Skip to main content
Log in

An efficient three-node triangular Mindlin–Reissner flat shell element

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Shell elements are extensively used by engineers for modeling the behavior of shell structures. Among common shell elements, triangular shell elements are not influenced by element warping. This paper proposes a new three-node triangular flat shell element with six degrees of freedom per each node, named TMRFS. The element is formed by assemblage of new bending and membrane elements. The bending element is formulated based on the hybrid displacement function element method and Mindlin–Reissner plate theory. In this element, an assumed displacement function is employed as the trial function. The membrane component is an unsymmetric triangular membrane element with drilling vertex rotations. The membrane element employs two different types of displacement fields as the test and trial functions. The test function is a displacement field which is the same as one used in well-known Allman triangular element. Meanwhile, instead of displacement field, the analytical stress field is considered as the trial function. Numerical tests show that the accuracy of the proposed flat shell element is reasonable in comparison with some popular triangular elements and its performance is insensitive to geometry, load and boundary conditions. Moreover, the proposed element preserves the advantages of its formulation including free of membrane locking, shear locking and stiffness matrix singularity problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rama G, Marinkovic D, Zehn M (2018) A three-node shell element based on the discrete shear gap and assumed natural deviatoric strain approaches. J Br Soc Mech Sci Eng 40:356

    Article  Google Scholar 

  2. Martins RR, Zouain N, Borges L, de Souza Neto EA (2014) A continuum-based mixed axisymmetric shell element for limit and shakedown analysis. J Br Soc Mech Sci Eng 36:153–172

    Article  MATH  Google Scholar 

  3. Marinkovic D, Rama G, Zehn M (2019) Abaqus implementation of a corotational piezoelectric 3-node shell element with drilling degree of freedom. Facta Univ Ser Mech Eng 17:269–283

    Google Scholar 

  4. Ayad R, Dhatt G, Batoz JL (1998) A new hybrid-mixed variational approach for Reissner–Mindlin plates. The MiSP model. Int J Numer Methods Eng 42:1149–1179

    Article  MATH  MathSciNet  Google Scholar 

  5. Zhang HX, Kuang JS (2007) Eight-node Reissner–Mindlin plate element based on boundary interpolation using Timoshenko beam function. Int J Numer Methods Eng 69:1345–1373

    Article  MATH  Google Scholar 

  6. Nguyen-Xuan H, Rabczuk T, Bordas S, Debongnie JF (2008) A smoothed finite element method for plate analysis. Comput Methods Appl Mech Eng 197:1184–1203

    Article  MATH  Google Scholar 

  7. Hu B, Wang Z, Xu YC (2010) Combined hybrid method applied in the Reissner–Mindlin plate model. Finite Elem Anal Des 46:428–437

    Article  MathSciNet  Google Scholar 

  8. Nguyen-Thoi T, Phung-Van P, Nguyen-Xuan H, Thai-Hoang C (2012) A cell-based smoothed discrete shear gap method using triangular elements for static and free vibration analyses of Reissner–Mindlin plates. Int J Numer Methods Eng 91:705–741

    Article  MATH  MathSciNet  Google Scholar 

  9. Vu-Quoc L, Tan XG (2013) Efficient Hybrid-EAS solid element for accurate stress prediction in thick laminated beams, plates, and shells. Comput Methods Appl Mech Eng 253:337–355

    Article  MATH  MathSciNet  Google Scholar 

  10. Nguyen-Xuan H (2017) A polygonal finite element method for plate analysis. Comput Struct 188:45–62

    Article  Google Scholar 

  11. Valvano S, Carrera E (2017) Multilayered plate elements with node-dependent kinematics for the analysis of composite and sandwich structures. Facta Univ Ser Mech Eng 15:1–30

    Google Scholar 

  12. Zienkiewicz OC, Lefebvre D (1988) A robust triangular plate bending element of the Reissner–Mindlin type. Int J Numer Methods Eng 26:1169–1184

    Article  MATH  Google Scholar 

  13. Katili I (1993) A new discrete Kirchhoff–Mindlin element based on Mindlin–Reissner plate theory and assumed shear strain fields—part I: an extended DKT element for thick-plate bending analysis. Int J Numer Methods Eng 36:1859–1883

