Skip to main content
Log in

PFEM–DEM for particle-laden flows with free surface

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

This work proposes a fully Lagrangian formulation for the numerical modeling of free-surface particle-laden flows. The fluid phase is solved using the particle finite element method (PFEM), while the solid particles embedded in the fluid are modeled with the discrete element method (DEM). The coupling between the implicit PFEM and the explicit DEM is performed through a sub-stepping staggered scheme. This work only considers suspended spherical particles that are assumed not to affect the fluid motion. Several tests are presented to validate the formulation. The PFEM–DEM results show very good agreement with analytical solutions, laboratory tests and numerical results from alternative numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Alobaid F (2015) A particle-grid method for Euler-Lagrange approach. Powder Technol 286:342–360

    Google Scholar 

  2. Aly AM, Asai M (2018) Water entry of decelerating spheres simulations using improved ISPH method. J Hydrodyn 30(6):1120–1133

    Google Scholar 

  3. Anderson TB, Jackson R (1967) Fluid mechanical description of fluidized beds. Equations of motion. Ind Eng Chem Fundam 6(4):527–539

    Google Scholar 

  4. Bec J (2003) Fractal clustering of inertial particles in random flows. Phys Fluids 15(11):L81–L84

    MathSciNet  MATH  Google Scholar 

  5. Beetstra R, van der Hoef MA, Kuipers JAM (2007) Drag force of intermediate Reynolds number flow past mono-and bidisperse arrays of spheres. AIChE J 53(2):489–501

    Google Scholar 

  6. Brezzi F (1974) On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. Revue française d’automatique, informatique, recherche opérationnelle Série rouge. Analyse numérique 8(R—-2):129–151

    Google Scholar 

  7. Casas G (2018) Numerical analysis of particle-laden flows with the finite element method. Doctoral Thesis, Polytechnic University of Catalonia, Barcelona

  8. Casas G, Mukherjee D, Celigueta MA, Zohdi TI, Onate E (2017) A modular, partitioned, discrete element framework for industrial grain distribution systems with rotating machinery. Comput Particle Mech 4(2):181–198

    Google Scholar 

  9. Celigueta MA, Deshpande KM, Latorre S, Oñate E (2016) A FEM-DEM technique for studying the motion of particles in non-Newtonian fluids. Application to the transport of drill cuttings in wellbores. Comput Particle Mech 3(2):263–276

    Google Scholar 

  10. Cerquaglia ML, Deliège G, Boman R, Terrapon V, Ponthot JP (2016) Free-slip boundary conditions for simulating free-surface incompressible flows through the particle finite element method. Int J Numer Methods Eng 110(10):921–946

    MathSciNet  Google Scholar 

  11. Cervantes AM, Hidalgo S, Pacheco F (2018) The simultaneous discharge of liquid and grains from silo. Phys Fluids 30:043302

    Google Scholar 

  12. Deen NG, Peters EAJF, Padding JT, Kuipers JAM (2014) Review of direct numerical simulation of fluid-particle mass, momentum and heat transfer in dense gas-solid flows. Chem Eng Sci 116:710–724

    Google Scholar 

  13. De Pouplana I, Oñate E (2017) A FIC-based stabilized mixed finite element method with equal order interpolation for solid-pore fluid interaction problems. Int J Numer Anal Methods Geomech 41:110–134

    Google Scholar 

  14. Ding WT, Xu WJ (2018) Study on the multiphase fluid-solid interaction in granular materials based on an LBM-DEM coupled method. Powder Technol 335:301–314

    Google Scholar 

  15. Drew DA, Passman SL (1999) Theory of multicomponent fluids. Springer, New York

    MATH  Google Scholar 

  16. Edelsbrunner H, Mucke EP (1999) Three dimensional alpha shapes. ACM Trans Graph 13:43–72

    MATH  Google Scholar 

  17. Edelsbrunner H, Tan TS (1993) An upper bound for conforming Delaunay triangulations. Discrete Comput Geom 10(2):197–213

    MathSciNet  MATH  Google Scholar 

  18. Elghobashi S (1994) On predicting particle-laden turbulent flows. Appl Sci Res 52(4):309–329

    Google Scholar 

  19. Epelle E, Gerogiorgis DI (2018) CFD modelling and simulation of drill cuttings transport efficiency in annular bends: effect of particle sphericity. J Pet Sci Eng 170:992–1004

    Google Scholar 

  20. Franci A, Cremonesi M (2017) On the effect of standard PFEM remeshing on volume conservation in free-surface fluid flow problems. Comput Particle Mech 4(3):331–343

