into euploid blastocysts. Reprod Biomed Online. 2017;34(2):137–46.

    Article  PubMed  CAS  Google Scholar 

  26. Magli MC, Pomante A, Cafueri G, Valerio M, Crippa A, Ferraretti AP, Gianaroli L. Preimplantation genetic testing: polar bodies, blastomeres, trophectoderm cells, or blastocoelic fluid? Fertil Steril. 2016;105(3):676.e5–683.e5.

    Article  Google Scholar 

  27. Capalbo A, Romanelli V, Patassini C, Poli M, Girardi L, Giancani A, Stoppa M, Cimadomo D, Ubaldi FM, Rienzi L. Diagnostic efficacy of blastocoel fluid and spent media as sources of DNA for preimplantation genetic testing in standard clinical conditions. Fertil Steril. 2018;110(5):870.e5–879.e5.

    Article  Google Scholar 

  28. Scott RT Jr, Upham KM, Forman EJ, Zhao T, Treff NR. Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil Steril. 2013;100(3):624–30.

    Article  PubMed  Google Scholar 

  29. Yang Y, Zeng Y, Lv Z, Wan R, Tong M, Zhu H, Wang L, Zhou Z, Zhou Q, Sha J. Abnormal development at early postimplantation stage in mouse embryos after preimplantation genetic diagnosis. Anat Rec (Hoboken). 2012;295(7):1128–33.

    Article  Google Scholar 

  30. Guzman L, Nuñez D, López R, Inoue N, Portella J, Vizcarra F, Noriega-Portella L, Noriega-Hoces L, Munné S. The number of biopsied trophectoderm cells may affect pregnancy outcomes. J Assist Reprod Genet. 2019;36(1):145–51.

    Article  PubMed  Google Scholar 

  31. Neal SA, Franasiak JM, Forman EJ, Werner MD, Morin SJ, Tao X, Treff NR, Scott RT Jr. High relative deoxyribonucleic acid content of trophectoderm biopsy adversely affects pregnancy outcomes. Fertil Steril. 2017;107(3):731.e1–736.e1.

    Article  Google Scholar 

  32. Sacks GC, Altarescu G, Guedalia J, Varshaver I, Gilboa T, Levy-Lahad E, Eldar-Geva T. Developmental neuropsychological assessment of 4- to 5-year-old children born following preimplantation genetic diagnosis (PGD): a pilot study. Child Neuropsychol. 2016;22(4):458–71.

    Article  PubMed  Google Scholar 

  33. Kuiper D, Bennema A, la Bastide-van Gemert S, Seggers J, Schendelaar P, Mastenbroek S, Hoek A, Heineman MJ, Roseboom TJ, Kok JH, Hadders-Algra M. Developmental outcome of 9-year-old children born after PGS: follow-up of a randomized trial. Hum Reprod. 2018;33(1):147–55.

    Article  PubMed  Google Scholar 

  34. Schendelaar P, Middelburg KJ, Bos AF, Heineman MJ, Kok JH, La Bastide-Van Gemert S, Seggers J, Van den Heuvel ER, Hadders-Algra M. The effect of preimplantation genetic screening on neurological, cognitive and behavioural development in 4-year-old children: follow-up of a RCT. Hum Reprod. 2013;28(6):1508–18.

    Article  PubMed  CAS  Google Scholar 

  35. Natsuaki MN, Dimler LM. Pregnancy and child developmental outcomes after preimplantation genetic screening: a meta-analytic and systematic review. World J Pediatr. 2018;14(6):555–69.

    Article  PubMed  Google Scholar 

  36. Zhang WY, von Versen-Hoynck F, Kapphahn KI, Fleischmann RR, Zhao Q, Baker VL. Maternal and neonatal outcomes associated with trophectoderm biopsy. Fertil Steril. 2019;112(2):283 e2–290 e2.

    Article  Google Scholar 

  37. Zhao HC, Zhao Y, Li M, Yan J, Li L, Li R, Liu P, Yu Y, Qiao J. Aberrant epigenetic modification in murine brain tissues of offspring from preimplantation genetic diagnosis blastomere biopsies. Biol Reprod. 2013;89(5):117.