    Article  MATH  Google Scholar 

  14. Wanji C, Cheung YK (2001) Refined 9-Dof triangular Mindlin plate elements. Int J Numer Methods Eng 51:1259–1281

    Article  MATH  Google Scholar 

  15. Cen S, Zhou MJ, Fu XR (2011) A 4-node hybrid stress-function (HS-F) plane element with drilling degrees of freedom less sensitive to severe mesh distortions. Comput Struct 89:517–528

    Article  Google Scholar 

  16. Cen S, Fu XR, Zhou MJ (2011) 8-and 12-node plane hybrid stress-function elements immune to severely distorted mesh containing elements with concave shapes. Comput Methods Appl Mech Eng 200:2321–2336

    Article  MATH  MathSciNet  Google Scholar 

  17. Jirousek J, Venkatesh A (1992) Hybrid Trefftz plane elasticity elements with p-method capabilities. Int J Numer Methods Eng 35:1443–1472

    Article  MATH  Google Scholar 

  18. Jirousek J (1993) Variational formulation of two complementary hybrid-Treffrz FE models. Commun Numer Methods Eng 9:837–845

    Article  MATH  MathSciNet  Google Scholar 

  19. Jirousek J, Leon N (1977) A powerful finite element for plate bending. Comput Methods Appl Mech Eng 12:77–96

    Article  MATH  MathSciNet  Google Scholar 

  20. Jirousek J, Wròblewski A, Szybinski B (1995) A new 12 DOF quadrilateral element for analysis of thick and thin plates. Int J Numer Methods Eng 38:2619–2638

    Article  MATH  Google Scholar 

  21. Petrolito J (1990) Hybrid-Trefftz quadrilateral elements for thick plate analysis. Comput Methods Appl Mech Eng 78:331–351

    Article  MATH  Google Scholar 

  22. Cen S, Shang Y, Li CF, Li HG (2014) Hybrid displacement function element method: a simple hybrid-Trefftz stress element method for analysis of Mindlin–Reissner plate. Int J Numer Methods Eng 98:203–234

    Article  MATH  MathSciNet  Google Scholar 

  23. Shang Y, Cen S, Li CF, Huang JB (2015) An effective hybrid displacement function element method for solving the edge effect of Mindlin-Reissner plate. Int J Numer Methods Eng 102:1449–1487

    Article  MATH  MathSciNet  Google Scholar 

  24. Shang Y, Li CF, Zhou MJ (2019) A novel displacement-based Trefftz plate element with high distortion tolerance for orthotropic thick plates. Eng Anal Bound Elem 106:452–461

    Article  MATH  MathSciNet  Google Scholar 

  25. Huang JB, Cen S, Shang Y, Li CF (2017) A new triangular hybrid displacement function element for static and free vibration analyses of Mindlin–Reissner plate. Lat Am J Solids Struct 14:765–804

    Article  Google Scholar 

  26. Chen J, Li CJ, Chen WJ (2010) A family of spline finite elements. Comput Struct 88:718–727

    Article  Google Scholar 

  27. Chen XM, Cen S, Long YQ, Yao ZH (2004) Membrane elements insensitive to distortion using the quadrilateral area coordinate method. Comput Struct 82:35–54

    Article  Google Scholar 

  28. Bathe KJ, Zhang L (2017) The finite element method with overlapping elements—a new paradigm for CAD driven simulations. Comput Struct 182:526–539

    Article  Google Scholar 

  29. Turner MJ, Clough RW, Martin HC, Topp LJ (1956) Stiffness and deflection analysis of complex structures. J Aeronaut Sci 23:805–824

    Article  MATH  Google Scholar 

  30. Zienkiewicz OC (2001) Displacement and equilibrium models in the finite element method by B. Fraeijs de Veubeke. In: Zienkiewicz OC, Holister GS (eds) Stress analysis, chapter 9. Wiley: New York; 1965, pp 145–197. Int J Numer Methods Eng 52:287–289

  31. Allman DJ (1984) A compatible triangular element including vertex rotations for plane elasticity analysis. Comput Struct 19:1–8

