Skip to main content
Log in

Comparative analysis of robust extended Kalman filter and incremental smoothing for UWB/PDR fusion positioning in NLOS environments

  • Original Study
  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

Ultra wide band (UWB) sensors are widely used for indoor positioning; however, in many practical scenarios UWB signals are obscured by people, goods or other obstacles. This results in signal intensity attenuation, multipath effect and even signal loss, which causes a sharp decline in positioning accuracy. Fusion of pedestrian dead-reckoning (PDR) and UWB is an effective method to achieve high-accuracy positioning under non-line of sight conditions. While traditionally Bayesian filters, such as extended Kalman filter (EKF) and particle filter have been used for UWB/PDR fusion, recently Incremental Smoothing has been shown to achieve high accuracy in other application domains. In this paper, incremental Smoothing based on Tukey kernel function is proposed to fuse UWB and PDR data. We compare the performance of Incremental Smoothing with state of the art fusion algorithms based on EKF, and show that the incremental smoothing algorithm can achieve real-time positioning while exhibiting stronger robustness against intermittent noise, continuous noise and continuous interruption abnormality of UWB data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Blanco JL, Galindo C, Ortiz-De-Galisteo A, Moreno FA (2009) Mobile robot localization based on ultra-wide-band ranging: a particle filter approach. Robot Auton Syst 57(5):496–507

    Article  Google Scholar 

  • Cadena C, Carlone L, Carrillo H, Latif Y, Scaramuzza D, Neira J et al (2016) Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans Robot 32(6):1309–1332

    Article  Google Scholar 

  • Chang G (2014) Kalman filter with both adaptivity and robustness. J Process Control 24(3):81–87

    Article  Google Scholar 

  • Dellaert F (2012) Factor graphs and GTSAM: a hands-on introduction. Georgia Institute of Technology, Atlanta

    Google Scholar 

  • Fan Q, Sun B, Sun Y, Zhuang X (2017a) Performance enhancement of MEMS-based INS/UWB integration for indoor navigation applications. IEEE Sens J 17(10):3116–3130

    Article  Google Scholar 

  • Fan Q, Sun B, Sun Y, Wu Y, Zhuang X (2017b) Data fusion for indoor mobile robot positioning based on tightly coupled INS/UWB. J Navig 70(5):1–19

    Article  Google Scholar 

  • García E, Poudereux P, Hernández Á, Ureña J, Gualda D (2015) A robust UWB indoor positioning system for highly complex environments. In: IEEE international conference on industrial technology. IEEE, pp 3386–3391

  • Hesch JA, Kottas DG, Bowman SL, Roumeliotis SI (2014) Camera-IMU-based localization: observability analysis and consistency improvement. Int J Robot Res 33(1):182–201

    Article  Google Scholar 

  • Hess W, Kohler D, Rapp H, Andor D (2016) Real-time loop closure in 2D LIDAR SLAM. In: IEEE international conference on robotics and automation. IEEE, pp 1271–1278

  • Huang GP, Mourikis AI, Roumeliotis SI (2011) An observability-constrained sliding window filter for SLAM. In: IEEE/RSJ international conference on intelligent robots and systems, vol 32. IEEE, pp 65–72

  • Kaess M, Ranganathan A, Dellaert F (2008) iSAM: incremental smoothing and mapping. IEEE Trans Robot 24(6):1365–1378

    Article  Google Scholar 

  • Kaess M, Johannsson H, Roberts R, Ila V, Leonard JJ, Dellaert F (2011) iSAM2: incremental smoothing and mapping using the Bayes tree. Int J Robot Res 31(2):216–235

    Article  Google Scholar 

  • Kottas DG, Hesch JA, Bowman SL, Roumeliotis SI (2013) On the consistency of vision-aided inertial navigation. In: Experimental robotics. Springer

  • Kümmerle R, Grisetti G, Strasdat H, Konolige K, Burgard W (2011) G2o: a general framework for graph optimization. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp 3607–3613

