Skip to main content
Log in

Numerical analysis of a type III thermo-porous-elastic problem with microtemperatures

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this work, we consider, from the numerical point of view, a poro-thermoelastic problem. The thermal law is the so-called of type III and the microtemperatures are also included into the model. The variational formulation of the problem is written as a linear system of coupled first-order variational equations. Then, fully discrete approximations are introduced by using the classical finite-element method and the implicit Euler scheme. A discrete stability property and an a priori error estimates result are proved, from which the linear convergence of the algorithm is derived under suitable additional regularity conditions. Finally, some one- and two-dimensional numerical simulations are presented to show the accuracy of the approximation and the behavior of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida Júnior DS, Ramos AJA (2017) On the nature of dissipative Timoshenko systems at light of the second spectrum of frequency. Zeitschrift für Angewandte Mathematik und Physik 68:145

    MathSciNet  MATH  Google Scholar 

  • Aouadi M, Ciarletta M, Passarella F (2018) Thermoelastic theory with microtemperatures and dissipative thermodynamics. J Thermal Stress 41:522–542

    Google Scholar 

  • Bazarra N, Fernández JR (2018) Numerical analysis of a contact problem in poro-thermoelasticity with microtemperatures. Zeitschrift für Angewandte Mathematik und Mechanik 98:1190–1209

    MathSciNet  Google Scholar 

  • Campo M, Fernández JR, Kuttler KL, Shillor M, Viaño JM (2006) Numerical analysis and simulations of a dynamic frictionless contact problem with damage. Comput Methods Appl Mech Eng 196(1–3):476–488

    MathSciNet  MATH  Google Scholar 

  • Casas P, Quintanilla R (2005) Exponential stability in thermoelasticity with microtemperatures. Int J Eng Sci 43:33–47

    MathSciNet  MATH  Google Scholar 

  • Casas P, Quintanilla R (2005) Exponential decay in one-dimensional porous-thermoelasticity. Mech Res Commun 32:652–658

    MATH  Google Scholar 

  • Cattaneo C (1958) On a form of heat equation which eliminates the paradox of instantaneous propagation. Comptes Rendus de l’Académie de Sciences de Paris 247:431–433

    MATH  Google Scholar 

  • Chirita S, Ciarletta M, D’Apice C (2013) On the theory of thermoelasticity with microtemperatures. J Math Anal Appl 397:349–361

    MathSciNet  MATH  Google Scholar 

  • Ciarlet PG (1993) Basic error estimates for elliptic problems. In: Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions eds., vol II, 17-351

  • Ciarletta M, Straughan B, Tibullo V (2010) Structural stability for a rigid body with thermal microstructure. Int J Eng Sci 48:592–598

    MathSciNet  MATH  Google Scholar 

  • Cowin SC (1985) The viscoelastic behavior of linear elastic materials with voids. J Elasticity 15:185–191

    MATH  Google Scholar 

  • Cowin SC, Nunziato JW (1983) Linear elastic materials with voids. J Elasticity 13:125–147

    MATH  Google Scholar 

  • Green AE, Naghdi PM (1992) On undamped heat waves in an elastic solid. J Thermal Stress 15:253–264

    MathSciNet  Google Scholar 

  • Eringen AC (1999) Microcontinuum field theories. I. Foundations and solids. Springer, New York

    MATH  Google Scholar 

  • Feng B, Apalara TA (2019) Optimal decay for a porous elasticity system with memory. J Math Anal Appl 470:1108–1128

    MathSciNet  MATH  Google Scholar 

  • Feng B, Yin M (2019) Decay of solutions for a one-dimensional porous elasticity system with memory: the case of non-equal wave speeds. Math Mech Solids 24:2361–2373

    MathSciNet  Google Scholar 

  • Fernández JR, Masid M (2016) Analysis of a problem arising in porous thermoelasticity of type II. J Thermal Stress 39:513–531

    Google Scholar 

  • Fernández JR, Masid M (2017) A porous thermoelastic problem: an a priori error analysis and computational experiments. Appl Math Comput 305:117–135

    MathSciNet  MATH  Google Scholar 

  • Fernández JR, Masid M (2017) Numerical analysis of a thermoelastic diffusion problem with voids. Int J Numer Anal Model 14:153–174

    MathSciNet  MATH  Google Scholar 

  • Green AE, Naghdi PM (1993) Thermoelasticity without energy dissipation. J Elast 31:189–208

    MathSciNet  MATH  Google Scholar 

  • Grot R (1969) Thermodynamics of a continuum with microstructure. Int J Eng Sci 7:801–814

    MATH  Google Scholar 

  • Ieşan D (2007) Thermoelasticity of bodies with microstructure and microtemperatures. Int J Solids Sruct 44:8648–8653

    MATH  Google Scholar 

  • Iesan D (2018) On a theory of thermoelasticity without energy dissipation for solids with microtemperatures. Zeitschrift für Angewandte Mathematik und Mechanik 98:870–885

    MathSciNet  Google Scholar 

  • Iesan D, Quintanilla R (2000) On a theory of thermoelasticity with microtemperatures. J Therm Stresses 23:195–215

