Skip to main content
Log in

Sobolev orthogonality of polynomial solutions of second-order partial differential equations

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Given a second-order partial differential operator \({\mathscr {L}}\) with nonzero polynomial coefficients of degree at most 2, and a Sobolev bilinear form

$$\begin{aligned} (P,Q)_S\,=\,\sum _{i=0}^N\sum _{j=0}^i\left\langle {\textbf{u}}^{(i,j)}, \partial _x^{i-j}\partial _y^jP\,\,\partial _x^{i-j}\partial _y^{j}Q\right\rangle , \quad N\geqslant 0, \end{aligned}$$

where \({\textbf{u}}^{(i,j)}\), \(0\leqslant j \leqslant i \leqslant N\), are linear functionals defined on the space of bivariate polynomials, we study the orthogonality of the polynomial solutions of the partial differential equation \({\mathscr {L}}[p]=\lambda _{n,m}\,p\) with respect to \((\cdot ,\cdot )_S\), where \(\lambda _{n,m}\) are eigenvalue parameters depending on the total and partial degree of the solutions. We show that the linear functionals in the bilinear form must satisfy Pearson equations related to the coefficients of \({\mathscr {L}}\). Therefore, we also study solutions of the Pearson equations that can be obtained from univariate moment functionals. In fact, the involved univariate functionals must satisfy Pearson equations in one variable. Moreover, we study polynomial solutions of \({\mathscr {L}}[p]=\lambda _{n,m}\,p\) obtained from univariate sequences of polynomials satisfying second-order ordinary differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agahanov SA (1965) A method of constructing orthogonal polynomials in two variables for a certain class of weight functions (Russian). Vestnik Leningrad Univ 2:5–10

    MathSciNet  Google Scholar 

  • Álvarez de Morales M, Fernández L, Pérez TE, Piñar MA (2009) Bivariate orthogonal polynomials in the Lyskova class. J Comput Appl Math 233:597–601

    Article  MathSciNet  MATH  Google Scholar 

  • Álvarez de Morales M, Fernández L, Pérez TE, Piñar MA (2009) A matrix Rodrigues formula for classical orthogonal polynomials in two variables. J Approx Theory 157:32–52

    Article  MathSciNet  MATH  Google Scholar 

  • Atkas R, Xu Y (2013) Sobolev orthogonal polynomials on a simplex. Int Math Res Notice 2013(13):3087–3131

    Article  MathSciNet  MATH  Google Scholar 

  • Bracciali BF, Delgado AM, Fernández L, Pérez TE, Piñar MA (2010) New steps on Sobolev orthogonality in two variables. J Comput Appl Math 235:916–926

    Article  MathSciNet  MATH  Google Scholar 

  • Dai F, Xu Y (2011) Polynomial approximation in Sobolev spaces on the unit sphere and the unit ball. J Approx Theory 163(10):1400–1418

    Article  MathSciNet  MATH  Google Scholar 

  • Delgado AM, Pérez TE, Piñar MA (2013) Sobolev-type orthogonal polynomials on the unit ball. J Approx Theory 170:94–106

    Article  MathSciNet  MATH  Google Scholar 

  • Delgado AM, Fernández L, Lubinsky DS, Pérez TE, Piñar MA (2016) Sobolev orthogonal polynomials on the unit ball via outward normal derivatives. J Math Anal Appl 440(2):716–740

    Article  MathSciNet  MATH  Google Scholar 

  • Dueñas HA, Pinzón-Cortés N, Salazar-Morales O (2017) Sobolev orthogonal polynomials of high order in two variables defined on product domains. Integr Transf Spec Funct 28(12):988–1008

    Article  MathSciNet  MATH  Google Scholar 

  • Dueñas HA, Salazar-Morales O, Piñar MA (2021) Sobolev orthogonal polynomials of several variables on product domains. Mediterr J Math 18:227

    Article  MathSciNet  MATH  Google Scholar 

  • Dunkl CF, Xu Y (2014) Orthogonal polynomials of several variables, encyclopedia of mathematics and its applications, vol 155, 2nd edn. Cambridge Univ. Press, Cambridge