    Article  MATH  Google Scholar 

  32. Choo YS, Choi N, Lee BC (2006) Quadrilateral and triangular plane elements with rotational degrees of freedom based on the hybrid Trefftz method. Finite Elem Anal Des 42:1002–1008

    Article  Google Scholar 

  33. Huang M, Zhao Z, Shen C (2010) An effective planar triangular element with drilling rotation. Finite Elem Anal Des 46:1031–1036

    Article  Google Scholar 

  34. Rezaiee-Pajand M, Karkon M (2013) An effective membrane element based on analytical solution. Eur J Mech-A/Solids 39:268–279

    Article  MATH  MathSciNet  Google Scholar 

  35. Rajendran S, Liew KM (2003) A novel unsymmetric 8-node plane element immune to mesh distortion under a quadratic displacement field. Int J Numer Methods Eng 58:1713–1748

    Article  MATH  Google Scholar 

  36. Cen S, Zhou GH, Fu XR (2012) A shape-free 8-node plane element unsymmetric analytical trial function method. Int J Numer Methods Eng 91:158–185

    Article  MATH  Google Scholar 

  37. Cen S, Zhou PL, Li CF, Wu CJ (2015) An unsymmetric 4-node, 8-DOF plane membrane element perfectly breaking through MacNeal’s theorem. Int J Numer Methods Eng 103:469–500

    Article  MATH  MathSciNet  Google Scholar 

  38. Li Z, Cen S, Wu CJ, Shang Y, Li CF (2018) High-performance geometric nonlinear analysis with the unsymmetric 4-node, 8-DOF plane element US-ATFQ4. Int J Numer Methods Eng 114:931–954

    Article  MathSciNet  Google Scholar 

  39. Shang Y, Ouyang W (2018) 4-node unsymmetric quadrilateral membrane element with drilling DOFs insensitive to severe mesh-distortion. Int J Numer Methods Eng 113:1589–1606

    Article  MathSciNet  Google Scholar 

  40. Providas E, Kattis MA (2000) An assessment of two fundamental flat triangular shell elements with drilling rotations. Comput Struct 77:129–139

    Article  Google Scholar 

  41. Wang C, Hu P (2012) Quasi-conforming triangular Reissner–Mindlin shell elements by using Timoshenko’s beam function. Comput Model Eng Sci (CMES) 88:325–350

    MATH  MathSciNet  Google Scholar 

  42. Zengjie G, Wanji C (2003) Refined triangular discrete Mindlin flat shell elements. Comput Mech 33:52–60

    Article  MATH  Google Scholar 

  43. Zhang Y, Zhou H, Li J, Feng W, Li D (2011) A 3-node flat triangular shell element with corner drilling freedoms and transverse shear correction. Int J Numer Methods Eng 86:1413–1434

    Article  MATH  MathSciNet  Google Scholar 

  44. Shin CM, Lee BC (2014) Development of a strain-smoothed three-node triangular flat shell element with drilling degrees of freedom. Finite Elem Anal Des 86:71–80

    Article  MathSciNet  Google Scholar 

  45. Cook RD, Malkus DS, Plesha ME, Witt RJ (1974) Concepts and applications of finite element analysis, vol 4. Wiley, New York

    Google Scholar 

  46. Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  47. Hu HC (1984) Variational principle of theory of elasticity with applications. Science publisher, Beijing

    Google Scholar 

  48. Tang LM, Liu YX (1985) Quasi-conforming element techniques for penalty finite element methods. Finite Elem Anal Des 1:25–33

    Article  MATH  Google Scholar 

  49. Wang CS, Zhang XK, Hu P (2016) New formulation of quasi-conforming method: a simple membrane element for analysis of planar problems. Eur J Mech-A/Solids 60:122–133

    Article  MATH  MathSciNet  Google Scholar 

  50. Cook RD (1993) Further development of a three-node triangular shell element. Int J Numer Methods Eng 36:1413–1425

    Article  MATH  Google Scholar 

  51. Felippa CA (2003) A study of optimal membrane triangles with drilling freedoms. Comput Methods Appl Mech Eng 192:2125–2168

