Skip to main content
Log in

In-flight modal identification by operational modal analysis

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Operational modal analysis (OMA) has been widely used in many fields of study because it allows identifying the modal parameters of a flexible structure in its operating condition. The system is under unknown working loads assumed to be random with broadband spectral characteristics. These hypotheses are not always easy to fulfill, generating uncertainty about identified modal parameters. This study evaluates and compares the effectiveness of two OMA techniques, enhanced frequency-domain decomposition (EFDD) and Ibrahim time domain (ITD), in the accuracy of modal parameter estimation of an unmanned aerial vehicle (UAV) structure with output-only data obtained by flight testing. To evaluate the influence of the number of sensors used in the identification of the modes, different measurements setups were considered to carry out in-flight modal identification analyses. Some works have addressed uncertainty by focusing on retesting or subdivision of a single measurement record. This work innovates in presenting an uncertainty study considering the variables that intervene in the estimation of PSD. The uncertainty in the identified modal parameters is obtained using the variability of the values of the parameters found. The modal frequencies values observed employing EFDD and ITD do not present substantial variations associated with the PSD matrix estimates. The EFDD damping ratio values show significant variability because they are mainly affected by spectral leakage, while the ITD damping ratio values are less sensitive to Welch’s method parameters variation. The root mean square deviations (RMSDs) of the frequencies values for both techniques are compared with those resulting from ground vibration testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Brincker R, Andersen P (2004) Method for vibration analysis. 2

  2. Masjedian MH, Keshmiri M (2009) A review on operational modal analysis researches: classification of methods and applications. IOMAC 2009 - 3rd Int Oper Modal Anal Conf 707–716

  3. Brincker R, Ventura CE (2015) Introduction to operational modal analysis. Wiley, London

    Book  MATH  Google Scholar 

  4. Kocan C (2020) A comparative study on in-flight modal identification of an aircraft using time- and frequency-domain techniques. J Vib Control 26:1920–1934. https://doi.org/10.1177/1077546320908457

    Article  MathSciNet  Google Scholar 

  5. Debille J, Pauwels S, Peeters B (2005) The benefits of operational modal analysis of aircraft and spacecraft structures. In: European test & telemetry conference

  6. Morteza G, Ahmad S (2015) Operational modal analysis techniques and their theoreticals and practical aspect: a comprehensive review and introduction. In: 6th international operational modal analysis conference. Gijón - Spain

  7. Peeters B, De Troyer T, Guillaume P, Van der Auweraer H (2006) In-flight modal analysis - a comparison between sweep and turbulence excitation. In: Proceedings of ISMA2006: international conference on noise and vibration engineering

  8. De Vivo A, Brutti C, Leofanti JL (2014) Vega in-flight modal identification with the operational modal analysis technique. J Spacecr Rockets 51:1464–1473. https://doi.org/10.2514/1.A32602

    Article  Google Scholar 

  9. Anuar MA, Isa AAM, Zamri AR, Brincker R (2018) Critical experimental issues of cracked aluminum beam in operational modal analysis. J Mech Eng 5:211–225

    Google Scholar 

  10. Banfi L, Carassale L (2014) Assessment of uncertainties in output-only modal identification of linear systems. Proc 7th Comput Stoch Mech Conf 84–96

  11. Au S, Brownjohn JMW, Mottershead JE (2018) Quantifying and managing uncertainty in operational modal analysis. Mech Syst Signal Process 102:139–157. https://doi.org/10.1016/j.ymssp.2017.09.017

    Article  Google Scholar 

  12. Au S (2014) Uncertainty law in ambient modal identification—Part I: Theory. Mech Syst Signal Process 48:15–33. https://doi.org/10.1016/j.ymssp.2013.07.016

    Article  Google Scholar 

  13. Bendat JS, Piersol AG (2010) Random data, analysis and measurement procedures, 4th edn. Wiley, New York

    Book  MATH  Google Scholar 

  14. Follador RC, de Souza CE, Marto AG, Da Silva RGA, Góes LCS (2016) Comparison of in-flight measured and computed aeroelastic damping: modal identification procedures and modeling approaches. J Aerosp Technol Manag 8:163–177. https://doi.org/10.5028/jatm.v8i2.558

    Article  Google Scholar 

  15. Castillo Zuñiga DF, Giacobini Souza A, Goes LCS (2019) Development of an aeroelastic in-flight testing system for a flexible wing unmanned aerial vehicle using acceleration and strain sensors. In: AIAA Scitech 2019 forum. American Institute of Aeronautics and Astronautics, Reston, Virginia