    Book  Google Scholar 

  • Fernández L, Pérez TE, Piñar MA (2005) Weak classical orthogonal polynomials in two variables. J Comput Appl Math 178:191–203

    Article  MathSciNet  MATH  Google Scholar 

  • Fernández L, Pérez TE, Piñar MA (2012) On Koornwinder classical orthogonal polynomials in two variables. J Comput Appl Math 236:3817–3826

    Article  MathSciNet  MATH  Google Scholar 

  • Fernández L, Marcellán F, Pérez TE, Piñar MA, Xu Y (2015) Sobolev orthogonal polynomials on product domains. J Comput Appl Math 284:202–215

    Article  MathSciNet  MATH  Google Scholar 

  • Garcia-Ardila JC, Marriaga ME (2021) On Sobolev bilinear forms and polynomial solutions of second-order differential equations. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser A-Mat

  • Garcia-Ardila JC, Marcellán F, Marriaga ME (2021) Orthogonal polynomials and linear functionals, an algebraic approach and applications. European Mathematical Society (EMS), Berlin

    Book  MATH  Google Scholar 

  • Horn RA, Johnson CR (1981) Topics in matrix analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Kim YJ, Kwon KH, Lee JK (1997) Orthogonal polynomials in two variables and second-order partial differential equations. J Comput Appl Math 82:239–260

    Article  MathSciNet  MATH  Google Scholar 

  • Koornwinder TH (1975) Two variable analogues of the classical orthogonal polynomials. In: Askey R (ed) Theory and application of special functions. Academic Press, New York, pp 435–495

    Chapter  Google Scholar 

  • Krall HL, Frink O (1949) A new class of orthogonal polynomials: the Bessel polynomials. Trans Am Math Soc 65:100–115

    Article  MathSciNet  MATH  Google Scholar 

  • Krall HL, Sheffer IM (1967) Orthogonal polynomials in two variables. Ann Mat Pura Appl 76(4):325–376

    Article  MathSciNet  MATH  Google Scholar 

  • Kwon KH, Lee JK, Littlejohn LL (2001) Orthogonal polynomial eigenfunctions of second-order partial differential equations. Trans Am Math Soc 353:3629–3647

    Article  MathSciNet  MATH  Google Scholar 

  • Lee JK (2000) Bivariate version of the Hahn–Sonine theorem. Proc Am Math Soc 128(8):2381–2391

    Article  MathSciNet  MATH  Google Scholar 

  • Lee JK, Littlejohn LL (2006) Sobolev orthogonal polynomials in two variables and second order partial differential equations. J Math Anal Appl 322:1001–1017

    Article  MathSciNet  MATH  Google Scholar 

  • Lee JK, Littlejohn LL, Yoo BH (2004) Orthogonal polynomials satisfying partial differential equations belonging to the basic class. J Korean Math Soc 41:1049–1070

    Article  MathSciNet  MATH  Google Scholar 

  • Li H, Xu Y (2014) Spectral approximation on the unit ball. SIAM J Numer Anal 52(6):2647–2675

    Article  MathSciNet  MATH  Google Scholar 

  • Lizarte F, Pérez TE, Piñar MA (2021) The radial part of a class of Sobolev polynomials on the unit ball. Numer Algor 87:1369–1389

    Article  MathSciNet  MATH  Google Scholar 

  • Lyskova AS (1991) Orthogonal polynomials in several variables. Soviet Math Dokl 43:264–268

    MathSciNet  MATH  Google Scholar 

  • Marcellán F, Xu Y (2015) On Sobolev orthogonal polynomials. Expo Math 33:308–352

    Article  MathSciNet  MATH  Google Scholar 

  • Marcellán F, Marriaga ME, Pérez TE, Piñar MA (2018) Matrix Pearson equations satisfied by Koornwinder weights in two variables. Acta Appl Math 153:81–100

    Article  MathSciNet  MATH  Google Scholar 

  • Marcellán F, Marriaga ME, Pérez TE, Piñar MA (2018) On bivariate classical orthogonal polynomials. Appl Math Comput 325:340–357

