Skip to main content

Advertisement

Log in

Gold Nanoparticles: Potential Tool for the Treatment of Human Cancer Cells

  • Naturopathy, Nanotechnology, Nutraceuticals, and Immunotherapy in Cancer Research (H Latha, Section Editors)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

For more than a century, cancer has been recognized as a fatal disease. Because current medicines are ineffective, certain modern therapeutic options are considered essential. This review provides a comprehensive outline of the biosynthesis of gold nanoparticles (Au-NPs) and their anti-cancer potentiality on cell lines. These gold nanoparticles are highly efficient, biocompatible, and eco-friendly.

Recent Findings

Due to the limitations of traditional cancer treatment, Au-NPs are being utilized. Owing to their unique optical and physical attributes, gold nanoparticles are widely used as promising materials in innumerable fields. Since it is target-specific, it had no undesirable effects. Au-NPs have been created utilizing various synthesis methods such as bottom-up and top-down approaches. Effective formulation of drugs has been a major challenge due to their instability and poor solubility in the vehicle. This issue can be combated by utilizing nano-particle mediated drug delivery. The enormous interfacial area of nano-particles furnishes targeted drug delivery.

Summary

This review gives an outlook on the various formulations of gold nanoparticles by physical, chemical, and biological methods, the mechanism of formation of nanoparticles, and the anticancer activity of gold nanoparticles. Papers from Google Scholar and PubMed Central have been used as references in this review. This paper reports a comparative study on the toxic effects of various nanoparticles in order to emphasize the non-toxicity of gold nanoparticles. Detailed research on gold nanoparticles will pave way for new avenues in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9(1):1050–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lipomi DJ, Fenning DP, Ong SP, Shah NJ, Tao AR, Zhang L. Exploring Frontiers in Research and Teaching: NanoEngineering and Chemical Engineering at UC San Diego. ACS Nano. 2020;14(8):9203–16.

  3. Nejati K, Dadashpour M, Gharibi T, Mellatyar H, Akbarzadeh A. Biomedical applications of functionalized gold nanoparticles: a review. J Cluster Sci. 2021;3:1–6.

    Google Scholar 

  4. Pratap D, Soni S. Review on the optical properties of nanoparticle aggregates towards the therapeutic applications. Plasmonics. 2021;16:1–9.

    Article  CAS  Google Scholar 

  5. Peng J, Liang X. Progress in research on gold nanoparticles in cancer management. Medicine (Baltimore). 2019;98(18):e15311.

  6. Siddique S, Chow JC. Gold nanoparticles for drug delivery and cancer therapy. Appl Sci. 2020;10(11):3824.

    Article  CAS  Google Scholar 

  7. Chakraborty T, Saini V, Govila D, Singh G. Four most life threatening urogenital cancer and its management. Int J Pharm Sci Res. 2018;9:3166–74.

    Google Scholar 

  8. Roy PS, Saikia BJ. Cancer and cure: A critical analysis. Indian J Cancer. 2016;53(3):441–2.

    CAS  PubMed  Google Scholar 

  9. Surgery,radiation,chemotherapy and immuno therapies are employed for the treatment of cancer. Wang J-J, Lei K-F, Han F. Tumor microenvironment: recent advances in various cancer treatments. Eur Rev Med Pharmacol Sci. 2018; 22(12):3855–3864.

  10. Mikelez-Alonso I, Aires A, Cortajarena AL. Cancer nano-immunotherapy from the injection to the target: the role of protein corona. Int J Mol Sci. 2020;21(2):519.

    Article  CAS  PubMed Central  Google Scholar 

  11. Chugh H, Sood D, Chandra I, Tomar V, Dhawan G, Chandra R. Role of gold and silver nanoparticles in cancer nano-medicine. Artif Cells Nanomed Biotechnol. 2018;46(sup1):1210–20.

    Article  CAS  PubMed  Google Scholar 

  12. Virmani I, Sasi C, Priyadarshini E, Kumar R, Sharma SK, Singh GP, Pachwarya RB, Paulraj R, Barabadi H, Saravanan M, Meena R. Comparative anticancer potential of biologically and chemically synthesized gold nanoparticles. J Cluster Sci. 2020;31(4):867–76.