  • Li X, Wang J, Liu C (2015) A bluetooth/PDR integration algorithm for an indoor positioning system. Sensors 15(10):24862–24885

    Article  Google Scholar 

  • Li X, Wang Y, Khoshelham K (2018) A robust and adaptive complementary Kalman filter based on Mahalanobis distance for ultra wideband/inertial measurement unit fusion positioning. Sensors 18(10):3435

    Article  Google Scholar 

  • Madgwick SOH, Harrison AJL, Vaidyanathan R (2011) Estimation of IMU and MARG orientation using a gradient descent algorithm. In: IEEE international conference on rehabilitation robotics, vol 2011. IEEE, pp 1–7

  • Mourikis AI, Roumeliotis SI (2007) A multi-state constraint Kalman filter for vision-aided inertial navigation. In: IEEE international conference on robotics and automation, vol 22. IEEE, pp 3565–3572

  • Ramezani M, Khoshelham K (2018) Vehicle positioning in GNSS-deprived urban areas by stereo visual-inertial odometry. IEEE Trans Intell Veh 3(2):208–217

    Article  Google Scholar 

  • Ramezani M, Khoshelham K, Kneip L (2017) Omnidirectional visual-inertial odometry using multi-state constraint Kalman filter. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), Vancouver, Canada, pp 1317–1323

  • Ramezani M, Khoshelham K, Fraser C (2018) Pose estimation by omnidirectional visual-inertial odometry. Robot Auton Syst 105:26–37

    Article  Google Scholar 

  • Santoso F, Redmond SJ (2015) Indoor location-aware medical systems for smart homecare and telehealth monitoring: state-of-the-art. Physiol Meas 36(10):R53

    Article  Google Scholar 

  • Sczyslo S, Schroeder J, Galler S, Kaiser T (2008) Hybrid localization using UWB and inertial sensors. In: IEEE international conference on ultra-wideband, vol 3. IEEE Xplore, pp 89–92

  • Strasdat H, Montiel JMM, Davison AJ (2012) Visual SLAM: Why filter? Image Vis Comput 30(2):65–77

    Article  Google Scholar 

  • Wang Y, Li X (2018) Graph-optimization-based ZUPT/UWB fusion algorithm. Int J Geo-Inf 7(1):18

    Article  Google Scholar 

  • Wang J, Gao Y, Li Z, Meng X, Hancock CM (2016) A tightly-coupled GPS/INS/UWB cooperative positioning sensors system supported by V2I communication. Sensors 16(7):944

    Article  Google Scholar 

  • Xu Y, Chen X (2016) Range-only UWB/INS tightly integrated navigation method for indoor pedestrian. Chin J Sci Instrum 37(8):142–148

    Google Scholar 

  • Xu Y, Chen X, Cheng J, Zhao Q, Wang Y (2016) Improving tightly-coupled model for indoor pedestrian navigation using foot-mounted IMU and UWB measurements. In: Proceedings of instrumentation and measurement technology conference. IEEE

  • Zampella F, De Angelis A, Skog I, Zachariah D, Jimenez A (2012) A constraint approach for UWB and PDR fusion. In: 2012 International conference on indoor positioning and indoor navigation, IPIN 2012

  • Zhang J, Shen C (2016) Research on uwb indoor positioning in combination with tdoa improved algorithm and kalman filtering. Mod Electron Tech 39(13):1–5

    Google Scholar 

  • Zwirello L, Ascher C, Trommer GF, Zwick T (2011) Study on UWB/IMU integration techniques. In: Positioning navigation and communication. IEEE Xplore, pp 13–17

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under grant number 41674030 and the China Postdoctoral Science Foundation under grant number 2016M601909 and a grant from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, Y. & Khoshelham, K. Comparative analysis of robust extended Kalman filter and incremental smoothing for UWB/PDR fusion positioning in NLOS environments. Acta Geod Geophys 54, 157–179 (2019). https://doi.org/10.1007/s40328-019-00254-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-019-00254-8

Keywords

Navigation