    MathSciNet  MATH  Google Scholar 

  • Marriaga ME, Pérez TE, Piñar MA (2017) Three term relations for a class of bivariate orthogonal polynomials. Mediterr J Math 14(2):26

    Article  MathSciNet  MATH  Google Scholar 

  • Marriaga ME, Pérez TE, Piñar MA (2021) Bivariate Koornwinder–Sobolev orthogonal polynomials. Mediterr J Math 18(6):234

    Article  MathSciNet  MATH  Google Scholar 

  • Pérez TE, Piñar MA, Xu Y (2013) Weighted Sobolev orthogonal polynomials on the unit ball. J Approx Theory 171:84–104

    Article  MathSciNet  MATH  Google Scholar 

  • Piñar MA, Xu Y (2009) Orthogonal polynomials and partial differential equations on the unit ball proc. Am Math Soc 137:2979–2987

    Article  MATH  Google Scholar 

  • Szegő G (1975) Orthogonal polynomials, vol 23, 4th edn. Math. Soc. Colloq. Publ., Amer. Math. Soc., Providence

    MATH  Google Scholar 

  • Xu Y (2006) A family of Sobolev orthogonal polynomials on the unit ball. J Approx Theory 138:232–241

    Article  MathSciNet  MATH  Google Scholar 

  • Xu Y (2008) Sobolev orthogonal polynomials defined via gradient on the unit ball. J Approx Theory 152:5–65

    Article  MathSciNet  Google Scholar 

  • Xu Y (2017) Approximation and orthogonality in Sobolev spaces on a triangle. Constr Approx 46(2):34–434

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank to the anonymous referees for their careful revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misael E. Marriaga.

Additional information

Communicated by Carlos Conca.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors have been supported by the Comunidad de Madrid multiannual agreement with the Universidad Rey Juan Carlos under the grant Proyectos I+D para Jóvenes Doctores, Ref. M2731, project NETA-MM, and MEM has also been supported by Spanish Agencia Estatal de Investigación under grant PID2021-122154NB-I00.

Appendix A

Appendix A

1.1 A.1 Proof of Lemma 3.2

Let \({\textbf{u}}\) be a bivariate moment functional and let \(P\in \Pi ^2\).

For \(i=j=0\), we have

$$\begin{aligned} {\mathscr {L}}[P]\,{\textbf{u}}\,=\,[a\,P_{xx}+2b\,P_{xy}+c\,P_{yy}+d\,P_x+e\,P_y]\,{\textbf{u}}, \end{aligned}$$

and

$$\begin{aligned} {\mathscr {L}}^*[P\,{\textbf{u}}]\,=\,(a\,P\,{\textbf{u}})_{xx}+2(b\,P\,{\textbf{u}})_{xy}+(c\,P\,{\textbf{u}})_{yy}-(d\,P\,{\textbf{u}})_x-(e\,P\,{\textbf{u}})_y. \end{aligned}$$

Using the product rule and then simplifying, we get

$$\begin{aligned} \begin{aligned} {\mathscr {L}}[P]{\textbf{u}}-{\mathscr {L}}^*[P{\textbf{u}}]=&-P\,\left( {\mathscr {L}}^{(0,0)}\right) ^*[{\textbf{u}}]-2P_x\,{\mathcal {M}}_1^{(0,0)}[{\textbf{u}}]-2P_y\,{\mathcal {M}}_2^{(0,0)}[{\textbf{u}}]. \end{aligned} \end{aligned}$$
(A.1)

Note that \({\mathscr {L}}^{(0,0)}\equiv {\mathscr {L}}\).