    Article  CAS  Google Scholar 

  13. Abdussalam-Mohammed W. Comparison of chemical and biological properties of metal nanoparticles (Au, Ag), with metal oxide nanoparticles (ZnO-NPs) and their applications. Adv. J. Chem. A 2020;3(2):192–210.

    Article  CAS  Google Scholar 

  14. Pathak J, Ahmed H, Singh DK, Pandey A, Singh SP, Sinha RP. Recent developments ingreen synthesis of metal nanoparticles utilizing cyanobacterial cell factories. In Durgesh KT, editor. Nanomaterials in plants, algae and microorganisms. 2019;237–265.

  15. Hamida RS, Ali MA, Redhwan A, Bin-Meferij MM. Cyanobacteria–a promising platform in green nanotechnology: a review on nanoparticles fabrication and their prospective applications. Int J Nanomed. 2020;15:6033.

    Article  CAS  Google Scholar 

  16. Perera M, Wijenayaka LA, Siriwardana K, Dahanayake D, de Silva KN. Gold nanoparticle decorated titania for sustainable environmental remediation: green synthesis, enhanced surface adsorption and synergistic photocatalysis. RSC Adv. 2020;10(49):29594–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Singh RK, Behera SS, Singh KR, Mishra S, Panigrahi B, Sahoo TR, Parhi PK, Mandal D. Biosynthesized gold nanoparticles as photocatalysts for selective degradation of cationic dye and their antimicrobial activity. J Photochem Photobiol A Chem. 2020;400:112704.

    Article  CAS  Google Scholar 

  18. Virgili AH, Laranja DC, Malheiros PS, Pereira MB, Costa TM, de Menezes EW. Nanocomposite film with antimicrobial activity based on gold nanoparticles, chitosan and aminopropylsilane. Surf Coat Technol. 2021;415:127086.

    Article  CAS  Google Scholar 

  19. O’Connell KC, Monnier JR, Regalbuto JR. The curious relationship of sintering to activity in supported gold catalysts for the hydrochlorination of acetylene. Appl Catal B. 2018;225:264–72.

    Article  CAS  Google Scholar 

  20. Wang X, Almoallim HS, Cui Q, Alharbi SA, Yang H. In situ decorated Au NPs on chitosan-encapsulated Fe3O4-NH2 NPs as magnetic nanocomposite: investigation of its anti-colon carcinoma, anti-gastric cancer and anti-pancreatic cancer. Int J Biol Macromol. 2021;171:198–207.

    Article  CAS  PubMed  Google Scholar 

  21. Yu Y, Naik SS, Oh Y, Theerthagiri J, Lee SJ, Choi MY. Lignin-mediated green synthesis of functionalized gold nanoparticles via pulsed laser technique for selective colorimetric detection of lead ions in aqueous media. J Hazard Mater. 2021;420:126585. This article reports the production of functionalized gold nanoparticles can also be used as effective sensors for the rapid and selective detection of Pb2+ ions via the colorimetric analysis using the real environmental samples.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao Y, Ye C, Liu W, Chen R, Jiang X. Tuning the composition of AuPt bimetallic nanoparticles for antibacterial application. Angew Chem Int Ed. 2014;53(31):8127–31.

    Article  CAS  Google Scholar 

  23. Slepička P, Slepičková Kasálková N, Siegel J, Kolská Z, Švorčík V. Methods of gold and silver nanoparticles preparation. Materials. 2020;13(1):1.

    Article  CAS  Google Scholar 

  24. Lu H, Tang SY, Yun G, Li H, Zhang Y, Qiao R, Li W. Modular and integrated systems for nanoparticle and microparticle synthesis—a review. Biosensors. 2020;10(11):165.

    Article  CAS  PubMed Central  Google Scholar 

  25. Swaminathan M, Sharma NK. Antimicrobial Activity of the engineered nanoparticles used as coating agents. Handbook of ecomaterials. Cham: Springer International Publishing. 2019: pp 549–63.

  26. Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: a review. Talanta. 184:537–556.