  16. Castillo Zuñiga DF, Giacobini Souza A, da Silva RGA, Sandoval Góes LC (2021) Response and operational modal analysis from wind tunnel test of the EOLO flexible aircraft. In: AIAA Scitech 2021 forum. American Institute of Aeronautics and Astronautics, Reston, Virginia, pp 1–22

  17. Sharqi B, Cesnik CES (2020) Ground vibration testing on very flexible aircraft. AIAA Scitech 2020 Forum 1 Part F:1–25. https://doi.org/10.2514/6.2020-1902

  18. de Faria Ferreira LJ, Góes LS, Marto AG, Silva RGA Da (2008) In-flight output only modal analysis of aircraft structural dynamics. In: SAE Technical Papers

  19. Neu E, Janser F, Khatibi AA, Braun C, Orifici AC (2016) Operational modal analysis of a wing excited by transonic flow. Aerosp Sci Technol 49:73–79. https://doi.org/10.1016/j.ast.2015.11.032

    Article  Google Scholar 

  20. Schulze PC, Danowsky BP, Yang P, Harris C (2017) Real time modal identification of a flexible unmanned aerial vehicle. In: AIAA atmospheric flight mechanics conference. American Institute of Aeronautics and Astronautics, Reston, Virginia, pp 1–13

  21. Jelicic G, Schwochow J, Govers Y, Sinske J, Buchbach R, Springer J, Böswald M (2017) Online monitoring of aircraft modal parameters during flight test based on permanent output-only modal analysis. 58th AIAA/ASCE/AHS/ASC Struct Struct Dyn Mater Conf 2017 1–17. https://doi.org/10.2514/6.2017-1825

  22. Kopsaftopoulos F, Nardari R, Li Y-H, Chang F-K (2018) A stochastic global identification framework for aerospace structures operating under varying flight states. Mech Syst Signal Process 98:425–447. https://doi.org/10.1016/j.ymssp.2017.05.001

    Article  Google Scholar 

  23. Caprara A, Conti E, Coppotelli G, Covioli J, Ragaglini S, Beccarisi F (2019) Frequency Domain Decomposition for manual and automated tracking of modes using flight data. In: AIAA Scitech 2019 forum. American Institute of Aeronautics and Astronautics, Reston, Virginia

  24. Covioli JV, Coppotelli G (2020) On the operational modal analysis techniques for the estimate of modal parameters of aircraft structures during flying vibration tests. AIAA Scitech 2020 Forum 1 Part F:1–27. https://doi.org/10.2514/6.2020-1904

  25. Pintelon R, Guillaume P, Schoukens J (2007) Uncertainty calculation in (operational) modal analysis. Mech Syst Signal Process 21:2359–2373. https://doi.org/10.1016/j.ymssp.2006.11.007

    Article  Google Scholar 

  26. Döhler M, Andersen P, Mevel L (2017) Variance computation of modal parameter estimates from UPC subspace identification. IOMAC - 7th Int Oper Modal Anal Conf

  27. Reynders E, Maes K (2017) Uncertainty quantification of modal characteristics identified from frequency-domain stochastic subspace identification. Procedia Eng 199:996–1001. https://doi.org/10.1016/j.proeng.2017.09.231

    Article  Google Scholar 

  28. Guillaume P, Verboven P, Vanlanduit S (1998) Frequency-domain maximum likelihood identification of modal parameters with confidence intervals. In: Proceedings of the 23rd international conference on noise and vibration engineering, ISMA. pp 955–962

  29. Döhler M, Lam X-B, Mevel L (2013) Uncertainty quantification for modal parameters from stochastic subspace identification on multi-setup measurements. Mech Syst Signal Process 36:562–581. https://doi.org/10.1016/j.ymssp.2012.11.011

    Article  Google Scholar 

  30. Ciloglu K, Zhou Y, Moon F, Aktan AE (2012) Impacts of epistemic uncertainty in operational modal analysis. J Eng Mech 138:1059–1070. https://doi.org/10.1061/(asce)em.1943-7889.0000413

    Article  Google Scholar 

  31. Cattaneo A, Manzoni S, Vanali M, Politecnico di M (2011) Numerical investigation on the measurement uncertainty in operational modal analysis of a civil structure.pdf

  32. Cara J, Caetano EDS (2015) Uncertainty of damping ratios estimated in a multi-setup OMA of a cablestayed bridge. 6th International operational modal analysis conference, Gijón - Spain