Now, let \(i+j\geqslant 1\). On one hand, using Leibniz rule and the fact that \({\mathscr {L}}\) is in the extended Lyskova class, we can expand \(\partial _x^i\partial _y^j{\mathscr {L}}[P]\). We get

$$\begin{aligned} \begin{aligned}&\partial _x^i\partial _y^j\bigg (\partial _x^i\partial _y^j{\mathscr {L}}[P]\,{\textbf{u}} \bigg )\\&\quad =\partial _x^i\partial _y^j\bigg [ \bigg ( {\mathscr {L}}[\partial _x^i\partial _y^jP]+i\,a_x\,\partial _x^{i+1}\partial _y^jP+2\,i\,b_x\,\partial _x^i\partial _y^{j+1}P+2\,j\,b_y\,\partial _x^{i+1}\partial _y^jP\\&\qquad +j\,c_y\partial _x^i\partial _y^{j+1}P+\frac{i(i-1)}{2}a_{xx}\partial _x^i\partial _y^jP+2ijb_{xy}\partial _x^i\partial _y^jP+\frac{j(j-1)}{2}c_{yy}\partial _x^i\partial _y^jP\\&\qquad +i\,d_x\,\partial _x^i\partial _y^jP+j\,e_y\,\partial _x^i\partial _y^jP\bigg )\,{\textbf{u}}\bigg ]. \end{aligned} \end{aligned}$$

On the other hand,

$$\begin{aligned} \begin{aligned}&{\mathscr {L}}^*\Big [\partial _x^i\partial _y^j(\partial _x^i\partial _y^jP\,{\textbf{u}}) \Big ]\\&\quad =\Big [a\,\partial _x^i\partial _y^j(\partial _x^i\partial _y^jP\,{\textbf{u}}) \Big ]_{xx}+2\Big [b\,\partial _x^i\partial _y^j(\partial _x^i\partial _y^jP\,{\textbf{u}}) \Big ]_{xy}+\Big [c\,\partial _x^i\partial _y^j(\partial _x^i\partial _y^jP\,{\textbf{u}}) \Big ]_{yy}\\&\qquad -\Big [d\,\partial _x^i\partial _y^j(\partial _x^i\partial _y^jP\,{\textbf{u}}) \Big ]_x-\Big [e\,\partial _x^i\partial _y^j(\partial _x^i\partial _y^jP\,{\textbf{u}}) \Big ]_y\\&\quad =\partial _x^i\partial _y^j\bigg [{\mathscr {L}}^*[\partial _x^i\partial _y^jP\,{\textbf{u}}]+i\,d_x\partial _x^i\partial _y^jP\,{\textbf{u}}+j\,e_y\partial _x^i\partial _y^jP\,{\textbf{u}} + \frac{i(i-1)}{2}a_{xx}\partial _x^i\partial _y^jP\,{\textbf{u}}\\&\qquad +2ij\,b_{xy}\partial _x^i\partial _y^jP\,{\textbf{u}}+\frac{j(j-1)}{2}c_{yy}\partial _x^i\partial _y^jP\,{\textbf{u}}-i\partial _x\left( a_x\partial _x^i\partial _y^jP\,{\textbf{u}}\right) \\&\qquad -2i\partial _y\left( b_x\partial _x^i\partial _y^jP\,{\textbf{u}}\right) -2j\partial _x\left( b_y\partial _x^i\partial _y^jP\,{\textbf{u}}\right) -j\partial _y\left( c_y\partial _x^i\partial _y^jP\,{\textbf{u}}\right) \bigg ]. \end{aligned} \end{aligned}$$

Then, using (A.1), we get

$$\begin{aligned} \begin{aligned}&\partial _x^i\partial _y^j\Big (\partial _x^i\partial _y^j{\mathscr {L}}[P]\,{\textbf{u}} \Big )-{\mathscr {L}}^*\Big [\partial _x^i\partial _y^j(\partial _x^i\partial _y^jP\,{\textbf{u}}) \Big ]\\&\quad =-\partial _x^i\partial _y^j\bigg [ \partial _x^i\partial _y^jP\,\Big ([(a\,{\textbf{u}})_x+(b\,{\textbf{u}})_y-(d+i\,a_x+2j\,b_y)\,{\textbf{u}}]_x\\&\qquad +[(b\,{\textbf{u}})_x+(c\,{\textbf{u}})_y-(e+2i\,b_x+j\,c_y)\,{\textbf{u}}]_y\Big )\\&\qquad +2\,\partial _x^{i+1}\partial _y^jP\,[(a\,{\textbf{u}})_x+(b\,{\textbf{u}})_y-(d+i\,a_x+2j\,b_y)\,{\textbf{u}}]\\&\qquad +2\,\partial _x^i\partial _y^{j+1}P\,[(b\,{\textbf{u}})_x+(c\,{\textbf{u}})_y-(e+2i\,b_x+j\,c_y)\,{\textbf{u}}]\bigg ]. \end{aligned} \end{aligned}$$

Remark A.1

Observe that (A.1) is satisfied even when \({\mathscr {L}}\) is not in the extended Lyskova class.