  27. Khan T, Ullah N, Khan MA, Nadhman A. Plant-based gold nanoparticles; a comprehensive review of the decade-long research on synthesis, mechanistic aspects and diverse applications. Adv Coll Interface Sci. 2019;272:102017.

    Article  CAS  Google Scholar 

  28. Dong J, Carpinone PL, Pyrgiotakis G, Demokritou P, Moudgil BM. Synthesis of precision gold nanoparticles using Turkevich method. Kona Powder Part J. 2020;37:224–32.

    Article  CAS  Google Scholar 

  29. Wang Y, Ge X, Zhang W. Effect of reference region size on strain measurements using geometrical phase analysis. J Microsc. 2020;278(1):49–56.

    Article  CAS  PubMed  Google Scholar 

  30. Tran M, DePenning R, Turner M, Padalkar S. Effect of citrate ratio and temperature on gold nanoparticle size and morphology. Mater Res Express. 2016;3(10):105027.

    Article  CAS  Google Scholar 

  31. Ghosh S, Manna L. The many “facets” of halide ions in the chemistry of colloidal inorganic nanocrystals. Chem Rev. 2018;118(16):7804–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen W, Shen J, Chen S, Yan J, Zhang N, Zheng K, Liu X. Synthesis of graphene quantum dot-stabilized gold nanoparticles and their application. RSC Adv. 2019;9(37):21215–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu Y. Alkanethiolate-protected silver nanoparticles and clusters: characterization, synthesis optimization and formation mechanism investigation. Georgetown University; 2016. http://hdl.handle.net/10822/1043820.

  34. Thangamani N, Bhuvaneshwari N. Green synthesis of gold nanoparticles using Simarouba glauca leaf extract and their biological activity of micro-organism. Chem Phys Lett. 2019;732:136587.

    Article  CAS  Google Scholar 

  35. • El-Batal AI, Abd Elkodous M, El-Sayyad GS, Al-Hazmi NE, Gobara M, Baraka A. Gum Arabic polymer-stabilized and Gamma rays-assisted synthesis of bimetallic silver-gold nanoparticles: powerful antimicrobial and antibiofilm activities against pathogenic microbes isolated from diabetic foot patients. Int J Biol Macromol. 2020;165:169–86. This study proves that Ag-Au NPs exhibited the highest antimicrobial performance against B. subtilis (14.30 mm ZOI) followed by E. coli (12.50 mm ZOI) and C. tropicalis (11.90 mm ZOI). In addition, Ag-Au NPs were able to inhibit the biofilm formation by 99.64%, 94.15%, and 90.79% against B. subtilis, E. coli, and C. tropicalis, respectively.

    Article  CAS  PubMed  Google Scholar 

  36. Rajasekar T, Karthika K, Muralitharan G, Maryshamya A, Sabarika S, Anbarasu S, Revathy K, Prasannabalaji N, Kumaran S. Green synthesis of gold nanoparticles using extracellular metabolites of fish gut microbes and their antimicrobial properties. Braz J Microbiol. 2020;51:957–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miyagawa Y, Tsatsuryan A, Haraguchi T, Shcherbakov I, Akitsu T. Photochemical reduction of Cr (VI) compounds by amino acid Schiff base copper complexes with a hydroxyl group and titanium oxide composites in aqueous solutions. New J Chem. 2020;44(38):16665–74.

    Article  CAS  Google Scholar 

  38. Belloni J, Marignier JL, Mostafavi M. Mechanisms of metal nanoparticles nucleation and growth studied by radiolysis. Radiat Phys Chem. 2020;169:107952.

    Article  CAS  Google Scholar 

  39. Moshkovich Y, Levy Y, Sher E. Experimental observations of the transition between heterogeneous to homogeneous nucleation regimes in flash-boiling atomization. Int J Multiphase Flow. 2021;134:103476.

    Article  CAS  Google Scholar 

  40. Whitehead CB, Özkar S, Finke RG. LaMer’s 1950 model of particle formation: a review and critical analysis of its classical nucleation and fluctuation theory basis, of 10.1007/s40495-022-00290-z competing models and mechanisms for phase-changes and particle formation, and then of its application to silver halide, semiconductor, metal, and metal-oxide nanoparticles. Mater Adv. 2021: 1.