    Article  MATH  Google Scholar 

  52. Ko Y, Lee Y, Lee PS, Bathe KJ (2017) Performance of the MITC3 + and MITC4 + shell elements in widely-used benchmark problems. Comput Struct 193:187–206

    Article  Google Scholar 

  53. Hughes TJR, Taylor RL (1981) The linear triangular bending element. Math Finite Elem Appl 4:127–142

    Google Scholar 

  54. Pugh EDL, Hinton E, Zienkiewicz OC (1978) A study of quadrilateral plate bending elements with ‘reduced’integration. Int J Numer Methods Eng 12:1059–1079

    Article  MATH  Google Scholar 

  55. Batoz JL, Bathe KJ, Ho LW (1980) A study of three-noded triangular plate bending elements. Int J Numer Methods Eng 15:1771–1812

    Article  MATH  Google Scholar 

  56. Felippa CA, Alexander S (1992) Membrane triangles with corner drilling freedoms—III. Implementation and performance evaluation. Finite Elem Anal Des 12:203–239

    Article  MATH  Google Scholar 

  57. Timoshenko SP, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-Hill, New York

    MATH  Google Scholar 

  58. Razzaque A (1973) Program for triangular bending elements with derivative smoothing. Int J Numer Methods Eng 6:333–343

    Article  Google Scholar 

  59. Macneal RH, Harder RL (1985) A proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des 1:3–20

    Article  Google Scholar 

  60. Simo JC, Fox DD, Rifai MS (1989) On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects. Comput Methods Appl Mech Eng 73:53–92

    Article  MATH  Google Scholar 

  61. Flügge W (1973) Stresses in shells. Springer, New York

    Book  MATH  Google Scholar 

  62. Lee PS, Bathe KJ (2002) On the asymptotic behavior of shell structures and the evaluation in finite element solutions. Comput Struct 80:235–255

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Ghohani Arab.

Additional information

Technical Editor: João Marciano Laredo dos Reis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Matrix \({\bar{\mathbf{N}}}_{\text{p}}\) can be defined through the Timoshenko’s beam functions and a linear function. Timoshenko’s beam functions are employed to determine the deflection \((w )\) and tangential rotation \((\theta_{s} )\) and the linear function is employed to determine normal rotation \((\theta_{n} )\), as follows

$$\begin{aligned} & w = \,(L_{1} + \upsilon L_{1} L_{2} (L_{1} - L_{2} ))w_{i} + \frac{{l_{ij} }}{2}(L_{1} L_{2} + \upsilon L_{1} L_{2} (L_{1} - L_{2} ))\theta_{si} \\ & \quad + (L_{2} + \upsilon L_{1} L_{2} (L_{2} - L_{1} ))w_{j} + \frac{{l_{ij} }}{2}( - L_{1} L_{2} + \upsilon L_{1} L_{2} (L_{1} - L_{2} ))\theta_{sj} \\ & \theta_{s} = \, - (6L_{1} L_{2} /l_{ij} )\mu w_{i} + L_{1} (1 - 3\mu L_{2} )\theta_{si} + (6L_{1} L_{2} /l_{ij} )\mu w_{j} \\ & \quad + L_{2} (1 - 3\mu L_{1} )\theta_{sj} \\ & \theta_{n} = (1 - s)\theta_{ni} + s\theta_{nj} \\ \end{aligned}$$
(57)

with

$$\mu { = }\frac{{5(1 - \upsilon )l_{ij}^{2} }}{{5(1 - \upsilon )l_{ij}^{2} + 12h^{2} }},$$
(58)

in which \(l_{ij}\) is the length of edge ij, s is the coordinate along the edge ij, \(L_{1} = 1 - s/l_{ij} \,{\text{and}}\,L_{2} = s/l_{ij} .\) It should be noted, \(\theta_{n}\) and \(\theta_{s}\) are the rotations in the local coordinates that should be transformed to global coordinates. The relationship between \((\theta_{n} ,\theta_{s} )\) and \((\theta_{x} ,\theta_{y} )\) can be defined as follows