1.2 A.2 Proof of Corollary 4.3

From Proposition 4.2 with \(\rho (s)\,=\,r_0+r_1\,s\), we have for all \(P\in \Pi ^2\),

$$\begin{aligned} \begin{aligned}&\left\langle -y\,\widetilde{b}(x)\,\partial _x\,{\textbf{w}}-c(y)\,\partial _y\,{\textbf{w}}\,+\,\widetilde{e}(y)\,{\textbf{w}},P\right\rangle +(r_1-r_1)\left\langle \widetilde{d}(s)\,{\textbf{u}}_0^{(s)}, \left\langle t\,{\textbf{v}}^{(t)}, P \right\rangle \right\rangle \\&\quad =r_1\,\left\langle -a(s)\,D\,{\textbf{u}}_0^{(s)} + \left( \widetilde{b}(s)+\widetilde{d}(s)\right) \,{\textbf{u}}_0^{(s)},\left\langle t\,{\textbf{v}}^{(t)}, P\right\rangle \right\rangle \\&\qquad +r_1\left\langle (e_1-d_1)\,s\,{\textbf{u}}_0^{(s)}, \left\langle t\,{\textbf{v}}^{(t)}, P\right\rangle \right\rangle \\&\qquad + \left\langle {\textbf{u}}_0^{(s)},\left\langle {\textbf{v}}^{(t)},(c_2-b_1)\,r_1\,s\,\partial _t\left( t^2\,P\right) \right\rangle \right\rangle \\&\qquad + \left\langle {\textbf{u}}_0^{(s)},\left\langle {\textbf{v}}^{(t)},(c_2\,r_0-b_0\,r_1)\partial _t\left( t^2P\right) +c_1\partial _t(t\,P)+ \left[ e_0+(e_1\,r_0-d_0\,r_1)\,t\right] P\right\rangle \right\rangle \\&\qquad + \left\langle {\textbf{u}}_0^{(s)},\left\langle {\textbf{v}}^{(t)},c_0\,\dfrac{1}{\rho (s)}\partial _t\,P \right\rangle \right\rangle . \end{aligned} \end{aligned}$$

Using conditions (a) and (b), we obtain

$$\begin{aligned} \begin{aligned}&\left\langle -y\,\widetilde{b}(x)\,\partial _x\,{\textbf{w}}-c(y)\,\partial _y\,{\textbf{w}}\,+\,\widetilde{e}(y)\,{\textbf{w}},P\right\rangle \\&\quad = \left\langle {\textbf{u}}_0^{(s)},\left\langle {\textbf{v}}^{(t)},(c_2\,r_0-b_0\,r_1)\partial _t\left( t^2P\right) +c_1\partial _t(t\,P)+ \left[ e_0+(e_1\,r_0-d_0\,r_1)\,t\right] P\right\rangle \right\rangle ,\\&\quad = \left\langle {\textbf{u}}_0^{(s)},\left\langle -\left[ \left( b_1\,r_0-r_1\,b_0\right) t^2+c_1\,t \right] \,D\,{\textbf{v}}^{(t)}+ \left[ e_0+(e_1\,r_0-d_0\,r_1)\,t\right] \,{\textbf{v}}^{(t)}, P \right\rangle \right\rangle , \end{aligned} \end{aligned}$$

and from condition (c) we get \(\left\langle -y\,\widetilde{b}(x)\,\partial _x\,{\textbf{w}}-c(y)\,\partial _y\,{\textbf{w}}\,+\,\widetilde{e}(y)\,{\textbf{w}},P\right\rangle =0\), and the promised result follows.