  41. Bachheti RK, Sharma A, Bachheti A, Husen A, Shanka GM, Pandey DP. Nanomaterials from various forest tree species and their biomedical applications. In: Nanomaterials for Agriculture and Forestry Applications. Elsevier; 2020. p. 81–106. https://doi.org/10.1016/b978-0-12-817852-2.00004-4.

  42. Patil MP, Kim G. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol. 2017;101(1):79–92.

    Article  CAS  PubMed  Google Scholar 

  43. Demirbas A, Büyükbezirci K, Celik C, Kislakci E, Karaagac Z, Gokturk E, Kati A, Cimen B, Yilmaz V, Ocsoy I. Synthesis of long-term stable gold nanoparticles benefiting from red raspberry (Rubus idaeus), strawberry (Fragaria ananassa), and blackberry (Rubus fruticosus) extracts–gold ion complexation and investigation of reaction conditions. ACS Omega. 2019;4(20):18637–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Y, Xu J, Shi L, Yang H. Recent advances in the antilung cancer activity of biosynthesized gold nanoparticles. J Cell Physiol. 2020;235(12):8951–7.

    Article  CAS  PubMed  Google Scholar 

  45. Unal IS, Demirbas A, Onal I, Ildiz N, Ocsoy I. One step preparation of stable gold nanoparticle using red cabbage extracts under UV light and its catalytic activity. J Photochem Photobiol B. 2020;1(204):111800.

    Article  CAS  Google Scholar 

  46. Wang L, Xu J, Yan Y, Liu H, Karunakaran T, Li F. Green synthesis of gold nanoparticles from Scutellaria barbata and its anticancer activity in pancreatic cancer cell (PANC-1). Artif Cells Nanomed Biotechnol. 2019;47(1):1617–27.

    Article  CAS  PubMed  Google Scholar 

  47. Akrami M, Samimi S, Alipour M, Bardania H, Ramezanpour S, Najafi N, Hosseinkhani S, Kamankesh M, Haririan I, Hassanshahi F. Potential anticancer activity of a new pro-apoptotic peptide–thioctic acid gold nanoparticle platform. Nanotechnology. 2021;32(14):145101.

    Article  CAS  PubMed  Google Scholar 

  48. Chen X, Han W, Zhao X, Tang W, Wang F. Epirubicin-loaded marine carrageenan oligosaccharide capped gold nanoparticle system for pH-triggered anticancer drug release. Sci Rep. 2019;9(1):1.

    CAS  Google Scholar 

  49. Rajeshkumar S. Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J Genet Eng Biotechnol. 2016;14(1):195–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Patil MP, Kang MJ, Niyonizigiye I, Singh A, Kim JO, Seo YB, Kim GD. Extracellular synthesis of gold nanoparticles using the marine bacterium Paracoccus haeundaensis BC74171T and evaluation of their antioxidant activity and antiproliferative effect on normal and cancer cell lines. Colloids Surf B Biointerfaces. 2019;183:110455.

    Article  CAS  PubMed  Google Scholar 

  51. Hussein SI, Sultan AS, Yaseen NY. Study the effect of gold nanoparticles on cancer and normal cells (in vitro study). J Med Genet. 2016;9(2):144–9.

    Google Scholar 

  52. Balashanmugam P, Durai P, Balakumaran MD, Kalaichelvan PT. Phytosynthesized gold nanoparticles from C. roxburghii DC. leaf and their toxic effects on normal and cancer cell lines. J Photochem Photobiol B Biol. 2016;165:163–73.

    Article  CAS  Google Scholar 

  53. Yaqub A, Anjum KM, Munir A, Mukhtar H, Khan WA. Evaluation of acute toxicity and effects of sub-acute concentrations of copper oxide nanoparticles (CuO-NPs) on hematology, selected enzymes and histopathology of liver and kidney in Mus musculus. Indian J Anim Res. 2018;52(1):92–8.

