Skip to main content

Advertisement

Log in

The MHC/HLA Gene Complex in Major Psychiatric Disorders: Emerging Roles and Implications

  • Inflammation (M Leboyer, Section Editor)
  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Major psychiatric disorders like schizophrenia and bipolar disorders are etiologically heterogeneous. Gene-environment interactions seemingly constitute the predominant risk mechanism for these conditions. Multiple common and rare genetic variants, sometimes shared, are shown to confer risk to these disorders. Amongst them, the major histocompatibility complex (MHC), known as human leukocyte antigen (HLA) in humans, has emerged as one of the best replicated genetic risk locus of various neuropsychiatric diseases. Herein, we review recent advances regarding MHC’s involvement in the immunopathogenetic pathways of major psychiatric disorders and highlight findings that clearly suggest its determining role in the shared aetiology of schizophrenia and bipolar disorder.

Recent Findings

Converging recent evidence from genome wide association, transcriptomic and imaging genetics studies provide compelling evidence of MHC's involvement in major psychiatric disorders. Some MHC molecules play a cardinal role in neurodevelopment and fine tuning of neuronal plasticity. Dysregulation of MHC expression due to environmental stress or pathological changes could have negative effects on brain and behaviour, including cognition. We highlight possible mechanisms and factors that are crucial in driving MHC-mediated risk of major psychoses.

Summary

This review further emphasizes the importance of MHC gene complex in the aetiopathology of major psychiatric disorders. Although pleiotropic effects of the MHC locus are well known in various disorders, associations with schizophrenia and bipolar disorder are yet to be definitively validated. This calls for further and systematic research, focusing on the genotype-phenotype correlation in these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Boulanger LM, Shatz CJ. Immune signalling in neural development, synaptic plasticity and disease. Nat Rev Neurosci. 2004;5(7):521–31.

    Article  PubMed  CAS  Google Scholar 

  2. Yirmiya R, Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun. 2011;25(2):181–213.

    Article  PubMed  CAS  Google Scholar 

  3. Bilbo SD, Schwarz JM. The immune system and developmental programming of brain and behavior. Front Neuroendocrinol. 2012;33(3):267–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Shiina T, Inoko H, Kulski JK. An update of the HLA genomic region, locus information and disease associations: 2004. Tissue Antigens. 2004;64(6):631–49.

    Article  PubMed  CAS  Google Scholar 

  5. Traherne JA. Human MHC architecture and evolution: implications for disease association studies. Int J Immunogenet. 2008;35(3):179–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Blackwell JM, Jamieson SE, Burgner D. HLA and infectious diseases. Clin Microbiol Rev. 2009;22(2):370–85. Table of Contents

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Fernando MM, et al. Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet. 2008;4(4):e1000024.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Shi J, et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature. 2009;460(7256):753–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Debnath M, Cannon DM, Venkatasubramanian G. Variation in the major histocompatibility complex [MHC] gene family in schizophrenia: associations and functional implications. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;42:49–62.

    Article  CAS  Google Scholar 

  10. Yamada K, Hattori E, Iwayama Y, Toyota T, Iwata Y, Suzuki K, et al. Population-dependent contribution of the major histocompatibility complex region to schizophrenia susceptibility. Schizophr Res. 2015;168(1–2):444–9.

    Article  PubMed  Google Scholar 

  11. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–7.

    Article  CAS  Google Scholar 

  12. Saito T, Kondo K, Iwayama Y, Shimasaki A, Aleksic B, Yamada K, et al. Replication and cross-phenotype study based upon schizophrenia GWASs data in the Japanese population: support for association of MHC region with psychosis. Am J Med Genet B Neuropsychiatr Genet. 2014;165B(5):421–7.

    Article  PubMed  CAS  Google Scholar 

  13. Hope S, Melle I, Aukrust P, Steen NE, Birkenaes AB, Lorentzen S, et al. Similar immune profile in bipolar disorder and schizophrenia: selective increase in soluble tumor necrosis factor receptor I and von Willebrand factor. Bipolar Disord. 2009;11(7):726–34.

