Skip to main content

Advertisement

Log in

A coupled meshless element-free Galerkin and radial basis functions method for level set-based topology optimization

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a meshless element-free Galerkin method coupled with the radial basis functions (RBFs)-based level set algorithm for topology optimization. The meshless approach provides the structural response and corresponding sensitivities at nodal/grid points, and the solution of RBFs-based level set formulation updates the structural geometry accordingly. Thus, this unique and novel approach allows solution of the optimization problems using a single discretization scheme for both the meshless and the level set methods. A special technique is proposed for the identification of meshless nodal points within the solid and void regions of the structural geometry. The present method handles the appropriate topological modifications, i.e. hole creation, splitting, merging, etc., affectively. Optimal solutions of the benchmark problems suggest reliability and compatibility of the proposed approach versus the mesh-based techniques available within the structural optimization literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Wang D, Zhang W, Jiang J (2002) Combined shape and sizing optimization of truss structures. Comput Mech 29(4–5):307–312

    Article  MATH  Google Scholar 

  2. Li Xiaolin, Li Shuling (2021) A fast element-free Galerkin method for the fractional diffusion-wave equation. Appl Math Lett 122:107–529

    Article  MathSciNet  Google Scholar 

  3. Li X, Li S (2021) A linearized element-free Galerkin method for the complex Ginzburg–Landau equation. Comput Math Appl 90:135–147

    Article  MathSciNet  MATH  Google Scholar 

  4. Sokołowski J, Zolesio J (1992) Introduction to shape optimization: shape sensitivity analysis. Springer, Heidelberg

    Book  MATH  Google Scholar 

  5. Bendsoe M et al (2003) Topology optimization-theory, methods and applications. Springer, Berlin

    Google Scholar 

  6. Dedè L, Borden MJ, Hughes TJ (2012) Isogeometric analysis for topology optimization with a phase field model. Arch Comput Methods Eng 19(3):427–465

    Article  MathSciNet  MATH  Google Scholar 

  7. Lieu QX, Lee J (2017) A multi-resolution approach for multi-material topology optimization based on isogeometric analysis. Comput Methods Appl Mech Eng 323:272–302

    Article  MathSciNet  MATH  Google Scholar 

  8. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  9. Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93(3):291–318

    Article  MATH  Google Scholar 

  10. Allaire G, Kohn RV (1993) Optimal design for minimum weight and compliance in plane stress using extremal microstructures. Eur J Mech A Solids 12(6):839–878

    MathSciNet  MATH  Google Scholar 

  11. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654

    MATH  Google Scholar 

  12. Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896

    Article  Google Scholar 

  13. Querin GO, Xie Y (1998) Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng Comput 15:1031–1048

    Article  MATH  Google Scholar 

  14. Wang W et al (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246

    Article  MathSciNet  MATH  Google Scholar 

  15. Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  16. Oliveira HL, de Castroe Andrade H, Leonel ED (2020) An isogeometric boundary element approach for topology optimization using the level set method. Appl Math Model 84:536–553

    Article  MathSciNet  MATH  Google Scholar 

  17. Jing G, Isakari H, Matsumoto T, Yamada T, Takahashi T (2015) Level set-based topology optimization for 2D heat conduction problems using BEM with objective function defined on design-dependent boundary with heat transfer boundary condition. Eng Anal Bound Elem 61:61–70

    Article  MathSciNet  MATH  Google Scholar 

  18. Bendsoe MP, Sigmund O (2013) Topology optimization: theory, methods, and applications. Springer, Berlin

    MATH  Google Scholar 

  19. Luo Z, Zhang N, Wang Y, Gao W (2013) Topology optimization of structures using meshless density variable approximants. Int J Numer Methods Eng 93(4):443–464

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang X, Xie YM (2007) Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem Anal Des 43(14):1039–1049

    Article  Google Scholar 

  21. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  22. Osher S, Fedkiw RP (2001) Level set methods: an overview and some recent results. J Comput Phys 169(2):463–502