  33. Eugeni M, Coppotelli G, Mastroddi F, Gaudenzi P, Muller S, Troclet B (2018) OMA analysis of a launcher under operational conditions with time-varying properties. CEAS Sp J 10:381–406. https://doi.org/10.1007/s12567-018-0209-5

    Article  Google Scholar 

  34. Göge D, Böswald M, Füllekrug U, Lubrina P (2007) Ground vibration testing of large aircraft - State-of-the-art and future perspectives. Conf Proc Soc Exp Mech Ser

  35. Brincker R, Ventura CE, Andersen P (2001) Damping estimation by frequency domain decomposition. In: Proceedings of IMAC 19: a conference on structural dynamics. Society for Experimental Mechanics, Orlando, Kissimmee, Florida, pp 698–703

  36. Brincker R, Andersen P, Jacobsen NJ (2007) Automated frequency domain decomposition for operational modal analysis. In: Conference proceedings of the society for experimental mechanics series. pp 1–7

  37. Gade S, Møller NB, Herlufsen H, Konstantin-Hansen H (2005) Frequency domain techniques for operational modal analysis. First Int Oper Modal Anal Conf 261–271

  38. Bajric A, Georgakis CT, Brincker R (2014) Evaluation of damping using time domain OMA techniques. In: Proceedings of 2014 SEM fall conference and international symposium on intensive loading and its effects. Society for Experimental Mechanics, Beijing, pp 1–11

  39. Randall R, Zurita G, Wardrop T (2004) Extraction of modal parameters from response measurements. Investig Desarro 12:5–12

    Article  Google Scholar 

  40. Zhang Y, Zhang Z, Xu X, Hua H (2005) Modal parameter identification using response data only. J Sound Vib. https://doi.org/10.1016/j.jsv.2004.02.012

    Article  Google Scholar 

  41. Reynders E (2012) System identification methods for (operational) modal analysis: review and comparison. Arch Comput Methods Eng 19:51–124. https://doi.org/10.1007/s11831-012-9069-x

    Article  MathSciNet  MATH  Google Scholar 

  42. Stoica P, Moses R (2005) Spectral analysis of signals. Prentice Hall, Upper Saddle River

    Google Scholar 

  43. Welch PD (1967) The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15:70–73

    Article  Google Scholar 

  44. Barbé K, Pintelo R, Schoukens J (2010) Welch method revisited: nonparametric power spectrum estimation via circular overlap. IEEE Trans Signal Process 58:1–13

    Article  MathSciNet  MATH  Google Scholar 

  45. Felber A (1993) Development of a hybrid bridge evaluation system. University of British Columbia

  46. Andersen P, Brincker R, Peeters B, De Roeck G, Hermans L, Krämer C (1999) Comparison of system identification methods using ambient bridge test data. 17th International Modal Analysis Conference (IMAC). Society for Experimental Mechanics, Kissimmee, Florida, USA, pp 1035–1041

    Google Scholar 

  47. Reynders E, Pintelon R, De Roeck G (2008) Uncertainty bounds on modal parameters obtained from stochastic subspace identification. Mech Syst Signal Process. https://doi.org/10.1016/j.ymssp.2007.10.009

    Article  MATH  Google Scholar 

  48. Peeters B, De Roeck G (2001) Stochastic system identification for operational modal analysis: a review. J Dyn Syst Meas Control 123:659–667. https://doi.org/10.1115/1.1410370

    Article  Google Scholar 

  49. Brincker R, Zhang L, Andersen P (2000) Modal identification from ambient responses using frequency domain decomposition. In: IMAC 18: Proceedings of the international modal analysis conference, San Antonio, Texas, USA, pp 625–630

  50. Magalhães F, Brincker R, Cunha Á (2007) Damping estimation using free decays and ambient vibration tests. 2nd International Operational Modal Analysis Conference. Denmark, Copenhagen, pp 513–521

    Google Scholar 

  51. Elsa María Cárdenas, Luis Ulises Medina (2021) Non-parametric operational modal analysis methods in frequency domain: a systematic review. Int J Eng Technol Innov 11:34–44. https://doi.org/10.46604/ijeti.2021.6126

  52. Ibrahim SR (1977) Random decrement technique for modal identification of structures. J Spacecr Rockets 14:696–700. https://doi.org/10.2514/3.57251