    Article  PubMed  Google Scholar 

  38. Wu Y, Lv Z, Yang Y, Dong G, Yu Y, Cui Y, Tong M, Wang L, Zhou Z, Zhu H, Zhou Q, Sha J. Blastomere biopsy influences epigenetic reprogramming during early embryo development, which impacts neural development and function in resulting mice. Cell Mol Life Sci. 2014;71(9):1761–74.

    Article  PubMed  CAS  Google Scholar 

  39. Iwayama H, Hochi S, Yamashita M. In vitro and in vivo viability of human blastocysts collapsed by laser pulse or osmotic shock prior to vitrification. J Assist Reprod Genet. 2011;28(4):355–61.

    Article  PubMed  Google Scholar 

  40. Gianaroli L, Magli MC, Pomante A, Crivello AM, Cafueri G, Valerio M, Ferraretti AP. Blastocentesis: a source of DNA for preimplantation genetic testing. Results from a pilot study. Fertil Steril. 2014;102(6):1692.e6–1699.e6.

    Article  Google Scholar 

  41. Brouillet S, Martinez G, Coutton C, Hamamah S. Is cell-free DNA in spent embryo culture medium an alternative to embryo biopsy for preimplantation genetic testing? A systematic review. Reprod Biomed Online. 2020;40(6):779–96.

    Article  PubMed  CAS  Google Scholar 

  42. Poli M, Ori A, Child T, Jaroudi S, Spath K, Beck M, Wells D. Characterization and quantification of proteins secreted by single human embryos prior to implantation. EMBO Mol Med. 2015;7(11):1465–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bodri D, Sugimoto T, Yao Serna J, Kawachiya S, Kato R, Matsumoto T. Blastocyst collapse is not an independent predictor of reduced live birth: a time-lapse study. Fertil Steril. 2016;105(6):1476.e3–1483.e3.

    Article  Google Scholar 

  44. Marcos J, Pérez-Albalá S, Mifsud A, Molla M, Landeras J, Meseguer M. Collapse of blastocysts is strongly related to lower implantation success: a time-lapse study. Hum Reprod. 2015;30(11):2501–8.

    Article  PubMed  CAS  Google Scholar 

  45. Rubio C, Navarro-Sánchez L, García-Pascual CM, Ocali O, Cimadomo D, Venier W, Barroso G, Kopcow L, Bahçeci M, Kulmann MIR, López L, De la Fuente E, Navarro R, Valbuena D, Sakkas D, Rienzi L, Simón C. Multicenter prospective study of concordance between embryonic cell-free DNA and trophectoderm biopsies from 1301 human blastocysts. Am J Obstet Gynecol. 2020;223(5):751.e1–751.e13.

    Article  CAS  Google Scholar 

  46. Consortium EP, Group S-EBW, Kokkali G, Coticchio G, Bronet F, Celebi C, Cimadomo D, Goossens V, Liss J, Nunes S, Sfontouris I, Vermeulen N, Zakharova E, De Rycke M. ESHRE PGT Consortium and SIG Embryology good practice recommendations for polar body and embryo biopsy for PGT. Hum Reprod Open. 2020;2020(3):hoaa020.

  47. Palini S, Galluzzi L, De Stefani S, Bianchi M, Wells D, Magnani M, Bulletti C. Genomic DNA in human blastocoele fluid. Reprod Biomed Online. 2013;26(6):603–10.

    Article  PubMed  CAS  Google Scholar 

  48. Zhang Y, Li N, Wang L, Sun H, Ma M, Wang H, Xu X, Zhang W, Liu Y, Cram DS, Sun B, Yao Y. Molecular analysis of DNA in blastocoele fluid using next-generation sequencing. J Assist Reprod Genet. 2016;33(5):637–45.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tobler KJ, Zhao Y, Ross R, Benner AT, Xu X, Du L, Broman K, Thrift K, Brezina PR, Kearns WG. Blastocoel fluid from differentiated blastocysts harbors embryonic genomic material capable of a whole-genome deoxyribonucleic acid amplification and comprehensive chromosome microarray analysis. Fertil Steril. 2015;104(2):418–25.

    Article  PubMed  CAS  Google Scholar 

  50. Tšuiko O, Zhigalina DI, Jatsenko T, Skryabin NA, Kanbekova OR, Artyukhova VG, Svetlakov AV, Teearu K, Trošin A, Salumets A, Kurg A, Lebedev IN. Karyotype of the blastocoel fluid demonstrates low concordance with both trophectoderm and inner cell mass. Fertil Steril. 2018;109(6):1127.e1–1134.e1.