    Article  PubMed  CAS  Google Scholar 

  14. Lee SH, et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet. 2013;45(9):984–94.

    Article  PubMed  CAS  Google Scholar 

  15. Bozikas VP, Anagnostouli MC, Petrikis P, Sitzoglou C, Phokas C, Tsakanikas C, et al. Familial bipolar disorder and multiple sclerosis: a three-generation HLA family study. Prog Neuro-Psychopharmacol Biol Psychiatry. 2003;27(5):835–9.

    Article  Google Scholar 

  16. Eaton WW, Byrne M, Ewald H, Mors O, Chen CY, Agerbo E, et al. Association of schizophrenia and autoimmune diseases: linkage of Danish national registers. Am J Psychiatry. 2006;163(3):521–8.

    Article  PubMed  Google Scholar 

  17. Sterner KN, Weckle A, Chugani HT, Tarca AL, Sherwood CC, Hof PR, et al. Dynamic gene expression in the human cerebral cortex distinguishes children from adults. PLoS One. 2012;7(5):e37714.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Neumann H, Cavalie A, Jenne D, Wekerle H. Induction of MHC class I genes in neurons. Science. 1995;269(5223):549–52.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang A, Yu H, He Y, Shen Y, Pan N, Liu J, et al. The spatio-temporal expression of MHC class I molecules during human hippocampal formation development. Brain Res. 2013;1529:26–38.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang A, Yu H, He Y, Shen Y, Zhang Y, Liu J, et al. Developmental expression and localization of MHC class I molecules in the human central nervous system. Exp Brain Res. 2015;233(9):2733–43.

    Article  PubMed  CAS  Google Scholar 

  21. Cebrian C, Loike JD, Sulzer D. Neuronal MHC-I expression and its implications in synaptic function, axonal regeneration and Parkinson’s and other brain diseases. Front Neuroanat. 2014;8:114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Steel CD, Hahto SM, Ciavarra RP. Peripheral dendritic cells are essential for both the innate and adaptive antiviral immune responses in the central nervous system. Virology. 2009;387(1):117–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Huh GS, et al. Functional requirement for class I MHC in CNS development and plasticity. Science. 2000;290(5499):2155–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Elmer BM, McAllister AK. Major histocompatibility complex class I proteins in brain development and plasticity. Trends Neurosci. 2012;35(11):660–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sankar A, MacKenzie RN, Foster JA. Loss of class I MHC function alters behavior and stress reactivity. J Neuroimmunol. 2012;244(1–2):8–15.

    Article  PubMed  CAS  Google Scholar 

  26. Corriveau RA, Huh GS, Shatz CJ. Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron. 1998;21(3):505–20.

    Article  PubMed  CAS  Google Scholar 

  27. Fourgeaud L, Boulanger LM. Role of immune molecules in the establishment and plasticity of glutamatergic synapses. Eur J Neurosci. 2010;32(2):207–17.

    Article  PubMed  Google Scholar 

  28. Wu ZP, Washburn L, Bilousova TV, Boudzinskaia M, Escande-Beillard N, Querubin J, et al. Enhanced neuronal expression of major histocompatibility complex class I leads to aberrations in neurodevelopment and neurorepair. J Neuroimmunol. 2011;232(1–2):8–16.

    Article  PubMed  CAS  Google Scholar 

  29. Escande-Beillard N, Washburn L, Zekzer D, Wu ZP, Eitan S, Ivkovic S, et al. Neurons preferentially respond to self-MHC class I allele products regardless of peptide presented. J Immunol. 2010;184(2):816–23.

    Article  PubMed  CAS  Google Scholar 

  30. Walters JT, et al. The role of the major histocompatibility complex region in cognition and brain structure: a schizophrenia GWAS follow-up. Am J Psychiatry. 2013;170(8):877–85.