    MathSciNet  Google Scholar 

  • Ieşan D, Quintanilla R (2009) On thermoelastic bodies with inner structure and microtemperatures. J Math Anal Appl 354:12–23

    MathSciNet  MATH  Google Scholar 

  • Ieşan D, Quintanilla R (2014) On a theory of thermoelastic materials with double porosity structure. J Therm Stresses 37:1017–1036

    Google Scholar 

  • Iesan D, Quintanilla R (2018) Qualitative properties in strain gradient thermoelasticity with microtemperatures. Math Mech Solids 23:240–258

    MathSciNet  MATH  Google Scholar 

  • Kothari S, Mukhopadhyay S (2012) Study of harmonic plane waves in rotating thermoelastic media of type III. Math Mech Solids 17:824–839

    MathSciNet  Google Scholar 

  • Kumar R, Vohra R (2017) Effect of hall current in thermoelastic materials with double porosity structure. Int J Appl Mech Eng 22:303–319

    Google Scholar 

  • Kumar R, Vohra R (2019) Forced vibrations of a thermoelastic double porous microbeam subjected to a moving load. J Theor Appl Mech 57:155–166

    Google Scholar 

  • Kumar R, Vohra R, Gorla M (2016) Reflection of plane waves in thermoelastic medium with double porosity. Multidiscip Model Mater Struct 12:748–778

    Google Scholar 

  • Leseduarte MC, Magaña A, Quintanilla R (2010) On the time decay of solutions in porous-thermo-elasticity of type II. Discr Contin Dyn Syst B 13:375–391

    MathSciNet  MATH  Google Scholar 

  • Magaña A, Quintanilla R (2006) On the exponential decay of solutions in one-dimensional generalized porous-thermo-elasticity. Asympt Anal 49:173–187

    MathSciNet  MATH  Google Scholar 

  • Magaña A, Quintanilla R (2017) On the time decay of solutions in porous-elasticity with quasi-static microvoids. J Math Anal Appl 331:617–630

    MathSciNet  MATH  Google Scholar 

  • Magaña A, Quintanilla R (2018) Exponential stability in type III thermoelasticity with microtemperatures. Z Angew Math Phys 69(5):129(1)–129(8)

    MathSciNet  MATH  Google Scholar 

  • Magaña A, Quintanilla R (2020) Exponential stability in three dimensionaltype III thermo-porous-elasticity with microtemperatures. J Elast 139:153–161

    MATH  Google Scholar 

  • Miranville A, Quintanilla R (2019) Exponential decay in one-dimensional type III thermoelasticity with voids. Appl Math Lett 94:30–37

    MathSciNet  MATH  Google Scholar 

  • Miranville A, Quintanilla R (2020) Exponential decay in one-dimensional type II thermoviscoelasticity with voids. J Comput Appl Math 368:112573

    MathSciNet  MATH  Google Scholar 

  • Nunziato JW, Cowin S (1979) A nonlinear theory of elastic materials with voids. Arch Ration Mech Anal 72:175–201

    MathSciNet  MATH  Google Scholar 

  • Quintanilla R (2011) On the growth and continuous dependence in thermoelasticity with microtemperatures. J Therm Stresses 34:911–922

    Google Scholar 

  • Quintanilla R (2013) On the logarithmic convexity in thermoelasticity with microtemperatures. J Therm Stresses 36:378–386

    Google Scholar 

  • Ramos AJA, Almeida-Júnior DS, Freitas MM, DosSantos MJ (2020) A new exponential decay result for one-dimensional porous dissipation elasticity from second spectrum viewpoint. Appl Math Lett 101:106061

    MathSciNet  MATH  Google Scholar 

  • Riha P (1975) On the theory of heat-conducting micropolar fluids with microtemperatures. Acta Mech 23:1–8

    MATH  Google Scholar 

  • Riha P (1976) On the microcontinuum model of heat conduction in materials with inner structure. Int J Eng Sci 14:529–535

    Google Scholar 

  • Verma PDS, Singh DV, Singh K (1979) Hagen-Poiseuille flow of microthermopolar fluids in a circular pipe. Acta Technical CSAV 24:402–412

    MATH  Google Scholar 

Download references

Acknowledgements

The work of J.R. Fernández was partially supported by Ministerio de Ciencia, Innovación y Universidades under the research project PGC2018-096696-B-I00 (FEDER, UE). The work of R. Quintanilla was supported by projects “Análisis Matemático de Problemas de la Termomecánica” (MTM2016-74934-P), (AEI/FEDER, UE) of the Spanish Ministry of Economy and Competitiveness, and “Análisis matemático aplicado a la termomecánica” (Ref. PID2019-105118GB-I00), (AEI/FEDER, UE) of the Spanish Ministry of Science, Innovation and Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José R. Fernández.

Additional information

Communicated by Cassio Oishi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazarra, N., Fernández, J.R. & Quintanilla, R. Numerical analysis of a type III thermo-porous-elastic problem with microtemperatures. Comp. Appl. Math. 39, 242 (2020). https://doi.org/10.1007/s40314-020-01248-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-01248-x

Keywords

Mathematics Subject Classification

Navigation