    Article  Google Scholar 

  53. Ibrahim SR (1978) Modal confidence factor in vibration testing. J Spacecr Rockets 15:313–316. https://doi.org/10.2514/3.28014

    Article  Google Scholar 

  54. Brincker R, Olsen P, Amador S, Juul M, Malekjafarian A, Ashory M (2019) Modal participation in multiple input Ibrahim time domain identification. Math Mech Solids 24:168–180. https://doi.org/10.1177/1081286517733034

    Article  MathSciNet  MATH  Google Scholar 

  55. Franco GD, Kluessendorf F, Sandoval LC (2009) Instrumentation and operationalization of a system for flight test of UAV. In: 20th International congress of mechanical engineering, Gramado

  56. Franco G (2009) Instrumentação e operacionalização de um sistema de ensaios em voo para VANTs (Vector-P). Instituto Tecnologico de Aeronautica, São Jose dos Campos

  57. Pena DCB, Sandoval LCG, Santos JS, Guzman LES (2011) Implementation and validation of a micropilot control system for Vector-P aircraft in flight level. In: IX Latin American robotics symposium and IEEE Colombian conference on automatic control, 2011 IEEE. IEEE, pp 1–6

  58. Sant’Anna Santos J (2013) Identificação e Controle de um Veículo Aéreo Não Tripulado: Vector-P

  59. Fischer C, Goes LCS, Castillo-Zúñiga DF (2016) Sistema de Aquisição de Dados de Voo de um Veículo Aéreo Não Tripulado, Vector-P. In: IX Congresso Nacional de Engenharia Mecânica, 2016. Fortaleza

  60. Fischer C, Nepomuceno LM, Silva RGA, Goes LCS (2018) Identification of the Lateral-Directional Model of the Vector-P, Unmanned Aerial Vehicle. In: 31st congress of the international council of the aeronautical sciences - ICAS. Belo Horizonte

  61. Fischer C, Nepomuceno LM, Goes LCS (2018) Selection and definition of maneuvers for parameter identification of an unmanned aerial vehicle, Vector-P. IEEE Lat Am Trans 16:408–415. https://doi.org/10.1109/TLA.2018.8327393

    Article  Google Scholar 

  62. Castillo D (2013) Analise Aeroelastica e Compracao com Ensaio em voo de uma aeronave nao tripulada. Instituto Tecnologico de Aeronautica, São Jose dos Campos. FU

  63. Castillo-Zúñiga DF, Goes LCS, Silva RGA (2015) In-Flight Aeroelastic Characterization of an Unmanned Aerial Vehicle. In: International Conference on Structural Engineering Dynamics. Lagos

  64. Castillo D, Goes LCS (2012) Modal Testing of the Vector-P Unmanned Aerial Vehicle. In: VII Congresso Nacional de Engenharia Mecânica - CONEM2012. São Luis

  65. Santos JS, Sandoval LCG (2013) System identification based on flight test data and autopilot design for longitudinal motion of the Vector-P UAV. In: international congress of mechanical engineering - COBEM. Rio de Janeiro

  66. Peeters B, Lowet G, Van der Auweraer H, Leuridan J (2004) A new procedure for modal parameter estimation. Sound Vib 38:24–29

    Google Scholar 

  67. Ghasemi A, Zahediasl S (2012) Normality tests for statistical analysis: a guide for non-statisticians. Int J Endocrinol Metab 10:486–489. https://doi.org/10.5812/ijem.3505

    Article  Google Scholar 

  68. Velez JI, Correa Morales JC (2015) A modified Q-Q plot for large sample sizes. RevComEst 8:163. https://doi.org/10.5332/s2027-3355.2015.0002.02

    Article  Google Scholar 

  69. Wright J (2001) FLUTTER. In: Encyclopedia of vibration. Elsevier, pp 553–565

Download references

Acknowledgements

The authors of this paper would like to acknowledge Prof. Dr. Airton Nabarrete, Prof. Dr. Roberto G. da Silva, Prof. Dr. Pedro Boschetti, Prof. Dr. Isabel Llatas, and Dr. Adolfo Marta. This research was funded in part by CNPq, CAPES, and FINEP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsa M. Cárdenas.

Additional information

Technical Editor: Samuel da Silva.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cárdenas, E.M., Castillo-Zúñiga, D.F., Medina, L.U. et al. In-flight modal identification by operational modal analysis. J Braz. Soc. Mech. Sci. Eng. 45, 278 (2023). https://doi.org/10.1007/s40430-023-04196-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04196-9

Keywords

Navigation