$$\left\{ {\begin{array}{*{20}c} {\theta_{n} } \\ {\theta_{s} } \\ \end{array} } \right\} = \frac{1}{{l_{ij} }}\left[ {\begin{array}{*{20}c} {y_{j} - y_{i} } & {x_{i} - x_{j} } \\ {x_{j} - x_{i} } & {y_{j} - y_{i} } \\ \end{array} } \right]_{{}} \left\{ {\begin{array}{*{20}c} {\theta_{x} } \\ {\theta_{y} } \\ \end{array} } \right\}$$
(59)

where \(\left( {x_{i} ,y_{i} } \right)\) and \((x_{j} ,y_{j} )\) are, respectively, the Cartesian coordinates of nodes i and j located on the edge ij. As was mentioned, matrix \({\bar{\mathbf{N}}}_{\text{p}}\) is an interpolation function that must be defined along each element edge, as follows

$$\begin{aligned} \bullet \,\,\,{\text{Along}}\,{\text{edge}}\,12:\,{\bar{\mathbf{N}}}_{\text{p}} = [{\mathbf{N}}^{\text{k}} {\mathbf{N}}^{\text{f}} {\mathbf{N}}^{\text{h}} ] \hfill \\ \bullet \,\,\,{\text{Along}}\,{\text{edge}}\,23:\,{\bar{\mathbf{N}}}_{\text{p}} = [{\mathbf{N}}^{\text{h}} {\mathbf{N}}^{\text{k}} {\mathbf{N}}^{\text{f}} ] \hfill \\ \bullet \,\,\,{\text{Along}}\,{\text{edge}}\,31:\,{\bar{\mathbf{N}}}_{\text{p}} = [{\mathbf{N}}^{\text{h}} {\mathbf{N}}^{\text{k}} {\mathbf{N}}^{\text{f}} ] \hfill \\ \end{aligned}$$
(60)

In which \({\mathbf{N}}^{\text{h}}\) is a \(5 \times 3\) matrix with zero components and the components of \({\mathbf{N}}^{\text{k}}\) and \({\mathbf{N}}^{\text{f}}\) are as follows