1.3 A.3 Proof of Corollary 4.4

From Proposition 4.2 with \(\rho (s)\, =\, \sqrt{\ell _0+2\,\ell _1\,s+\ell _2\,s^2}\), we get

$$\begin{aligned}{} & {} \left\langle -y\,\widetilde{b}(x)\,\partial _x\,{\textbf{w}}-c(y)\,\partial _y\,{\textbf{w}}\,+\,\widetilde{e}(y)\,{\textbf{w}},P\right\rangle \\{} & {} \quad = \,\left\langle -a(s)\,D\,{\textbf{u}}_0^{(s)} +\left( \widetilde{b}(s)+\widetilde{d}(s)\right) \,{\textbf{u}}_0^{(s)},\left\langle t\,{\textbf{v}}^{(t)}, \rho '(s)\,P\right\rangle \right\rangle \\{} & {} \qquad +\,\left\langle {\textbf{u}}_0^{(s)}, \left\langle -(c_2-b_1)\,\ell _2\,t^2\,D\,{\textbf{v}}^{(t)}+\ell _2\,(e_1-d_1)\,t\,{\textbf{v}}^{(t)},\frac{s^2}{\rho (s)}P \right\rangle \right\rangle \\{} & {} \qquad -\,\left\langle {\textbf{u}}_0^{(s)}, \left\langle \left[ (2\,c_2-b_1)\,\ell _1-b_0\,\ell _2 \right] \,t^2\,D\,{\textbf{v}}^{(t)}+(2e_1\ell _1-d_1\ell _1-d_0\ell _2)\,t\,{\textbf{v}}^{(t)},\frac{s}{\rho (s)}P \right\rangle \right\rangle \\{} & {} \qquad +\,\left\langle {\textbf{u}}_0^{(s)}, \left\langle -\left[ (c_2\,\ell _0-b_0\,\ell _1)\,t^2+c_0 \right] \,D\,{\textbf{v}}^{(t)}+\left( e_1\,\ell _0-d_0\,\ell _1 \right) \,t\,{\textbf{v}}^{(t)}, \frac{1}{\rho (s)}P \right\rangle \right\rangle . \end{aligned}$$

The result follows from the conditions (a)–(d).

1.4 A.4 Proof of Theorem 4.6

We begin with (4.8). Using (4.7), we have

$$\begin{aligned}&\left\langle {\textbf{w}}, \partial _y\!\left( c(y)\rho (x)b\left( \frac{y}{\rho (x)} \right) \!P \right) +\gamma c'(y)\rho (x)b\left( \frac{y}{\rho (x)} \right) \!P+ \beta c(y)\partial _y\!\left( \rho (x)b\left( \frac{y}{\rho (x)} \right) \right) \!P \right\rangle \\&\quad =c_1\,\left\langle \rho (s)\,{\textbf{u}}_0^{(s)},\left\langle {\textbf{v}}^{(t)}, \partial _t(t\,b(t)\,P)+\left[ \gamma \,b(t)+\beta \,t\,b'(t) \right] P \right\rangle \right\rangle \\&\qquad +c_0\left\langle {\textbf{u}}_0^{(s)},\left\langle {\textbf{v}}^{(t)}, \partial _t(b(t)\,P)+\beta \,b'(t)\,P \right\rangle \right\rangle . \end{aligned}$$

If either one of the two cases in the statement of the theorem holds, then we obtain that \({\textbf{w}}\) satisfies the Pearson equation (4.8).