    Article  Google Scholar 

  51. Galluzzi L, Palini S, Stefani SD, Andreoni F, Primiterra M, Diotallevi A, Bulletti C, Magnani M. Extracellular embryo genomic DNA and its potential for genotyping applications. Future Sci OA. 2015;1(4):FSO62.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shangguan T, He W, Li H, Shang X, Liu Y, Bai X, Li M, Xie J. Detection and analysis of DNA material in human blastocoel fluid. Biomed Genet Genomics. 2017;2(1):1–5.

  53. Stigliani S, Anserini P, Venturini PL, Scaruffi P. Mitochondrial DNA content in embryo culture medium is significantly associated with human embryo fragmentation. Hum Reprod. 2013;28(10):2652–60.

    Article  PubMed  CAS  Google Scholar 

  54. Assou S, Aït-Ahmed O, El Messaoudi S, Thierry AR, Hamamah S. Non-invasive pre-implantation genetic diagnosis of X-linked disorders. Med Hypotheses. 2014;83(4):506–8.

    Article  PubMed  CAS  Google Scholar 

  55. Yang L, Lv Q, Chen W, Sun J, Wu Y, Wang Y, Chen X, Chen X, Zhang Z. Presence of embryonic DNA in culture medium. Oncotarget. 2017;8(40):67805–9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hammond ER, McGillivray BC, Wicker SM, Peek JC, Shelling AN, Stone P, Chamley LW, Cree LM. Characterizing nuclear and mitochondrial DNA in spent embryo culture media: genetic contamination identified. Fertil Steril. 2017;107(1):220.e5–228.e5.

    Article  Google Scholar 

  57. Vera-Rodriguez M, Diez-Juan A, Jimenez-Almazan J, Martinez S, Navarro R, Peinado V, Mercader A, Meseguer M, Blesa D, Moreno I, Valbuena D, Rubio C, Simon C. Origin and composition of cell-free DNA in spent medium from human embryo culture during preimplantation development. Hum Reprod. 2018;33(4):745–56.

    Article  PubMed  CAS  Google Scholar 

  58. Xu J, Fang R, Chen L, Chen D, Xiao J-P, Yang W, Wang H, Song X, Ma T, Bo S, Shi C, Ren J, Huang L, Cai L-Y, Yao B, Xie XS, Lu S. Noninvasive chromosome screening of human embryos by genome sequencing of embryo culture medium for in vitro fertilization. Proc Natl Acad Sci. 2016;113(42):11907.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Feichtinger M, Vaccari E, Carli L, Wallner E, Mädel U, Figl K, Palini S, Feichtinger W. Non-invasive preimplantation genetic screening using array comparative genomic hybridization on spent culture media: a proof-of-concept pilot study. Reprod Biomed Online. 2017;34(6):583–9.

    Article  PubMed  Google Scholar 

  60. Lane M, Zander-Fox DL, Hamilton H, Jasper MJ, Hodgson BL, Fraser M, Bell F. Ability to detect aneuploidy from cell free DNA collected from media is dependent on the stage of development of the embryo. Fertil Steril. 2017;108(3):e61.

    Article  Google Scholar 

  61. Liu W, Liu J, Du H, Ling J, Sun X, Chen D. Non-invasive pre-implantation aneuploidy screening and diagnosis of beta thalassemia IVSII654 mutation using spent embryo culture medium. Ann Med. 2017;49(4):319–28.

    Article  PubMed  CAS  Google Scholar 

  62. Ho JR, Arrach N, Rhodes-Long K, Ahmady A, Ingles S, Chung K, Bendikson KA, Paulson RJ, McGinnis LK. Pushing the limits of detection: investigation of cell-free DNA for aneuploidy screening in embryos. Fertil Steril. 2018;110(3):467.e2–475.e2.

    Article  Google Scholar 

  63. Fang R, Yang W, Zhao X, Xiong F, Guo C, Xiao J, Chen L, Song X, Wang H, Chen J, Xiao X, Yao B, Cai L-Y. Chromosome screening using culture medium of embryos fertilised in vitro: a pilot clinical study. J Transl Med. 2019;17(1):73.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Huang L, Bogale B, Tang Y, Lu S, Xie XS, Racowsky C. Noninvasive preimplantation genetic testing for aneuploidy in spent medium may be more reliable than trophectoderm biopsy. Proc Natl Acad Sci USA. 2019;116(28):14105–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Rubio C, Rienzi L, Navarro-Sánchez L, Cimadomo D, García-Pascual CM, Albricci L, Soscia D, Valbuena D, Capalbo A, Ubaldi F, Simón C. Embryonic cell-free DNA versus trophectoderm biopsy for aneuploidy testing: concordance rate and clinical implications. Fertil Steril. 2019;112(3):510–9.