    Google Scholar 

  54. Majewski M, Ognik K, Juśkiewicz J. Copper nanoparticles modify the blood plasma antioxidant status and modulate the vascular mechanisms with nitric oxide and prostanoids involved in Wistar rats. Pharmacol Rep. 2019;71(3):509–16.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang CH, Wang Y, Sun QQ, Xia LL, Hu JJ, Cheng K, Wang X, Fu XX, Gu H. Copper nanoparticles show obvious in vitro and in vivo reproductive toxicity via ERK mediated signaling pathway in female mice. Int J Biol Sci. 2018;14(13):1834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Luo J, Hao S, Zhao L, Shi F, Ye G, He C, Lin J, Zhang W, Liang H, Wang X, Guo H. Oral exposure of pregnant rats to copper nanoparticles caused nutritional imbalance and liver dysfunction in fetus. Ecotoxicol Environ Saf. 2020;206:111206.

    Article  CAS  PubMed  Google Scholar 

  57. Bahadar H, Maqbool F, Niaz K, Abdollahi M. Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J. 2016;20(1):1.

    PubMed  PubMed Central  Google Scholar 

  58. Fadda LM, Ali HM, Mohamed AM, Hagar H. Prophylactic administration of carnosine and melatonin abates the incidence of apoptosis, inflammation, and DNA damage induced by titanium dioxide nanoparticles in rat livers. Environ Sci Pollut Res. 2020;27(16):19142–50.

    Article  CAS  Google Scholar 

  59. Wani MR, Shadab GG. Titanium dioxide nanoparticle genotoxicity: a review of recent in vivo and in vitro studies. Toxicol Ind Health. 2020;36(7):514–30.

    Article  CAS  PubMed  Google Scholar 

  60. Smallcombe CC, Harford TJ, Linfield DT, Lechuga S, Bokun V, Piedimonte G, Rezaee F. Titanium dioxide nanoparticles exaggerate respiratory syncytial virus-induced airway epithelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol. 2020;319(3):L481–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Subhan F, Aslam S, Yan Z, Ahmad A, Etim UJ. Fabrication of 3-D confined spaces with Au NPs: superior dispersion and catalytic activity. J Colloid Interface Sci. 2019;540:371–81.

    Article  CAS  PubMed  Google Scholar 

  62. Karimi-Maleh H, Fallah Shojaei A, Karimi F, Tabatabaeian K, Shakeri S. Au nanoparticle loaded with 6-thioguanine anticancer drug as a new strategy for drug delivery. J Nanostruct. 2018;8(4):217–424.

    Google Scholar 

  63. Nasrollahzadeh M, Sajadi SM. Preparation of Au nanoparticles by Anthemis xylopoda flowers aqueous extract and their application for alkyne/aldehyde/amine A 3-type coupling reactions. RSC Adv. 2015;5(57):46240–6.

    Article  CAS  Google Scholar 

  64. Sumesh KR, Kanthavel K. Green synthesis of aluminium oxide nanoparticles and its applications in mechanical and thermal stability of hybrid natural composites. J Polym Environ. 2019;27(10):2189–200.

    Article  CAS  Google Scholar 

  65. Temple TL, Bagnall DM. Optical properties of gold and aluminium nanoparticles for silicon solar cell applications. J Appl Phys. 2011;109(8):084343.

    Article  CAS  Google Scholar 

  66. Mukherjee A, Sadiq IM, Prathna TC, Chandrasekaran N. Antimicrobial activity of aluminium oxide nanoparticles for potential clinical applications. In book Science against microbial pathogens: communicating current research and technological advances. Publisher: Formatex Research Center 2011;1:245–251.

  67. Barron AR. The interaction of carboxylic acids with aluminium oxides: Journeying from a basic understanding of alumina nanoparticles to water treatment for industrial and humanitarian applications. Dalton Trans. 2014;43(22):8127–43.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang S, Liang X, Gadd GM, Zhao Q. A sol–gel based silver nanoparticle/polytetrafluorethylene (AgNP/PTFE) coating with enhanced antibacterial and anti-corrosive properties. Appl Surf Sci. 2021;535:147675.

    Article  CAS  Google Scholar 

  69. Vijayakumar S, Divya M, Vaseeharan B, Chen J, Biruntha M, Silva LP, Durán-Lara EF, Shreema K, Ranjan S, Dasgupta N. Biological compound capping of silver nanoparticle with the seed extracts of blackcumin (Nigella sativa): a potential antibacterial, antidiabetic, anti-inflammatory, and antioxidant. J Inorg Organomet Polym Mater. 2021;31(2):624–35.

