Skip to main content
Log in

Master–slave synchronization in the Van der Pol–Duffing and Duffing oscillators

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

A numerical study on the master–slave synchronization between Van der Pol–Duffing and Duffing oscillators with symmetric and asymmetric potentials is presented. We evaluate the elastic coupling, dissipative coupling and a combination of both and compare among themselves, to study what coupling is more effective when the systems are synchronized. The numerical findings demonstrate that, for the elastic or dissipative coupling at best there is complete synchronization in only one state of the slave system. When the combination of both couplings is used, complete synchronization is achieved for the two states of the slave system. We observe that synchronization between the oscillators is achieved for large values of the coupling strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors comment: All data included in this study are available on request by contacting the corresponding author.]

References

  1. Chang TP (2017) Chaotic motion in forced duffing system subject to linear and nonlinear damping. Math Probl Eng 1:3769870

    MathSciNet  ADS  Google Scholar 

  2. Giné J, Valls C (2019) On the dynamics of the Rayleigh-Duffing oscillator. Nonlinear Anal Real World Appl 45:309–319

    Article  MathSciNet  Google Scholar 

  3. Kudryashov NA (2018) Exact solutions and integrability of the duffing-van der pol equation. Regul Chaot Dyn 23:471–479

    Article  MathSciNet  ADS  Google Scholar 

  4. Kyziot J, Okniński A (2019) Van der Pol-Duffing oscillator: global view of metamorphoses of the amplitude profiles. Int J Non-Linear Mech 116:102–106

    Article  Google Scholar 

  5. Kuiate GF, Rajagopal K, Kingni ST, Tamba VK, Jafari S (2018) Autonomous van der pol-duffing snap oscillator: analysis, synchronization and applications to real-time image encryption. Int J Dyn Control 6:1008

    Article  MathSciNet  Google Scholar 

  6. Wiggers V, Rech PC (2018) On symmetric and asymmetric Van der Pol-Duffing oscillators. Eur Phys J B 91:144

    Article  ADS  Google Scholar 

  7. Li C, Xu W, Wang L, Li DX (2013) Stochastic responses of Duffing-Van der Pol vibro-impact system under additive colored noise excitation. Chin. Phys. B 22:110205

    Article  ADS  Google Scholar 

  8. Ghorbaniana P, Ramakrishnana S, Whitmanb A, Ashrafiuona H (2015) A phenomenological model of EEG based on the dynamics of a stochastic Duffing-van der Pol oscillator network. Biomed Signal Process Control 15:1

    Article  Google Scholar 

  9. Kumar A, Mohanty P (2017) Autoassociative memory and pattern recognition in micromechanical oscillator network. Sci Rep 7:411

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  10. Jeyakumari S, Chinnathambim V, Rajasekar S, Sanjuan MAF (2011) Vibrational resonance in an asymmetric duffing oscillator. Int J Bifurcat Chaos 21:275

    Article  Google Scholar 

  11. Simo H, Woafo P (2016) Effects of asymmetric potentials on bursting oscillations in Duffing oscillator. Optik 127:8760

    Article  ADS  Google Scholar 

  12. Patidar V, Sharma A, Purohit G (2016) Dynamical behaviour of parametrically driven duffing and externally driven Helmholtz-duffing oscillators under nonlinear dissipation. Nonlinear Dyn 83:375

    Article  MathSciNet  Google Scholar 

  13. Bel G, Alexandrov BS, Bishop AR, Rasmussen KO (2023) Patterns and stability of coupled multi-stable nonlinear oscillators. Chaos Solitons Fractals 166:112999

    Article  MathSciNet  PubMed  Google Scholar 

  14. Pazó D, Montbrió E (2014) Low-Dimensional dynamics of populations of pulse-coupled oscillators. Phys Rev X 4:011009

    Google Scholar 

  15. Zhang M, Wiederhecker GS, Manipatruni S, Barnard A, McEuen P, Lipson M (2012) Synchronization of micromechanical oscillators using light. Phys Rev Lett 109:233906

    Article  PubMed  ADS  Google Scholar 

  16. Luo R, Zeng Y (2016) The control and synchronization of a class of chaotic systems with a novel input. Chin J Phys 54:147

    Article  MathSciNet  Google Scholar 

  17. Ye Q, Jiang Z, Chen T (2018) Adaptive feedback control for synchronization of chaotic neural systems with parameter mismatches. Complexity 2018:5431987

    Article  Google Scholar 

  18. Pai MC (2020) Sliding mode control for discrete-time chaotic systems with input nonlinearity. ASME J Dyn Sys Meas Control 142:101003