    Google Scholar 

  21. Franci A, Cremonesi M (2019) 3D regularized \(^{1}\)(I)-rheology for granular flows simulation. J Comput Phys 378:257–277

    MathSciNet  MATH  Google Scholar 

  22. Franci A, Oñate E, Carbonell JM (2015) On the effect of the bulk tangent matrix in partitioned solution schemes for nearly incompressible fluids. Int J Numer Methods Eng 102(3–4):257–277

    MathSciNet  MATH  Google Scholar 

  23. Fullmer WD, Liu G, Yin X, Hrenya CM (2017) Clustering instabilities in sedimenting fluid-solid systems: critical assessment of kinetic-theory-based predictions using direct numerical simulation data. J Fluid Mech 823:433–469

    MathSciNet  MATH  Google Scholar 

  24. Gui N, JianRen F, Kefa C (2008) Effect of particle-particle collision in decaying homogeneous and isotropic turbulence. Phys Rev E 78(4):046307

    Google Scholar 

  25. Hairer E, Lubich C, Wanner G (2003) Geometric numerical integration illustrated by the Störmer-Verlet method. Acta Numer 12:399–450

    MathSciNet  MATH  Google Scholar 

  26. He Y, Bayly AE, Hassanpour A, Muller F, Wu K, Yang D (2018) A GPU-based coupled SPH-DEM method for particle-fluid flow with free surfaces. Powder Technol 338:548–562

    Google Scholar 

  27. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225

    MATH  Google Scholar 

  28. Hu C, Sueyoshi M (2010) Numerical simulation and experiment on dam break problem. J Mar Sci Appl 9(2):109–114

    Google Scholar 

  29. Idelsohn SR, Calvo N, Oñate E (2003) Polyhedrization of an arbitrary point set. Comput Methods Appl Mech Eng 92(22–24):2649–2668

    MATH  Google Scholar 

  30. Idelsohn SR, Oñate E, Del Pin F (2004) The particle finite element method: a powerful tool to solve incompressible flows with free surfaces and breaking waves. Int J Numer Methods Eng 61:964–989

    MathSciNet  MATH  Google Scholar 

  31. Idelsohn SR, Marti J, Limache A, Oñate E (2008) Unified Lagrangian formulation for elastic solids and incompressible fluids: applications to fluid-structure interaction problems via the PFEM. Comput Methods Appl Mech Eng 197:1762–1776

    MathSciNet  MATH  Google Scholar 

  32. Ireland PJ, Desjardins O (2017) Improving particle drag predictions in Euler-Lagrange simulations with two-way coupling. J Comput Phys 338:405–430

    MathSciNet  MATH  Google Scholar 

  33. Kawaguchi T, Tanaka T, Tsuji Y (1998) Numerical simulation of two-dimensional fluidized beds using the discrete element method (comparison between the two-and three-dimensional models). Powder Technol 96(2):129–138

    Google Scholar 

  34. Kendoush AA (2007) The virtual mass of an oblate-ellipsoidal bubble. Phys Lett A 366(3):253–255

    Google Scholar 

  35. Kidanemariam AG, Chan-Braun C, Doychev T, Uhlmann M (2013) Direct numerical simulation of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction. New J Phys 15(2):025031

    Google Scholar 

  36. Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Philos Nucl Sci Eng 23(3):421–434

    Google Scholar 

  37. Koshizuka S, Oka Y (2000) Moving particle semi-implicit method: fully Lagrangian analysis of incompressible flows. In: Proceedings of the European Congress on computational methods in applied sciences and engineering (ECCOMAS), Barcelona, Spain

  38. Lain S, Sommerfeld M (2003) Turbulence modulation in dispersed two-phase flow laden with solids from a Lagrangian perspective. Int J Heat Fluid Flow 24(4):616–625

    Google Scholar 

  39. Larese A, Rossi R, Oñate E, Idelsohn SR (2008) Validation of the particle finite element method (PFEM) for simulation of free surface flows. Int J Comput Aided Eng Softw 25:385–425

    MATH  Google Scholar 

  40. Loth E (2008) Drag of non-spherical solid particles of regular and irregular shape. Powder Technol 182(3):342–353

    Google Scholar 

  41. Loth E, Dorgan AJ (2009) An equation of motion for particles of finite Reynolds number and size. Environ Fluid Mech 9(2):187–206

    Google Scholar 

  42. Martin JC, Moyce WJ (1952) An experimental study of the collapse of liquid columns on a rigid horizontal plane 4. Philos Trans R Soc Lond Ser A 244:312–324