    Article  CAS  Google Scholar 

  70. Sadowski Z. Biosynthesis and application of silver and gold nanoparticles. Silver Nanoparticles. 2010;1:257–76.

    Google Scholar 

  71. Amirsadeghi A, Jafari A, Hashemi SS, Kazemi A, Ghasemi Y, Derakhshanfar A, Shahbazi MA, Niknezhad SV. Sprayable antibacterial Persian gum-silver nanoparticle dressing for wound healing acceleration. Mater Today Commun. 2021;27:102225. This article reports the high potential of dressings that were developed by in situ formation of Ag-nanoparticles using Persian gum as a carbohydrate polymer for wound repair.

    Article  CAS  Google Scholar 

  72. Dnyanmote S, Alio J, Dnyanmote A. Nano silver coated surgical apparels and phaco needles for safety of ophthalmic surgeons in view of COVID-19 pandemic. Open J. Opthalmol. 2021;15:1874–3641.

  73. Pinheiro MC, Carneiro JA, Pithon MM, Martinez EF. Thermopolymerized acrylic resin immersed or incorporated with silver nanoparticle: microbiological, cytotoxic and mechanical Effect. Mater Res. 2021;5:24.

    Google Scholar 

  74. Lin HC, Ho MY, Tsen CM, Huang CC, Wu CC, Huang YJ, Hsiao IL, Chuang CY. From the cover: comparative proteomics reveals silver nanoparticles alter fatty acid metabolism and amyloid beta clearance for neuronal apoptosis in a triple cell coculture model of the blood–brain barrier. Toxicol Sci. 2017;158(1):151–63.

    Article  CAS  PubMed  Google Scholar 

  75. Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, Wan Z, Xi T. Influence of silver nanoparticles on neurons and blood-brain barrier via subcutaneous injection in rats. Appl Surface Sci. 2008;255(2):502–4.

    Article  CAS  Google Scholar 

  76. Lin HC, Ho MY, Tsen CM, Huang CC, Wu CC, Huang YJ, Hsiao IL, Chuang CY. From the cover: comparative proteomics reveals silver nanoparticles alter fatty acid metabolism and amyloid beta clearance for neuronal apoptosis in a triple cell coculture model of the blood–brain barrier. Toxicol Sci. 2017;158(1):151–63.

    Article  CAS  PubMed  Google Scholar 

  77. Vergara-Llanos D, Koning T, Pavicic MF, Bello-Toledo H, Díaz-Gómez A, Jaramillo A, Melendrez-Castro M, Ehrenfeld P, Sánchez-Sanhueza G. Antibacterial and cytotoxic evaluation of copper and zinc oxide nanoparticles as a potential disinfectant material of connections in implant provisional abutments: an in-vitro study. Arch Oral Biol. 2021;122:105031. This study evaluates the antibacterial activity against mono and multispecies bacterial models and the cytotoxic effects of zinc oxide and copper nanoparticles in cell cultures of human gingival fibroblasts.

    Article  CAS  PubMed  Google Scholar 

  78. Valdiglesias V, Fernández-Bertólez N, Lema-Arranz C, Rodríguez-Fernández R, Pásaro E, Reis AT, Teixeira JP, Costa C, Laffon B. Salivary leucocytes as in vitro model to evaluate nanoparticle-induced DNA damage. Nanomaterials. 2021;11(8):1930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Marino M, Gigliotti L, Møller P, Riso P, Porrini M, Del Bo C. Impact of 12-month cryopreservation on endogenous DNA damage in whole blood and isolated mononuclear cells evaluated by the comet assay. Sci Rep. 2021;11(1):1–1. This study evaluates the impact of storage at different time-points on the levels of strand breaks and formamidopyrimidine DNA glycosylase sensitive sites in isolated PBMCs and whole blood.