    Article  PubMed  Google Scholar 

  31. Arango C, Fraguas D, Parellada M. Differential neurodevelopmental trajectories in patients with early-onset bipolar and schizophrenia disorders. Schizophr Bull. 2014;40(Suppl 2):S138–46.

    Article  PubMed  Google Scholar 

  32. Debnath M, Venkatasubramanian G, Berk M. Fetal programming of schizophrenia: select mechanisms. Neurosci Biobehav Rev. 2015;49:90–104.

    Article  PubMed  Google Scholar 

  33. O’Shea KS, McInnis MG. Neurodevelopmental origins of bipolar disorder: iPSC models. Mol Cell Neurosci. 2016;73:63–83.

    Article  PubMed  CAS  Google Scholar 

  34. Yolken RH, Torrey EF. Viruses, schizophrenia, and bipolar disorder. Clin Microbiol Rev. 1995;8(1):131–45.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Brown AS, Derkits EJ. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry. 2010;167(3):261–80.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Canetta SE, Bao Y, Co MDT, Ennis FA, Cruz J, Terajima M, et al. Serological documentation of maternal influenza exposure and bipolar disorder in adult offspring. Am J Psychiatry. 2014;171(5):557–63.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Parboosing R, Bao Y, Shen L, Schaefer CA, Brown AS. Gestational influenza and bipolar disorder in adult offspring. JAMA Psychiatry. 2013;70(7):677–85.

    Article  PubMed  Google Scholar 

  38. Wallace J, Marston HM, McQuade R, Gartside SE. Evidence that aetiological risk factors for psychiatric disorders cause distinct patterns of cognitive deficits. Eur Neuropsychopharmacol. 2014;24(6):879–89.

    Article  PubMed  CAS  Google Scholar 

  39. Dickerson FB, Boronow JJ, Stallings C, Origoni AE, Cole S, Krivogorsky B, et al. Infection with herpes simplex virus type 1 is associated with cognitive deficits in bipolar disorder. Biol Psychiatry. 2004;55(6):588–93.

    Article  PubMed  Google Scholar 

  40. Houenou J, d'Albis MA, Daban C, Hamdani N, Delavest M, Lepine JP, et al. Cytomegalovirus seropositivity and serointensity are associated with hippocampal volume and verbal memory in schizophrenia and bipolar disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;48:142–8.

    Article  CAS  Google Scholar 

  41. Avramopoulos D, Pearce BD, McGrath J, Wolyniec P, Wang R, Eckart N, et al. Infection and inflammation in schizophrenia and bipolar disorder: a genome wide study for interactions with genetic variation. PLoS One. 2015;10(3):e0116696.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kim JJ, Shirts BH, Dayal M, Bacanu SA, Wood J, Xie W, et al. Are exposure to cytomegalovirus and genetic variation on chromosome 6p joint risk factors for schizophrenia? Ann Med. 2007;39(2):145–53.

    Article  PubMed  CAS  Google Scholar 

  43. Bamne M, Wood J, Chowdari K, Watson AM, Celik C, Mansour H, et al. Evaluation of HLA polymorphisms in relation to schizophrenia risk and infectious exposure. Schizophr Bull. 2012;38(6):1149–54.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fellerhoff B, Laumbacher B, Mueller N, Gu S, Wank R. Associations between Chlamydophila infections, schizophrenia and risk of HLA-A10. Mol Psychiatry. 2007;12(3):264–72.

    Article  PubMed  CAS  Google Scholar 

  45. •• Sekar A, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530(7589):177–83. This study provides important evidence towards the role of immune components i.e. complement component 4, encoded by genes within MHC region in pathogenetic pathway of schizophrenia

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Nimgaonkar VL, Prasad KM, Chowdari KV, Severance EG, Yolken RH. The complement system: a gateway to gene-environment interactions in schizophrenia pathogenesis. Mol Psychiatry. 2017;22(11):1554–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Thorsby E, Lie BA. HLA associated genetic predisposition to autoimmune diseases: genes involved and possible mechanisms. Transpl Immunol. 2005;14(3–4):175–82.