$$\begin{aligned} & N_{11}^{k} = \, - \,6{\kern 1pt} \:\frac{{L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \mu {\kern 1pt} \:x_{ij} {\kern 1pt} \:y_{ij} }}{{l_{ij}^{3} }},\,N_{21}^{k} = 6{\kern 1pt} \:\frac{{L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:\mu {\kern 1pt} \:x_{ij} {\kern 1pt} \:y_{ij} }}{{l_{ij}^{3} }},\,N_{31}^{k} = 6{\kern 1pt} \:\frac{{L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:\mu {\kern 1pt} \:\left( {x_{ij}^{2} - y_{ij}^{2} } \right)}}{{l_{ij}^{3} }} \\ & N_{41}^{k} = - y_{ij} {\kern 1pt} \:\left( {\frac{s}{{l_{ij} }} + L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:\mu {\kern 1pt} \:\left( {2{\kern 1pt} \:\frac{s}{{l_{ij} }} - 1} \right) - 1} \right)l_{ij}^{ - 1} ,\,N_{51}^{k} = x_{ij} {\kern 1pt} \:\left( {\frac{s}{{l_{ij} }} + L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:\mu {\kern 1pt} \:\left( {2{\kern 1pt} \:\frac{s}{{l_{ij} }} - 1} \right) - 1} \right)l_{ij}^{ - 1} \\ & N_{12}^{k} = y_{ij}^{3} \left( {\frac{s}{{l_{ij} }} - 1} \right)l_{ij}^{ - 3} + x_{ij}^{2} y_{ij} {\kern 1pt} \:\left( {\frac{s}{{l_{ij} }} + 3{\kern 1pt} \:L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:\mu - 1} \right)l_{ij}^{ - 3} ,\,N_{22}^{k} = - 3{\kern 1pt} \:\frac{{L_{1} {\kern 1pt} \:L_{{2{\kern 1pt} }} \:\mu {\kern 1pt} \:x_{ij}^{2} y_{ij} }}{{l_{ij}^{3} }} \\ & N_{32}^{k} = - x_{ij} {\kern 1pt} \:\left( {\frac{{x_{ij}^{2} }}{{l_{ij}^{2} }} - \frac{{y_{ij}^{2} }}{{l_{ij}^{2} }}} \right)\left( {\frac{s}{{l_{ij} }} + 3{\kern 1pt} \:L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:\mu - 1} \right)l_{ij}^{ - 1} - 2{\kern 1pt} \:x_{ij} {\kern 1pt} \:y_{ij}^{2} \left( {\frac{s}{{l_{ij} }} - 1} \right)l_{ij}^{ - 3} \\ & N_{42}^{k} = - {\kern 1pt} \:\frac{{L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:x_{ij} {\kern 1pt} \:y_{ij} {\kern 1pt} \:\left( {\mu {\kern 1pt} \:l_{ij} - 2{\kern 1pt} \:\mu {\kern 1pt} \:s + l_{ij} } \right)}}{{2l_{ij}^{2} }},\,N_{52}^{k} = {\kern 1pt} \:\frac{{L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:x_{ij}^{2} \left( {\mu {\kern 1pt} \:l_{ij} - 2{\kern 1pt} \:\mu {\kern 1pt} \:s + l_{ij} } \right)}}{{2l_{ij}^{2} }} \\ & N_{13}^{k} = 3{\kern 1pt} \:\frac{{L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:\mu {\kern 1pt} \:x_{ij} {\kern 1pt} \:y_{ij}^{2} }}{{l_{ij}^{3} }},\,N_{23}^{k} = - x_{ij}^{3} \left( {\frac{s}{{l_{ij} }} - 1} \right)l_{ij}^{ - 3} - x_{ij} {\kern 1pt} \:y_{ij}^{2} \left( {\frac{s}{{l_{ij} }} + 3{\kern 1pt} \:L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:\mu - 1} \right)l_{ij}^{ - 3} \\ & N_{33}^{k} = 2{\kern 1pt} \:x_{ij}^{2} y_{ij} {\kern 1pt} \:\left( {\frac{s}{{l_{ij} }} - 1} \right)l_{ij}^{ - 3} - y_{ij} {\kern 1pt} \:\left( {\frac{{x_{ij}^{2} }}{{l_{ij}^{2} }} - \frac{{y_{ij}^{2} }}{{l_{ij}^{2} }}} \right)\left( {\frac{s}{{l_{ij} }} + 3{\kern 1pt} \:L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:\mu - 1} \right)l_{ij}^{ - 1} \\ & N_{43}^{k} = - {\kern 1pt} \:\frac{{L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:y_{ij}^{2} \left( {\mu {\kern 1pt} \:lij - 2{\kern 1pt} \:\mu {\kern 1pt} \:s + l_{ij} } \right)}}{{2l_{ij}^{2} }},\,N_{53}^{k} = \frac{{L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:x_{ij} {\kern 1pt} \:y_{ij} {\kern 1pt} \:\left( {\mu {\kern 1pt} \:l_{ij} - 2{\kern 1pt} \:\mu {\kern 1pt} \:s + l_{ij} } \right)}}{{2l_{ij}^{2} }} \\ & N_{11}^{f} = 6{\kern 1pt} \:\frac{{L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:\mu {\kern 1pt} \:x_{ij} {\kern 