    Article  CAS  Google Scholar 

  80. Vangijzegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin Drug Deliv. 2019;16(1):69–78.

    Article  CAS  PubMed  Google Scholar 

  81. Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F, Lammers T. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev. 2019;138:302–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bietenbeck M, Florian A, Faber C, Sechtem U, Yilmaz A. Remote magnetic targeting of iron oxide nanoparticles for cardiovascular diagnosis and therapeutic drug delivery: where are we now? Int J Nanomed. 2016;11:3191.

    Article  CAS  Google Scholar 

  83. Tong S, Zhu H, Bao G. Magnetic iron oxide nanoparticles for disease detection and therapy. Mater Today. 2019;1(31):86–99.

    Article  CAS  Google Scholar 

  84. Marcu A, Pop S, Dumitrache F, Mocanu M, Niculite CM, Gherghiceanu M, Lungu CP, Fleaca C, Ianchis R, Barbut A, Grigoriu C. Magnetic iron oxide nanoparticles as drug delivery system in breast cancer. Appl Surf Sci. 2013;15(281):60–5.

    Article  CAS  Google Scholar 

  85. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev. 2011;63(1–2):24–46.

    Article  CAS  PubMed  Google Scholar 

  86. Martinkova P, Brtnicky M, Kynicky J, Pohanka M. Iron oxide nanoparticles: innovative tool in cancer diagnosis and therapy. Adv Healthc Mater. 2018;7(5):1700932.

    Article  CAS  Google Scholar 

  87. Morovati A, Ahmadian S, Jafary H. Cytotoxic effects and apoptosis induction of cisplatin-loaded iron oxide nanoparticles modified with chitosan in human breast cancer cells. Mol Biol Rep. 2019;46(5):5033–9.

    Article  CAS  PubMed  Google Scholar 

  88. Ansari MO, Parveen N, Ahmad MF, Afrin S, Rahman Y, Jameel S, Khan YA, Siddique HR, Tabish M, Shadab GG. Evaluation of DNA interaction, genotoxicity and oxidative stress induced by iron oxide nanoparticles both in vitro and in vivo: attenuation by thymoquinone. Sci Rep. 2019;9(1):1–4.

    Article  CAS  Google Scholar 

  89. Fatehbasharzad P, Fatehbasharzad P, Sillanpää M, Shamsi Z. Investigation of bioimpacts of metallic and metallic oxide nanostructured materials: size, shape, chemical composition, and surface functionality: a review. Part Part Syst Charact. 2021:2100112. https://doi.org/10.1002/ppsc.202100112.

  90. Podila R, Brown JM. Toxicity of engineered nanomaterials: a physicochemical perspective. J Biochem Mol Toxicol. 2013;27(1):50–5.

    Article  CAS  PubMed  Google Scholar 

  91. Iswarya V, Manivannan J, De A, Paul S, Roy R, Johnson JB, Kundu R, Chandrasekaran N, Mukherjee A, Mukherjee A. Surface capping and size-dependent toxicity of gold nanoparticles on different trophic levels. Environ Sci Pollut Res. 2016;23(5):4844–58.

    Article  CAS  Google Scholar 

  92. Katsumiti A, Arostegui I, Oron M, Gilliland D, Valsami-Jones E, Cajaraville MP. Cytotoxicity of Au, ZnO and SiO2 NPs using in vitro assays with mussel hemocytes and gill cells: relevance of size, shape and additives. Nanotoxicology. 2016;10(2):185–93.

    CAS  PubMed  Google Scholar 

  93. Khan MY, Roy M. Synthesis, Limitation and application of gold nanoparticles in treatment of cancerous cell. Int J Sci Res Multidiscip Stud. 2019;5(9):8–14.

    Google Scholar 

  94. Hamed MM, Abdelftah LS. Biosynthesis of gold nanoparticles using marine Streptomyces griseus isolate (M8) and evaluating its antimicrobial and anticancer activity. Egypt J Aquat Biol Fish. 2019;23(1):173–84.

    Article  Google Scholar 

  95. Munawer U, Raghavendra VB, Ningaraju S, Krishna KL, Ghosh AR, Melappa G, Pugazhendhi A. Biofabrication of gold nanoparticles mediated by the endophytic Cladosporium species: photodegradation, in vitro anticancer activity and in vivo antitumor studies. Int J Pharm. 2020;588:119729.