    Article  PubMed  CAS  Google Scholar 

  48. Nejentsev S, et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature. 2007;450(7171):887–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Benros ME, Pedersen MG, Rasmussen H, Eaton WW, Nordentoft M, Mortensen PB. A nationwide study on the risk of autoimmune diseases in individuals with a personal or a family history of schizophrenia and related psychosis. Am J Psychiatry. 2014;171(2):218–26.

    Article  PubMed  Google Scholar 

  50. Cremaschi L, Kardell M, Johansson V, Isgren A, Sellgren CM, Altamura AC, et al. Prevalences of autoimmune diseases in schizophrenia, bipolar I and II disorder, and controls. Psychiatry Res. 2017;258:9–14.

    Article  PubMed  Google Scholar 

  51. Benros ME, Nielsen PR, Nordentoft M, Eaton WW, Dalton SO, Mortensen PB. Autoimmune diseases and severe infections as risk factors for schizophrenia: a 30-year population-based register study. Am J Psychiatry. 2011;168(12):1303–10.

    Article  PubMed  Google Scholar 

  52. Torrey EF, Bartko JJ, Yolken RH. Toxoplasma gondii and other risk factors for schizophrenia: an update. Schizophr Bull. 2012;38(3):642–7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kannan G, Pletnikov MV. Toxoplasma gondii and cognitive deficits in schizophrenia: an animal model perspective. Schizophr Bull. 2012;38(6):1155–61.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Del Grande C, et al. Is toxoplasma gondii a trigger of bipolar disorder? Pathogens. 2017;

  55. Kannan G, Crawford JA, Yang CX, Gressitt KL, Ihenatu C, Krasnova IN, et al. Anti-NMDA receptor autoantibodies and associated neurobehavioral pathology in mice are dependent on age of first exposure to toxoplasma gondii. Neurobiol Dis. 2016;91:307–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Pollak TA, Beck K, Irani SR, Howes OD, David AS, McGuire PK. Autoantibodies to central nervous system neuronal surface antigens: psychiatric symptoms and psychopharmacological implications. Psychopharmacology. 2016;233(9):1605–21.

    Article  PubMed  CAS  Google Scholar 

  57. Kayser MS, Dalmau J. Anti-NMDA receptor encephalitis, autoimmunity, and psychosis. Schizophr Res. 2016;176(1):36–40.

    Article  PubMed  Google Scholar 

  58. Deakin J, Lennox BR, Zandi MS. Antibodies to the N-methyl-D-aspartate receptor and other synaptic proteins in psychosis. Biol Psychiatry. 2014;75(4):284–91.

    Article  PubMed  CAS  Google Scholar 

  59. Pearlman DM, Najjar S. Meta-analysis of the association between N-methyl-d-aspartate receptor antibodies and schizophrenia, schizoaffective disorder, bipolar disorder, and major depressive disorder. Schizophr Res. 2014;157(1–3):249–58.

    Article  PubMed  Google Scholar 

  60. Jezequel J, et al. Dynamic disorganization of synaptic NMDA receptors triggered by autoantibodies from psychotic patients. Nat Commun. 2017;8(1):1791.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Newton JL, Harney SMJ, Wordsworth BP, Brown MA. A review of the MHC genetics of rheumatoid arthritis. Genes Immun. 2004;5(3):151–7.

    Article  PubMed  CAS  Google Scholar 

  62. Patsopoulos NA, Barcellos LF, Hintzen RQ, Schaefer C, van Duijn CM, Noble JA, et al. Fine-mapping the genetic association of the major histocompatibility complex in multiple sclerosis: HLA and non-HLA effects. PLoS Genet. 2013;9(11):e1003926.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Malavia TA, Chaparala S, Wood J, Chowdari K, Prasad KM, McClain L, et al. Generating testable hypotheses for schizophrenia and rheumatoid arthritis pathogenesis by integrating epidemiological, genomic, and protein interaction data. NPJ Schizophr. 2017;3:11.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sayeh A, Ben Cheikh C, Mardessi A, Mrad M, Nsiri B, Oumaya A, et al. HLA DRB1*03 as a possible common etiology of schizophrenia, Graves' disease, and type 2 diabetes. Ann General Psychiatry. 2017;16:7.