    Article  MathSciNet  MATH  Google Scholar 

  23. Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528

    Article  MathSciNet  MATH  Google Scholar 

  24. Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision and materials science, vol 3. Cambridge monographs on applied and computational mathematics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  25. Ye JC, Bresler Y, Moulin P (2002) A self-referencing level-set method for image reconstruction from sparse Fourier samples. Int J Comput Vis 50(3):253–270

    Article  MATH  Google Scholar 

  26. Osher S, Fedkiw RP (2001) Level set methods: an overview and some recent results. J Comput Phys 169(2):463–502

    Article  MathSciNet  MATH  Google Scholar 

  27. Osher FS (2004) Level set methods and dynamic implicit surfaces. Springer, New York

    MATH  Google Scholar 

  28. Ghasemi H, Park HS, Rabczuk T (2018) A multi-material level set-based topology optimization of flexoelectric composites. Comput Methods Appl Mech Eng 332:47–62

    Article  MathSciNet  MATH  Google Scholar 

  29. Allaire G, De Gournay F, Jouve F, Toader A-M (2005) Structural optimization using topological and shape sensitivity via a level set method. Control Cybern 34(1):59

    MathSciNet  MATH  Google Scholar 

  30. Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput Methods Appl Mech Eng 199(45–48):2876–2891

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang S, Lim K, Khoo BC, Wang MY (2007) An extended level set method for shape and topology optimization. J Comput Phys 221(1):395–421

    Article  MathSciNet  MATH  Google Scholar 

  32. Luo J, Luo Z, Chen L, Tong L, Wang MY (2008) A semi-implicit level set method for structural shape and topology optimization. J Comput Phys 227(11):5561–5581

    Article  MathSciNet  MATH  Google Scholar 

  33. Ullah B, Trevelyan J (2016) A boundary element and level set based topology optimisation using sensitivity analysis. Eng Anal Bound Elem 70:80–98

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang S, Wang MY (2006) Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Eng 65(12):2060–2090

    Article  MathSciNet  MATH  Google Scholar 

  35. Cecil T, Qian J, Osher S (2004) Numerical methods for higher dimensional Hamilton–Jacobi equations using radial basis functions. J Comput Phys 196:327–347

    Article  MathSciNet  MATH  Google Scholar 

  36. Luo Z, Tong L, Kang Z (2009) A level set method for structural shape and topology optimization using radial basis functions. Comput Struct 87(7–8):425–434

    Article  Google Scholar 

  37. Otomori M, Yamada T, Izui K, Nishiwaki S (2015) Matlab code for a level set-based topology optimization method using a reaction diffusion equation. Struct Multidiscip Optim 51(5):1159–1172

    Article  MathSciNet  Google Scholar 

  38. Wei P, Li Z, Li X, Wang MY (2018) An 88-line matlab code for the parameterized level set method based topology optimization using radial basis functions. In: Structural and multidisciplinary optimization, pp 1–19

  39. Xie X, Mirmehdi M (2011) Radial basis function based level set interpolation and evolution for deformable modelling. Image Vis Comput 29(2–3):167–177

    Article  Google Scholar 

  40. Liu Y, Li Z, Wei P, Wang W (2018) Parameterized level-set topology optimization method considering symmetry and pattern repetition constraints. Comput Methods Appl Mech Eng 340:1079–1101

    Article  MathSciNet  MATH  Google Scholar 

  41. Shuling L, Xiaolin L (2016) Radial basis functions and level set method for image segmentation using partial differential equation. Appl Math Comput 286:29–40