    Article  CAS  PubMed  Google Scholar 

  96. Govindaraju K, Vasantharaja R, Uma Suganya KS, Anbarasu S, Revathy K, Pugazhendhi A, Karthickeyan D, Singaravelu G. Unveiling the anticancer and antimycobacterial potentials of bioengineered gold nanoparticles. Process Biochem. 2020;96:213–9.

    Article  CAS  Google Scholar 

  97. Balasubramanian S, Kala SMJ, Pushparaj TL. Biogenic synthesis of gold nanoparticles using Jasminum auriculatum leaf extract and their catalytic, antimicrobial and anticancer activities. J Drug Deliv Sci Technol. 2020;57:101620.

    Article  CAS  Google Scholar 

  98. Sunderam V, Thiyagarajan D, Lawrence AV, Mohammed SSS, Selvaraj A. In-vitro antimicrobial and anticancer properties of green synthesized gold nanoparticles using Anacardium occidentale leaves extract. Saudi J Boil Sci. 2019;26(3):455–9.

    Article  CAS  Google Scholar 

  99. Wu T, Duan X, Hu C, Wu C, Chen X, Huang J, Liu J, Cui S. Synthesis and characterization of gold nanoparticles from Abies spectabilis extract and its anticancer activity on bladder cancer T24 cells. Artif Cells Nanomed Biotechnol. 2019;47(1):512–23.

    Article  PubMed  CAS  Google Scholar 

  100. Lokina S, Narayanan V. Antimicrobial and anticancer activity of gold nanoparticles synthesized from grapes fruit extract. Chem Sci Trans. 2013;2(S1):S105–10.

    Google Scholar 

  101. Wang L, Xu J, Yan Y, Liu H, Li F. Synthesis of gold nanoparticles from leaf Panaxnotoginseng and its anticancer activity in pancreatic cancer PANC-1 cell lines. Artif Cells Nanomed Biotechnol. 2019;47(1):1216–23.

    Article  CAS  PubMed  Google Scholar 

  102. Mmola M, Roes-Hill ML, Durrell K, Bolton JJ, Sibuyi N, Meyer ME, Beukes DR, Antunes E. Enhanced Antimicrobial and anticancer activity of silver and gold nanoparticles synthesised using sargassum incisifolium aqueous extracts. Molecules. 2016;21(12):1633.

    Article  CAS  PubMed Central  Google Scholar 

  103. Yarramala DS, Doshi S, Rao CP. Green synthesis, characterization and anticancer activity of luminescent gold nanoparticles capped with apo-α-lactalbumin. RSC Adv. 2015;5(41):32761–7.

    Article  CAS  Google Scholar 

  104. Shah M, Badwaik V, Kherde Y, Waghwani HK, Modi T, Aguilar ZP, Rodgers H, Hamilton W, Marutharaj T, Webb C, Lawrenz MB. Gold nanoparticles: various methods of synthesis and antibacterial applications. Front Biosci. 2014;19(8):1320–44.

    Article  Google Scholar 

  105. Jadoun S, Arif R, Jangid NK, Meena RK. Green synthesis of nanoparticles using plant extracts: a review. Environ Chem Lett. 2021;19(1):355–74.

    Article  CAS  Google Scholar 

  106. Malik P, Mukherjee TK. Recent advances in gold and silver nanoparticle based therapies for lung and breast cancers. Int J Pharm. 2018;553(1–2):483–509.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank B.S. Abdur Rahman Crescent Institute of Science and Technology for facilitating this study.

Funding

This work was funded by ICMR (35/14/2020-NAN/BMS) and DST WOS-B (2020–4964), the Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthikeyan Ramalingam.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Naturopathy, Nanotechnology, Nutraceuticals, and Immunotherapy in Cancer Research

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akif S, M., Unnikrishnan, S. & Ramalingam, K. Gold Nanoparticles: Potential Tool for the Treatment of Human Cancer Cells. Curr Pharmacol Rep 8, 300–311 (2022). https://doi.org/10.1007/s40495-022-00290-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-022-00290-z

Keywords

Navigation