    Article  Google Scholar 

  65. •• Andreassen OA, et al. Genetic pleiotropy between multiple sclerosis and schizophrenia but not bipolar disorder: differential involvement of immune-related gene loci. Mol Psychiatry. 2015;20(2):207–14. This study highlights differential involvement of immune-related gene loci in autoimmune and neuropsychitrci disorders

    Article  PubMed  CAS  Google Scholar 

  66. Wang Q, Yang C, Gelernter J, Zhao H. Pervasive pleiotropy between psychiatric disorders and immune disorders revealed by integrative analysis of multiple GWAS. Hum Genet. 2015;134(11–12):1195–209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Cazzullo CL, Smeraldi E, Penati G. The leucocyte antigenic system HL-A as a possible genetic marker of schizophrenia. Br J Psychiatry. 1974;125(0):25–7.

    Article  PubMed  CAS  Google Scholar 

  68. Shapiro RW, Bock E, Rafaelsen OJ, Ryder LP, Svejgaard A. Histocompatibility antigens and manic-depressive disorders. Arch Gen Psychiatry. 1976;33(7):823–5.

    Article  PubMed  CAS  Google Scholar 

  69. Figueiredo TC, de Oliveira JR. Reconsidering the association between the major histocompatibility complex and bipolar disorder. J Mol Neurosci. 2012;47(1):26–30.

    Article  PubMed  CAS  Google Scholar 

  70. Sanders AR, Drigalenko EI, Duan J, Moy W, Freda J, Göring HHH, et al. Transcriptome sequencing study implicates immune-related genes differentially expressed in schizophrenia: new data and a meta-analysis. Transl Psychiatry. 2017;7(4):e1093.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. van Eijk KR, de Jong S, Strengman E, Buizer-Voskamp JE, Kahn RS, Boks MP, et al. Identification of schizophrenia-associated loci by combining DNA methylation and gene expression data from whole blood. Eur J Hum Genet. 2015;23(8):1106–10.

    Article  PubMed  CAS  Google Scholar 

  72. Agartz I, Brown AA, Rimol LM, Hartberg CB, Dale AM, Melle I, et al. Common sequence variants in the major histocompatibility complex region associate with cerebral ventricular size in schizophrenia. Biol Psychiatry. 2011;70(7):696–8.

    Article  PubMed  CAS  Google Scholar 

  73. Corvin A, Morris DW. Genome-wide association studies: findings at the major histocompatibility complex locus in psychosis. Biol Psychiatry. 2014;75(4):276–83.

    Article  PubMed  CAS  Google Scholar 

  74. Bergen SE, O'Dushlaine CT, Ripke S, Lee PH, Ruderfer DM, Akterin S, et al. Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder. Mol Psychiatry. 2012;17(9):880–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Williams HJ, Craddock N, Russo G, Hamshere ML, Moskvina V, Dwyer S, et al. Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries. Hum Mol Genet. 2011;20(2):387–91.

    Article  PubMed  CAS  Google Scholar 

  76. Ruderfer DM, et al. Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophrenia. Mol Psychiatry. 2014;19(9):1017–24.

    Article  PubMed  CAS  Google Scholar 

  77. Strange A, Riley BP, Spencer CC, Moris DW, Pirinen M, O'Dushlaine CT, et al. Genome-wide association study implicates HLA-C*01:02 as a risk factor at the major histocompatibility complex locus in schizophrenia. Biol Psychiatry, 2012. 72(8): p. 620–8.