    Article  Google Scholar 

  19. Joshi SK (2021) Synchronization of chaotic dynamical systems. Int J Dyn Control 9:1285–1302

    Article  MathSciNet  Google Scholar 

  20. Lin L (2022) Projective synchronization of two coupled Lorenz chaotic systems in predefined time. Int J Dyn Control 10:879

    Article  MathSciNet  Google Scholar 

  21. Wang Z, Song C, Yan A, Wang G (2022) Complete synchronization and partial anti-synchronization of complex lü chaotic systems by the ude-based control method. Symmetry 14:517

    Article  ADS  Google Scholar 

  22. Korneev IA, Slepnev AV, Semenov VV, Vadivasova TE (2020) Forced synchronization of an oscillator with a line of equilibria. Eur Phys J Spec Top 229:2215

    Article  Google Scholar 

  23. Uriostegui-Legorreta U, Tututi-Hernández ES (2023) Numerical study on synchronization in the Rayleigh-duffing and duffing oscillators. Int J Modern Phys C. https://doi.org/10.1142/S012918312350122X

    Article  Google Scholar 

  24. Buscarino A, Fortuna L, Patane L (2019) Master-slave synchronization of hyperchaotic systems through a linear dynamic coupling. Phys Rev E 100:032215

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Aydogmus F, Tosyali E (2022) Master-slave synchronization in a 4D dissipative nonlinear fermionic system. Int J Control 95:620

    Article  MathSciNet  Google Scholar 

  26. Ramirez JP, Garcia E, Alvarez J (2020) Master-slave synchronization via dynamic control. Commun Nonlinear Sci Numer Simulat 80:104977

  27. Ramadoss J, Kengne J, Tanekou ST, Rajagopal K, Kenmoe GD (2022) Reversal of period doubling, multistability and symmetry breaking aspects for a system composed of a van der pol oscillator coupled to a duffing oscillator. Chaos Solitons Fractals 159:112157

  28. Korneev IA, Semenov VV, Slepnev AV, Vadivasova TE (2021) Complete synchronization of chaos in systems with nonlinear inertial coupling. Chaos Solitons Fractals 142:110459

    Article  MathSciNet  Google Scholar 

  29. Kyziot J, Okniński A (2020) Effective equation for two coupled oscillators: towards a global view of metamorphoses of the amplitude profiles. Int J Non-Linear Mech 123:103495

    Article  Google Scholar 

  30. Uriostegui U, Tututi ES, Arroyo G (2021) A new scheme of coupling and synchronizing low-dimensional dynamical systems. Rev Mex Fis 67:334

    MathSciNet  Google Scholar 

  31. Uriostegui U, Tututi ES (2022) Synchronization in the van der Pol-Duffing system via elastic and dissipative couplings. Rev Mex Fis 68:011402

    MathSciNet  Google Scholar 

  32. Uriostegui-Legorreta U, Tututi-Hernández ES (2022) Master-slave synchronization in the Rayleigh and Duffing oscillators via elastic and dissipative couplings. Rev Ci Tech 5:151

    Article  Google Scholar 

  33. Uriostegui-Legorreta U, Tututi ES (2023) Master-slave synchronization in the Duffing-van der Pol and \(\Phi ^6\) Duffing oscillators via elastic and dissipative couplings. Int J Nonlinear Sci Numer Simulat. https://doi.org/10.1515/ijnsns-2022-0465

    Article  Google Scholar 

  34. Kengne J, Chedjou JC, Kenne G, Kyamakya K, Kom GH (2012) Analog circuit implementation and synchronization of a system consisting of a van der Pol oscillator linearly coupled to a Duffing oscillator. Nonlinear Dyn 70:2163

    Article  MathSciNet  Google Scholar 

  35. Boujallal L, Kassara K (2015) State-input constrained asymptotic null-controllability by a set-valued approach. IET Control Teory Appl 9:2195

    MathSciNet  Google Scholar 

  36. Boujallal L (2022) Partial asymptotic null-controllability with mixed state-input constraints. J Control Decis 9:244

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

U. Uriostegui-Legorreta thanks to CONACYT for financial support. This work has been partially supported by UMNSH.

Funding

This work was funded by CONACYT.

Author information

Authors and Affiliations

Authors

Contributions

We declare that the both authors contributed to the conception, study and analysis of the work. Both authors approved the final version of this paper.

Corresponding author

Correspondence to Ulises Uriostegui Legorreta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uriostegui Legorreta, U., Tututi Hernández, E.S. Master–slave synchronization in the Van der Pol–Duffing and Duffing oscillators. Int. J. Dynam. Control 12, 356–372 (2024). https://doi.org/10.1007/s40435-023-01213-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-023-01213-6

Keywords

Navigation