Using (4.9) and (4.7), we compute as follows.

$$\begin{aligned}&\left\langle {\textbf{w}}, \partial _x\left( a(x)\,\rho (x)\,b\left( \frac{y}{\rho (x)} \right) \! P\!\right) +\alpha \,a'(x)\,\rho (x)\,b\left( \frac{y}{\rho (x)}\right) \!P+\beta \,a(x)\,b_0\,\rho '(x)\,P \right\rangle \nonumber \\&\quad = \left\langle {\textbf{u}}_0^{(s)},\left\langle b(t)\,{\textbf{v}}^{(t)},\partial _s\left( a(s)\,\rho (s)\,P \right) +\alpha \,a'(s)\,\rho (s)\,P \right\rangle \right\rangle \nonumber \\&\qquad +\left\langle {\textbf{u}}_0^{(s)},\left\langle {\textbf{v}}^{(t)}, \beta \,b_0\,\rho '(s)\,a(s)\,P-\rho '(s)\,a(s)\,t\,b'(t)\,P\right\rangle \right\rangle \nonumber \\&\qquad +\left\langle {\textbf{u}}_0^{(s)}, \left\langle D\left[ t\,b(t)\,{\textbf{v}}^{(t)}\right] , \rho '(s)\,a(s)\,P \right\rangle \right\rangle . \end{aligned}$$
(A.2)

Now, we consider each of the conditions in the statement of the theorem. Suppose that (i) holds and that \({\textbf{u}}_0^{(s)}\) satisfies

$$\begin{aligned} a(s)\,\rho (s)\,D{\textbf{u}}_0^{(s)} = \left[ \alpha \,a'(s)\,\rho (s)+(1+\gamma +\beta )\,\rho '(s)\,a(s) \right] {\textbf{u}}_0^{(s)}, \end{aligned}$$

and \({\textbf{v}}^{(t)}\) satisfies \(t\,b(t)\,D{\textbf{v}}^{(t)} = \left[ \gamma \,b(t)+\beta \,t\,b'(t) \right] {\textbf{v}}^{(t)}\) or, equivalently,

$$\begin{aligned} D\left[ t\,b(t)\,{\textbf{v}}^{(t)} \right] = \left[ (\gamma +1)\,b(t)+(\beta +1)\,t\,b'(t) \right] {\textbf{v}}^{(t)}. \end{aligned}$$

Substituting this in the last equality of (A.2), we get

$$\begin{aligned}&\left\langle {\textbf{u}}_0^{(s)},\left\langle b(t)\,{\textbf{v}}^{(t)},\partial _s\left( a(s)\,\rho (s)\,P \right) +\alpha \,a'(s)\,\rho (s)\,P \right\rangle \right\rangle \\&\qquad +\left\langle {\textbf{u}}_0^{(s)},\left\langle {\textbf{v}}^{(t)}, \beta \,b_0\,\rho '(s)\,a(s)\,P+\rho '(s)\,a(s)\left[ (\gamma +1)\,b(t)+\beta \,t\,b'(t) \right] P \right\rangle \right\rangle \\&\quad =\left\langle {\textbf{u}}_0^{(s)}, \left\langle b(t)\,{\textbf{v}}^{(t)}, \partial _s\left( a(s)\,\rho (s)\,P\right) +\left[ \alpha \,a'(s)\,\rho (s)+(1+\beta +\gamma )\,a(s)\,\rho '(s)\right] P \right\rangle \right\rangle \\&\quad =0. \end{aligned}$$

Therefore, \({\textbf{w}}\) satisfies the first Pearson equation (4.8).

On the other hand, if (ii) holds, and \({\textbf{u}}_0^{(s)}\) satisfies

$$\begin{aligned} a(s)\,\rho (s)\,D{\textbf{u}}_0^{(s)} = \left[ \alpha \,a'(s)\,\rho (s)+(1+\beta )\,\rho '(s)\,a(s) \right] {\textbf{u}}_0^{(s)} \end{aligned}$$

and \({\textbf{v}}^{(t)}\) satisfies \(b(t)\,D{\textbf{v}}^{(t)} = \beta \,b'(t)\,{\textbf{v}}^{(t)}\), or, equivalently,

$$\begin{aligned} D\left[ b(t)\,{\textbf{v}}^{(t)} \right] = (\beta +1)\,b'(t)\,{\textbf{v}}^{(t)}. \end{aligned}$$