  78. Mukherjee S, Guha S, Ikeda M, Iwata N, Malhotra AK, Pe'er I, et al. Excess of homozygosity in the major histocompatibility complex in schizophrenia. Hum Mol Genet. 2014;23(22):6088–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Glatt SJ, Everall IP, Kremen WS, Corbeil J, Sasik R, Khanlou N, et al. Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia. Proc Natl Acad Sci U S A. 2005;102(43):15533–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Mexal S, Frank M, Berger R, Adams CE, Ross RG, Freedman R, et al. Differential modulation of gene expression in the NMDA postsynaptic density of schizophrenic and control smokers. Brain Res Mol Brain Res. 2005;139(2):317–32.

    Article  PubMed  CAS  Google Scholar 

  81. Kano S, Nwulia E, Niwa M, Chen Y, Sawa A, Cascella N. Altered MHC class I expression in dorsolateral prefrontal cortex of nonsmoker patients with schizophrenia. Neurosci Res. 2011;71(3):289–93.

    Article  PubMed  CAS  Google Scholar 

  82. de Jong S, et al. Expression QTL analysis of top loci from GWAS meta-analysis highlights additional schizophrenia candidate genes. Eur J Hum Genet. 2012;20(9):1004–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Nakatani N, Hattori E, Ohnishi T, Dean B, Iwayama Y, Matsumoto I, et al. Genome-wide expression analysis detects eight genes with robust alterations specific to bipolar I disorder: relevance to neuronal network perturbation. Hum Mol Genet. 2006;15(12):1949–62.

    Article  PubMed  CAS  Google Scholar 

  84. Morgan LZ, et al. Quantitative trait locus and brain expression of HLA-DPA1 offers evidence of shared immune alterations in psychiatric disorders. Microarrays (Basel). 2016;5(1)

  85. Rakyan VK, Hildmann T, Novik KL, Lewin J, Tost J, Cox AV, et al. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol. 2004;2(12):e405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet. 2008;82(3):696–711.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Gaudieri S, Longman-Jacobsen N, Tay GK, Dawkins RL. Sequence analysis of the MHC class I region reveals the basis of the genomic matching technique. Hum Immunol. 2001;62(3):279–85.

    Article  PubMed  CAS  Google Scholar 

  88. Kaminsky Z, Tochigi M, Jia P, Pal M, Mill J, Kwan A, et al. A multi-tissue analysis identifies HLA complex group 9 gene methylation differences in bipolar disorder. Mol Psychiatry. 2012;17(7):728–40.

    Article  PubMed  CAS  Google Scholar 

  89. Pal M, et al. High precision DNA modification analysis of HCG9 in major psychosis. Schizophr Bull. 2016;42(1):170–7.

    PubMed  Google Scholar 

  90. Rajasekaran A, Shivakumar V, Kalmady SV, Narayanaswamy JC, Subbana M, Venugopal D, et al. The impact of HLA-G 3' UTR variants and sHLA-G on risk and clinical correlates of schizophrenia. Hum Immunol. 2016;77(12):1166–71.

    Article  PubMed  CAS  Google Scholar 

  91. • Brucato N, et al. A schizophrenia-associated HLA locus affects thalamus volume and asymmetry. Brain Behav Immun. 2015;46:311–8. This study demonstrates the role of HLA genes on brain morphometry

    Article  PubMed  CAS  Google Scholar 

  92. Ruderfer DM, Charney AW, Readhead B, Kidd BA, Kähler AK, Kenny PJ, et al. Polygenic overlap between schizophrenia risk and antipsychotic response: a genomic medicine approach. Lancet Psychiatry. 2016;3(4):350–7.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Le Clerc S, et al. A double amino-acid change in the HLA-A peptide-binding groove is associated with response to psychotropic treatment in patients with schizophrenia. Transl Psychiatry. 2015;5:e608.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Amare AT, et al. Association of polygenic score for schizophrenia and HLA antigen and inflammation genes with response to Lithium in bipolar affective disorder: a genome-wide association study. JAMA Psychiatry. 2018;75(1):65–74.

  95. Forstner AJ, et al. Identification of shared risk loci and pathways for bipolar disorder and schizophrenia. PLoS One. 2017;12(2):e0171595.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Lichtenstein P, Yip BH, Björk C, Pawitan Y, Cannon TD, Sullivan PF, et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet. 2009;373(9659):234–9.