    MathSciNet  MATH  Google Scholar 

  42. Liu GR (2003) Meshfree methods moving beyond the finite element method. CRC Press, Boca Raton

    Google Scholar 

  43. Liu GR, Gu YT (2005) An introduction to Meshfree methods and their programming. Springer, Cham

    Google Scholar 

  44. Fasshauer GF (2008) Meshfree approximation methods with MATLAB. World Scientific Press, Singapore

    MATH  Google Scholar 

  45. Krowiak A (2018) Domain-type RBF collocation methods for biharmonic problems. Int J Comput Methods 15(08):1850078

    Article  MathSciNet  MATH  Google Scholar 

  46. Monaghan JJ, Gingold RA (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    Article  MATH  Google Scholar 

  47. Belytschko YT, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MathSciNet  MATH  Google Scholar 

  48. Liu X, Liu GR, Tai K, Lam KY (2005) Radial point interpolation collocation method RPICM for the solution of nonlinear Poisson’s problems. Comput Mech 36(4):298–306

    Article  MathSciNet  MATH  Google Scholar 

  49. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  50. Bubuska I, Melenk J (1997) The partition of unity method. Int J Numer Methods Eng 40:727–728

    Article  MathSciNet  MATH  Google Scholar 

  51. Atluri SN, Kim HG, Cho JY (1999) A critical assessment of the truly Meshless local Petrov Galerkin (MLPG), and local boundary integral equation (LBIE) methods. Comput Mech 24:348–372

    Article  MATH  Google Scholar 

  52. Khan W et al (2019) Structural optimization based on meshless element free Galerkin and level set methods. Comput Methods Appl Mech Eng 344:144–163

    Article  MathSciNet  MATH  Google Scholar 

  53. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139(1–4):3–47

    Article  MATH  Google Scholar 

  54. Liu GR, Gu YT (2005) An introduction to meshfree method and their programming. Springer, Berlin

    Google Scholar 

  55. Lancaster P (1981) Surfaces generated by moving least squares methods. Math Comput 37:141–158

    Article  MathSciNet  MATH  Google Scholar 

  56. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307–318

    Article  MathSciNet  MATH  Google Scholar 

  57. Lu YY, Belytschko T, Gu L (1994) A new implementation of the element free Galerkin method. Comput Methods Appl Mech Eng 113:397–414

    Article  MathSciNet  MATH  Google Scholar 

  58. Tsai R, Osher S (2003) Level set methods and their applications in image science. Commun Math Sci 4(1):623–656

    MathSciNet  MATH  Google Scholar 

  59. Kansa E, Power H, Fasshauer G, Ling L (2004) A volumetric integral radial basis function method for time-dependent partial differential equations, I: formulation. Eng Anal Bound Elem 28(10):1191–1206

    Article  MATH  Google Scholar 

  60. Challis V (2010) A discrete level-set topology optimization code written in matlab. Struct Multidiscip Optim 41:453–464

    Article  MathSciNet  MATH  Google Scholar 

  61. Ullah B, Trevelyan J (2013) Correlation between hole insertion criteria in a boundary element and level set based topology optimisation method. Eng Anal Bound Elem 37(11):1457–1470

    Article  MathSciNet  MATH  Google Scholar 

  62. Marczak RJ (2008) Optimization of elastic structures using boundary elements and a topological-shape sensitivity formulation. Latin Am J Solids Struct 5:99–117

    MathSciNet  Google Scholar 

  63. Jahangiry HA, Tavakkoli SM (2017) An isogeometrical approach to structural level set topology optimization. Comput Methods Appl Mech Eng 319:240–257

    Article  MathSciNet  MATH  Google Scholar 

  64. Sigmund O (2001) A \(99\) line topology optimization code written in matlab. Struct Multidiscip Optim 21(2):120–127

    Article  Google Scholar 

Download references

Acknowledgements

The data that support the findings of this study are available from the authors, upon reasonable request. Finally, the authors confirm that there are no relevant financial or non-financial competing interests to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baseer Ullah.

Additional information

Technical Editor: João Marciano Laredo dos Reis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, B., Khan, W., Siraj-ul-Islam et al. A coupled meshless element-free Galerkin and radial basis functions method for level set-based topology optimization. J Braz. Soc. Mech. Sci. Eng. 44, 89 (2022). https://doi.org/10.1007/s40430-022-03382-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03382-5

Keywords

Navigation