Substituting this in the last equality of (A.2), we get

$$\begin{aligned}&\left\langle {\textbf{u}}_0^{(s)},\left\langle b(t)\,{\textbf{v}}^{(t)},\partial _s\left( a(s)\,\rho (s)\,P \right) +\alpha \,a'(s)\,\rho (s)\,P \right\rangle \right\rangle \\&\qquad +\left\langle {\textbf{u}}_0^{(s)},\left\langle {\textbf{v}}^{(t)}, \beta \,b_0\,\rho '(s)\,a(s)\,P+\rho '(s)\,a(s)\left[ \beta \,t\,b'(t)+b(t) \right] P \right\rangle \right\rangle \\&\quad =\left\langle {\textbf{u}}_0^{(s)},\left\langle b(t)\,{\textbf{v}}^{(t)}, \partial _s\left( a(s)\,\rho (s)\,P\right) +\left[ \alpha \,a'(s)\,\rho (s)+(1+\beta )\,a(s)\,\rho '(s) \right] \right\rangle \right\rangle \\&\quad =0. \end{aligned}$$

Therefore, in this case we also conclude that \({\textbf{w}}\) satisfies (4.8).

1.5 A.5 Proof of Theorem 4.7

We start with (4.11). For every polynomial \(P\in \Pi ^2\),

$$\begin{aligned}&\left\langle -\rho (x)^2\,b\left( \frac{y}{\rho (x)} \right) \,{\textbf{w}}_y + \alpha \,\partial _y\left( \rho (x)^2\,b\left( \frac{y}{\rho (x)} \right) \right) \,{\textbf{w}}, P \right\rangle \\&\quad =\left\langle \rho (s)\,{\textbf{u}}_0^{(s)}, \left\langle -b(t)\,D{\textbf{v}}^{(t)}+\alpha \,b'(t)\,{\textbf{v}}^{(t)}, P \right\rangle \right\rangle =0. \end{aligned}$$

For (4.10), we get

$$\begin{aligned}&\left\langle -\rho (x)^2\,b\left( \frac{y}{\rho (x)} \right) \,{\textbf{w}}_x + \alpha \,\partial _x\left( \rho (x)^2\,b\left( \frac{y}{\rho (x)} \right) \right) \,{\textbf{w}}, P \right\rangle \\&\quad =\left\langle {\textbf{u}}_0^{(s)},\left\langle {\textbf{v}}^{(t)}, b(t)\left[ \partial _s\left( \rho (s)^2\,P \right) +\frac{1}{2}\left( \rho (s)^2\right) '\,P\right] \right\rangle \right\rangle \\&\qquad +\left\langle {\textbf{u}}_0^{(s)},\left\langle t\,b(t)\,D{\textbf{v}}^{(t)},\frac{1}{2}\left( \rho (s)^2\right) '\,P \right\rangle \right\rangle \\&\qquad +\left\langle {\textbf{u}}_0^{(s)}, \left\langle {\textbf{v}}^{(t)}, \alpha \,\left( \rho (s)^2\right) '\left( b_0+\frac{1}{2}b_1\,t \right) \,P \right\rangle \right\rangle . \end{aligned}$$

Using \(b(t)\,D{\textbf{v}}^{(t)}=\alpha \,b'(t)\,{\textbf{v}}^{(t)}\), we obtain

$$\begin{aligned}&\left\langle -\rho (x)^2\,b\left( \frac{y}{\rho (x)} \right) \,{\textbf{w}}_x + \alpha \,\partial _x\left( \rho (x)^2\,b\left( \frac{y}{\rho (x)} \right) \right) \,{\textbf{w}}, P \right\rangle \\&\quad =\left\langle {\textbf{u}}_0^{(s)},\left\langle b(t)\,{\textbf{v}}^{(t)},\partial _s\left( \rho (s)^2\,P \right) +\left( \alpha +\frac{1}{2}\right) \,\left( \rho (s)^2\right) ' \right\rangle \right\rangle =0. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Ardila, J.C., Marriaga, M.E. Sobolev orthogonality of polynomial solutions of second-order partial differential equations. Comp. Appl. Math. 42, 13 (2023). https://doi.org/10.1007/s40314-022-02152-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-02152-2

Keywords

Mathematics Subject Classification

Navigation