Skip to main content
Log in

q-Homotopy analysis method for solving the seventh-order time-fractional Lax’s Korteweg–de Vries and Sawada–Kotera equations

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This article presents exact and approximate solutions of the seventh order time-fractional Lax’s Korteweg–de Vries (7TfLKdV) and Sawada–Kotera (7TfSK) equations using the modification of the homotopy analysis method called the q-homotopy analysis method. Using this method, we construct the solutions to these problems in the form of recurrence relations and present the graphical representation to verify all obtained results in each case for different values of fractional order. Error analysis is also illustrated in the present investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adomian G (1994) Solving frontier problems of physics: the decomposition method. Kluwer, Boston

    Book  MATH  Google Scholar 

  • Chen D, Chen Y, Xue D (2013) Three fractional-order TV-models for image de-noising. J Comput Inf Syst 9(12):4773–80

    Google Scholar 

  • Darvishi MT, Khani F, Kheybari S (2007) A numerical solution of the Laxs 7th-order KdV equation by pseudospectral method and darvishis preconditioning. Int J Comtep Math Sci 2:1097–1106

    MathSciNet  MATH  Google Scholar 

  • Das GC, Sarma J, Uberoi C (1997) Explosion of a soliton in a multicomponent plasma. Phys Plasmas 4(6):2095–2100

    Article  MathSciNet  Google Scholar 

  • El-Sayed SM, Kaya D (2004) An application of the ADM to seven order Sawada-Kotera equations. Appl Math Comput 157:93–101

    MathSciNet  MATH  Google Scholar 

  • El-Tawil MA, Huseen SN (2012) The Q-homotopy analysis method (Q-HAM). Int J Appl Math Mech 8(15):51–75

    Google Scholar 

  • El-Tawil MA, Huseen SN (2013) On convergence of the q -homotopy analysis method. Int J Contemp Math Sci 8:481–497

    Article  MathSciNet  Google Scholar 

  • Huseen SN (2015) Solving the K(2,2) equation by means of the q-homotopy analysis method (q-HAM). Int J Innov Sci Eng Technol 2(8):805–817

    Google Scholar 

  • Huseen SN (2016) Series solutions of fractional initial-value problems by q-homotopy analysis method. Int J Innov Sci Eng Technol 3(1):27–41

    Google Scholar 

  • Iyiola OS (2013) A numerical study of ito equation and Sawada-Kotera equation both of time-fractional type. Adv Math Sci J 2(2):71–79

    MathSciNet  Google Scholar 

  • Iyiola OS (2015) On the solutions of non-linear time-fractional gas dynamic equations: an analytical approach. Int J Pure Appl Math 98(4):491–502

    Article  Google Scholar 

  • Iyiola OS (2016) Exact and approximate solutions of fractional diffusion equations with fractional reaction terms. Prog Fract Differ Appl 2(1):21–30

    Article  Google Scholar 

  • Iyiola OS, Zaman FD (2016) A note on analytical solutions of nonlinear fractional 2D heat equation with non-local integral terms. Pramana J Phys 87(4):51

    Article  Google Scholar 

  • Iyiola OS, Soh ME, Enyi CD (2013) Generalised homotopy analysis method (q-HAM) for solving foam drainage equation of time fractional type. Math Eng Sci Aerosp 4(4):105

    MATH  Google Scholar 

  • Jafari H, Yazdani A, Vahidi J, Ganji DD (2008) Application of He’s variational iteration method for solving seventh order Sawada-Kotera equations. Appl Math Sci 2(9–12):471–477

    MathSciNet  MATH  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. In: North-Holland Mathematics Studies, vol 204. Elsevier Science B.V., Amsterdam

  • Liao SJ (1992) The proposed homotopy analysis technique for the solution of nonlinear problems. Ph.D. Thesis, Shanghai Jiao Tong University

  • Liao SJ (1995) An approximate solution technique not depending on small parameters: a special example. Int J Non-linear Mech 30(3):371–380