    Google Scholar 

  43. Mckeen T, Pugsley T (2003) Simulation and experimental validation of a freely bubbling bed of FCC catalyst. Powder Technol 129(1–3):139–152

    Google Scholar 

  44. Meduri S, Cremonesi M, Perego U, Bettinotti O, Kurkchubasche A, Oancea VM (2018) A partitioned fully explicit Lagrangian finite element method for highly nonlinear fluid-structure interaction problems. Int J Numer Methods Eng 113:43–64

    MathSciNet  Google Scholar 

  45. Meduri S, Cremonesi M, Perego U (2018) An efficient runtime mesh smoothing technique for 3D explicit Lagrangian free-surface fluid flow simulations. Int J Numer Methods Eng 113:43–64

    Google Scholar 

  46. Monforte L, Arroyo M, Carbonell JM, Gens A (2018) Coupled effective stress analysis of insertion problems in geotechnics with the particle finite element method. Comput Geotech 101:114–129

    Google Scholar 

  47. Norouzi HR, Zarghami R, Sotudeh-Gharebagh R, Mostoufi N (2016) Coupled CFD-DEM modeling: formulation, implementation and application to multiphase flows. Wiley, Hoboken

    Google Scholar 

  48. Oñate E (1998) Derivation of stabilized equations for advective-diffusive transport and fluid flow problems. Comput Methods Appl Mech Eng 151:233–267

    MathSciNet  MATH  Google Scholar 

  49. Oñate E, Idelsohn SR, Del Pin F, Aubry R (2004) The particle finite element method–an overview. Int J Comput Methods 1:267–307

    MATH  Google Scholar 

  50. Oñate E, Celigueta MA, Idelsohn SR (2006) Modeling bed erosion in free surface flows by the particle finite element method. Acta Geotech 1(4):237–252

    Google Scholar 

  51. Oñate E, Celigueta MA, Latorre S, Casas G, Rossi R, Rojek J (2014) Lagrangian analysis of multiscale particulate flowswith the particle finite element method. Comput Particle Mech 1(1):85–102

    Google Scholar 

  52. Oñate E, Franci A, Carbonell JM (2014) Lagrangian formulation for finite element analysis of quasi-incompressible fluids with reduced mass losses. Int J NumerMethods Fluids 74(10):699–731

    MathSciNet  Google Scholar 

  53. Radl S, Sundaresan S (2014) A drag model for filtered Euler-Lagrange simulations of clustered gas-particle suspensions. Chem Eng Sci 117:416–425

    Google Scholar 

  54. Radl S, Girardi M, Sundaresan S (2012) Effective drag law for parcel-based approaches-what can we learn from CFD-DEM? In: ECCOMAS (2012)

  55. Robinson M, Ramaioli M, Luding S (2014) Fluid-particle flow simulations using two-way-coupled mesoscale SPH-DEM and validation. Int J Multiph Flow 59:121–134

    Google Scholar 

  56. Ryzhakov P, Oñate E, Idelsohn SR (2012) Improving mass conservation in simulation of incompressible flows. Int J Numer Methods Eng 90:1435–1451

    MathSciNet  MATH  Google Scholar 

  57. Shiller L, Naumann A (1935) A drag coefficient correlation. Zeitschrift des Vereins Deutscher Ingenieure 77:318–320

    Google Scholar 

  58. Snider DM (2001) An incompressible three-dimensional multi-phase particle-in-cell model for dense particle flows. J Comput Phys 170(2):523–549

    MATH  Google Scholar 

  59. Sun X, Sakai M, Yamada Y (2013) Three-dimensional simulation of a solid-liquid flow by the DEM-SPH method. J Comput Phys 248:147–176

    MathSciNet  MATH  Google Scholar 

  60. Thornton C, Cummins SJ, Cleary PW (2011) An investigation of the comparative behaviour of alternative contact force models during elastic collisions. Powder Technol 210(3):189–197

    Google Scholar 

  61. Vermorel O, Bedat B, Simonin O, Poinsot T (2003) Numerical study and modelling of turbulence modulation in a particle laden slab flow. J Turbul 4(25):1–39

    Google Scholar 

  62. Wakaba L, Balachandar S (2007) On the added mass force at finite Reynolds and acceleration numbers. Theor Comput Fluid Dyn 21(2):147–153

    MATH  Google Scholar 

  63. Williams JR, Perkins E, Cook B (2004) A contact algorithm for partitioning N arbitrary sized objects. Eng Comput 21(2/3/4):235–248