    Article  PubMed  CAS  Google Scholar 

  97. Demjaha A, MacCabe JH, Murray RM. How genes and environmental factors determine the different neurodevelopmental trajectories of schizophrenia and bipolar disorder. Schizophr Bull. 2012;38(2):209–14.

    Article  PubMed  Google Scholar 

  98. Barouki R, Gluckman PD, Grandjean P, Hanson M, Heindel JJ. Developmental origins of non-communicable disease: implications for research and public health. Environ Health. 2012;11:42.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Hayashi Y, Nihonmatsu-Kikuchi N, Hisanaga SI, Yu XJ, Tatebayashi Y. Neuropathological similarities and differences between schizophrenia and bipolar disorder: a flow cytometric postmortem brain study. PLoS One. 2012;7(3):e33019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Schnack HG, Nieuwenhuis M, van Haren NEM, Abramovic L, Scheewe TW, Brouwer RM, et al. Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. NeuroImage. 2014;84:299–306.

    Article  PubMed  Google Scholar 

  101. Eyre HA, Eskin A, Nelson SF, St. Cyr NM, Siddarth P, Baune BT, et al. Genomic predictors of remission to antidepressant treatment in geriatric depression using genome-wide expression analyses: a pilot study. Int J Geriatr Psychiatry. 2016;31(5):510–7.

    Article  PubMed  Google Scholar 

  102. Purcell SM, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460(7256):748–52.

    PubMed  CAS  Google Scholar 

  103. Whalley HC, Papmeyer M, Sprooten E, Lawrie SM, Sussmann JE, McIntosh AM. Review of functional magnetic resonance imaging studies comparing bipolar disorder and schizophrenia. Bipolar Disord. 2012;14(4):411–31.

    Article  PubMed  Google Scholar 

  104. Killgore WD, et al. Amygdala volume and verbal memory performance in schizophrenia and bipolar disorder. Cogn Behav Neurol. 2009;22(1):28–37.

    Article  PubMed  Google Scholar 

  105. MacCabe JH, Lambe MP, Cnattingius S, Sham PC, David AS, Reichenberg A, et al. Excellent school performance at age 16 and risk of adult bipolar disorder: national cohort study. Br J Psychiatry. 2010;196(2):109–15.

    Article  PubMed  Google Scholar 

  106. Walker J, Curtis V, Shaw P, Murray RM. Schizophrenia and bipolar disorder are distinguished mainly by differences in neurodevelopment. Neurotox Res. 2002;4(5–6):427–36.

    Article  PubMed  Google Scholar 

  107. Debnath M, Busson M, Jamain S, Etain B, Hamdani N, Oliveira J, et al. The HLA-G low expressor genotype is associated with protection against bipolar disorder. Hum Immunol. 2013;74(5):593–7.

    Article  PubMed  CAS  Google Scholar 

  108. Chen J, Calhoun VD, Perrone-Bizzozero NI, Pearlson GD, Sui J, du Y, et al. A pilot study on commonality and specificity of copy number variants in schizophrenia and bipolar disorder. Transl Psychiatry. 2016;6(5):e824.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Fillman SG, Sinclair D, Fung SJ, Webster MJ, Shannon Weickert C. Markers of inflammation and stress distinguish subsets of individuals with schizophrenia and bipolar disorder. Transl Psychiatry. 2014;4:e365.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Oliveira J, Oliveira-Maia AJ, Tamouza R, Brown AS, Leboyer M. Infectious and immunogenetic factors in bipolar disorder. Acta Psychiatr Scand. 2017;136(4):409–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Monojit Debnath or Ryad Tamouza.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Inflammation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, M., Berk, M., Leboyer, M. et al. The MHC/HLA Gene Complex in Major Psychiatric Disorders: Emerging Roles and Implications. Curr Behav Neurosci Rep 5, 179–188 (2018). https://doi.org/10.1007/s40473-018-0155-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-018-0155-8

Keywords

Navigation