    Article  MathSciNet  MATH  Google Scholar 

  • Liao SJ (2003) Beyond perturbation: introduction to the homotopy analysis method. Chapman and Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Liao SJ (2004) On the homotopy analysis method for nonlinear problems. Appl Math Comput 147(2):499–513

    MathSciNet  MATH  Google Scholar 

  • Liao SJ (2005) Comparison between the homotopy analysis method and homotopy perturbation method. Appl Math Comput 169(2):1186–1194

    MathSciNet  MATH  Google Scholar 

  • Luchko YF, Srivastava HM (1995) The exact solution of certain differential equations of fractional order by using operational calculus. Comput Math Appl 29:73–85

    Article  MathSciNet  MATH  Google Scholar 

  • Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Academic press, New York

    MATH  Google Scholar 

  • Pu YF (2007) Fractional differential analysis for texture of digital image. J Algorithms Comput Technol 1(03):357–80

    Article  Google Scholar 

  • Salas AH, Gomez CA (2010) Application of the Cole-Hopf transformation for finding exact solutions to several forms of the seventh-order KdV equation. Math Probl Eng 2010: 14 (Article ID 194329)

  • Şenol M, Tasbozan O, Kurt A (2018) Comparison of two reliable methods to solve fractional Rosenau-Hyman equation. Math Methods Appl Sci. https://doi.org/10.1002/mma.5497

    Article  Google Scholar 

  • Şenol M, Atpinar S, Zararsiz Z, Salahshour S, Ahmadian A (2019) Approximate solution of time-fractional fuzzy partial differential equations. Comput Appl Math 38(1):18

    Article  MathSciNet  MATH  Google Scholar 

  • Sibatov RT, Svetukhin VV (2015) Subdiffusion kinetics of nanoprecipitate growth and destruction in solid solutions. Theor Math Phys 183(3):846–59

    Article  MathSciNet  MATH  Google Scholar 

  • Soh ME, Enyi CD, Iyiola OS, Audu JD (2014) Approximate analytical solutions of strongly nonlinear fractional BBM-Burger’s equations with dissipative term. Appl Math Sci 8(155):7715–7726

    Google Scholar 

  • Soliman AA (2006) A numerical simulation and explicit solutions of KdVBursers’ and Lax’s seventh-order KdV equations. Chaos Solitons Fractals 29(2):294–302

    Article  MathSciNet  MATH  Google Scholar 

  • Tarasov VE, Tarasova VV (2017) Time-dependent fractional dynamics with memory in quantum and economic physics. Ann Phys 383:579–99

    Article  MathSciNet  MATH  Google Scholar 

  • Ullah A, Chen W, Sun HG, Khan MA (2017) An efficient variational method for restoring images with combined additive and multiplicative noise. Int J Appl Comput Math 3(3):1999–2019

    Article  MathSciNet  MATH  Google Scholar 

  • Yasar E, Yildirim Y, Khalique CM (2016) Lie symmetry analysis, conservation laws and exact solutions of the seventh-order time fractional Sawada-Kotera-Ito equation. Results Phys 6:322–8

    Article  Google Scholar 

  • Zhang J, Wei Z, Xiao L (2012a) Adaptive fractional multiscale method for image de-noising. J Math Imaging Vis 43:39–49

    Article  Google Scholar 

  • Zhang Y, Pu YF, Hu JR, Zhou JL (2012b) A class of fractional-order variational image in-painting models. Appl Math Inf Sci 06(02):299–306

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanre Akinyemi.

Additional information

Communicated by Vasily E. Tarasov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akinyemi, L. q-Homotopy analysis method for solving the seventh-order time-fractional Lax’s Korteweg–de Vries and Sawada–Kotera equations. Comp. Appl. Math. 38, 191 (2019). https://doi.org/10.1007/s40314-019-0977-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-019-0977-3

Keywords

Mathematics Subject Classification

Navigation