    Article  PubMed  CAS  Google Scholar 

  66. Yeung QSY, Zhang YX, Chung JPW, Lui WT, Kwok YKY, Gui B, Kong GWS, Cao Y, Li TC, Choy KW. A prospective study of non-invasive preimplantation genetic testing for aneuploidies (NiPGT-A) using next-generation sequencing (NGS) on spent culture media (SCM). J Assist Reprod Genet. 2019;36(8):1609–21.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Xu J, Fang R, Chen L, Chen D, Xiao JP, Yang W, Wang H, Song X, Ma T, Bo S, Shi C, Ren J, Huang L, Cai LY, Yao B, Xie XS, Lu S. Noninvasive chromosome screening of human embryos by genome sequencing of embryo culture medium for in vitro fertilization. Proc Natl Acad Sci USA. 2016;113(42):11907–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Committee Opinion No. 690: carrier screening in the age of genomic medicine. Obstet Gynecol. 2017;129(3):e35–e40.

  69. Committee Opinion No. 691: carrier screening for genetic conditions. Obstet Gynecol. 2017. 129(3):e41–e55.

  70. HGSA/RANZCOG Joint Committee on Prenatal Diagnosis and Screening. Prenatal screening and diagnosis of chromosomal and genetic conditions in the fetus in pregnancy. Melbourne: RANZCOG; 2018.

    Google Scholar 

  71. Archibald AD, Smith MJ, Burgess T, Scarff KL, Elliott J, Hunt CE, McDonald Z, Barns-Jenkins C, Holt C, Sandoval K, SivaKumar V, Ward L, Allen EC, Collis SV, Cowie S, Francis D, Delatycki MB, Yiu EM, Massie RJ, Pertile MD, Du Sart D, Bruno D, Amor DJ. Reproductive genetic carrier screening for cystic fibrosis, fragile X syndrome, and spinal muscular atrophy in Australia: outcomes of 12,000 tests. Genet Med. 2018;20(5):513–23.

    Article  PubMed  Google Scholar 

  72. Lazarin GA, Haque IS, Nazareth S, Iori K, Patterson AS, Jacobson JL, Marshall JR, Seltzer WK, Patrizio P, Evans EA, Srinivasan BS. An empirical estimate of carrier frequencies for 400+ causal Mendelian variants: results from an ethnically diverse clinical sample of 23,453 individuals. Genet Med. 2013;15(3):178–86.

    Article  PubMed  Google Scholar 

  73. Jiao J, Shi B, Sagnelli M, Yang D, Yao Y, Li W, Shao L, Lu S, Li D, Wang X. Minimally invasive preimplantation genetic testing using blastocyst culture medium. Hum Reprod. 2019;34(7):1369–79.

    Article  PubMed  CAS  Google Scholar 

  74. Li X, Hao Y, Chen D, Ji D, Zhu W, Zhu X, Wei Z, Cao Y, Zhang Z, Zhou P. Non-invasive preimplantation genetic testing for putative mosaic blastocysts: a pilot study. Hum Reprod. 2021;36(7):2020–34.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tristan Hardy.

Ethics declarations

Funding

This research was not supported by any external Grant funding.

Conflict of interest

AR, MM, SCK, DZ-F, and TH are employed by the Monash IVF Group, a commercial enterprise that offers preimplantation genetic testing. The views expressed in this manuscript are of the authors and do not reflect the views of the Monash IVF Group.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

All authors hereby attest that they meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship: Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND Drafting the work or revising it critically for important intellectual content; AND Final approval of the version to be published; AND Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogers, A., Menezes, M., Kane, S.C. et al. Preimplantation Genetic Testing for Monogenic Conditions: Is Cell-Free DNA Testing the Next Step?. Mol Diagn Ther 25, 683–690 (2021). https://doi.org/10.1007/s40291-021-00556-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-021-00556-0

Navigation