1pt} \:y_{ij} }}{{l_{ij}^{3} }},\,N_{21}^{f} = - 6{\kern 1pt} \:\frac{{L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:\mu {\kern 1pt} \:x_{ij} {\kern 1pt} \:y_{ij} }}{{l_{ij}^{3} }},\,N_{31}^{f} = - 6{\kern 1pt} \:\frac{{L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:\mu {\kern 1pt} \:\left( {x_{ij}^{2} - y_{ij}^{2} } \right)}}{{l_{ij}^{3} }} \\ & N_{41}^{f} = y_{ij} {\kern 1pt} \:\left( {\frac{s}{{l_{ij} }} + L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:\mu {\kern 1pt} \:\left( {2{\kern 1pt} \:\frac{s}{{l_{ij} }} - 1} \right)} \right)l_{ij}^{ - 1} ,\,N_{51}^{f} = - x_{ij} {\kern 1pt} \:\left( {\frac{s}{{l_{ij} }} + L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:\mu {\kern 1pt} \:\left( {2{\kern 1pt} \:\frac{s}{{l_{ij} }} - 1} \right)} \right)l_{ij}^{ - 1} \\ & N_{12}^{f} = \frac{{ - y_{ij} {\kern 1pt} \:\left( { - 3{\kern 1pt} \:L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:\mu {\kern 1pt} \:l_{ij} {\kern 1pt} \:x_{ij}^{2} + sx_{ij}^{2} + sy_{ij}^{2} } \right)}}{{l_{ij}^{4} }},\,N_{22}^{f} = - 3{\kern 1pt} \:\frac{{L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:\mu {\kern 1pt} \:x_{ij}^{2} y_{ij} }}{{l_{ij}^{3} }} \\ & N_{32}^{f} = x_{ij} {\kern 1pt} \:\left( {\frac{s}{{l_{ij} }} - 3{\kern 1pt} \:L_{{1{\kern 1pt} }} \:L_{2} {\kern 1pt} \:\mu } \right)\left( {\frac{{x_{ij}^{2} }}{{l_{ij}^{2} }} - \frac{{y_{ij}^{2} }}{{l_{ij}^{2} }}} \right)l_{ij}^{ - 1} + 2{\kern 1pt} \:\frac{{sx_{ij} {\kern 1pt} \:y_{ij}^{2} }}{{l_{ij}^{4} }} \\ & N_{42}^{f} = {\kern 1pt} \:\frac{{L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:x_{ij} {\kern 1pt} \:y_{ij} {\kern 1pt} \:\left( { - \mu {\kern 1pt} \:l_{ij} + 2{\kern 1pt} \:\mu {\kern 1pt} \:s + l_{ij} } \right)}}{{2l_{ij}^{2} }},\,N_{52}^{f} = {\kern 1pt} \:\frac{{ - L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:x_{ij}^{2} \left( { - \mu {\kern 1pt} \:l_{ij} + 2{\kern 1pt} \:\mu {\kern 1pt} \:s + l_{ij} } \right)}}{{2l_{ij}^{2} }} \\ & N_{13}^{f} = 3{\kern 1pt} \:\frac{{L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:\mu {\kern 1pt} \:x_{ij} {\kern 1pt} \:y_{ij}^{2} }}{{l_{ij}^{3} }},\,N_{23}^{f} = \frac{{x_{ij} {\kern 1pt} \:\left( { - 3{\kern 1pt} \:L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:\mu {\kern 1pt} \:l_{ij} {\kern 1pt} \:y_{ij}^{2} + sx_{ij}^{2} + sy_{ij}^{2} } \right)}}{{l_{ij}^{4} }} \\ & N_{33}^{f} = y_{ij} {\kern 1pt} \:\left( {\frac{s}{{l_{ij} }} - 3{\kern 1pt} \:L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:\mu } \right)\left( {\frac{{x_{ij}^{2} }}{{l_{ij}^{2} }} - \frac{{y_{ij}^{2} }}{{l_{ij}^{2} }}} \right)l_{ij}^{ - 1} - 2{\kern 1pt} \:\frac{{sx_{ij}^{2} y_{ij} }}{{l_{ij}^{4} }} \\ & N_{43}^{f} = {\kern 1pt} \:\frac{{L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:y_{ij}^{2} \left( { - \mu {\kern 1pt} \:l_{ij} + 2{\kern 1pt} \:\mu {\kern 1pt} \:s + l_{ij} } \right)}}{{2l_{ij}^{2} }},\,N_{53}^{f} = \frac{{ - L_{1} {\kern 1pt} \:L_{2} {\kern 1pt} \:x_{ij} {\kern 1pt} \:y_{ij} {\kern 1pt} \:\left( { - \mu {\kern 1pt} \:l_{ij} + 2{\kern 1pt} \:\mu {\kern 1pt} \:s + l_{ij} } \right)}}{{2l_{ij}^{2} }} \\ \end{aligned}$$
(61)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangtarash, H., Ghohani Arab, H., Sohrabi, M.R. et al. An efficient three-node triangular Mindlin–Reissner flat shell element. J Braz. Soc. Mech. Sci. Eng. 42, 328 (2020). https://doi.org/10.1007/s40430-020-02420-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02420-4

Keywords

Navigation