    MATH  Google Scholar 

  64. Zhang X, Krabbenhoft K, Pedroso DM, Lyamin AV, Sheng D, Vicente da Silva M, Wang D (2013) Particle finite element analysis of large deformation and granular flow problems. Comput Geotech 54:133–142

    Google Scholar 

  65. Zhou ZY, Kuang SB, Chu KW, Yu AB (2010) Discrete particle simulation of particle-fluid flow: model formulations and their applicability. J Fluid Mech 661:482–510

    MathSciNet  MATH  Google Scholar 

  66. Zhu M, Scott MH (2014) Modeling fluid-structure interaction by the particle finite element method in OpenSees. Comput Struct 132:12–21

    Google Scholar 

Download references

Acknowledgements

The first author, beneficiary of an AXA Research Fund post-doctoral grant (Grant Number 2017-AXA-PDOC1-099), acknowledges the company for its economic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Franci.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

All vectors and matrices introduced in Sect. 3 are listed below. The variables used in the following refer to the fluid domain, hence the subindex f is here omitted (e.g. \(\rho ={\rho }_f\)).

The fully-discretized form of the linear momentum equations (Eq. (1)) reads

$$\begin{aligned} \varvec{K} \varvec{\varDelta } {\bar{{\varvec{u}}}}=\varvec{R} \end{aligned}$$
(23)

where \(\varvec{K}\) is computed as the sum of stiffness and mass matrices as

$$\begin{aligned} \varvec{K}= \varvec{K}^{m} + \varvec{K}^{\rho } \end{aligned}$$
(24)

with

$$\begin{aligned} \displaystyle \varvec{K}^{\rho }_{IJ}= & {} \varvec{I}\int _{\varOmega } N_I \frac{2\rho }{\varDelta t} N_J d\varOmega \end{aligned}$$
(25)
$$\begin{aligned} \displaystyle \varvec{K}^{m}_{IJ}= & {} \int _{\varOmega } \varvec{B}^{T}_I \varvec{c} \varvec{B}_J d\varOmega \end{aligned}$$
(26)

and \(\varvec{R}\) is the residual of the discretized linear momentum equations computed at each iteration i as

$$\begin{aligned} \displaystyle {R^i_{Ii}}= & {} \int _\varOmega N_I \rho N_J d\varOmega \ {\bar{{\dot{u}}}^i_{Ji}}+ \int _\varOmega \frac{\partial N_I}{\partial x_j} {\sigma }^i_{ij} d\varOmega \nonumber \\&- \int _\varOmega {N}_I \rho {g}_i d\varOmega \end{aligned}$$
(27)

where \( N_I\) are the linear shape functions and, for a 3D problem, \(\varvec{B}\) and \(\varvec{c}\) are defined as follows

$$\begin{aligned} \displaystyle \mathbf{B}_I= & {} \left[ \begin{array}{ccc} \displaystyle {\partial N_I \over \partial x} &{}0 &{}0 \\ \displaystyle 0 &{} \displaystyle {\partial N_I \over \partial y} &{}0 \\ \displaystyle 0 &{} 0 &{} \displaystyle {\partial N_I \over \partial z} \\ \displaystyle \displaystyle {\partial N_I \over \partial y} &{}\displaystyle {\partial N_I \over \partial x} &{} 0 \\ \displaystyle \displaystyle {\partial N_I \over \partial z} &{} 0 &{} \displaystyle {\partial N_I \over \partial x} \\ 0 &{}\displaystyle {\partial N_I \over \partial z} &{} \displaystyle \displaystyle {\partial N_I \over \partial y} \end{array} \right] ,~ \\ \displaystyle {\varvec{c}}= & {} \left[ \begin{array}{cccccc} \kappa \varDelta t + \frac{4 \mu }{3 } &{} \kappa \varDelta t - \frac{2 \mu }{3} &{} \kappa \varDelta t - \frac{2 \mu }{3} &{} 0 &{} 0 &{} 0 \\ \kappa \varDelta t - \frac{2 \mu }{3}&{} \kappa \varDelta t+ \frac{4 \mu }{3 } &{} \kappa \varDelta t - \frac{2 \mu }{3} &{} 0 &{} 0 &{} 0 \\ \kappa \varDelta t - \frac{2 \mu }{3} &{} \kappa \varDelta t - \frac{2 \mu }{3} &{} \kappa \varDelta t+ \frac{4 \mu }{3 } &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} \mu &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} \mu &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \mu \\ \end{array} \right] \end{aligned}$$

The fully-discretized form of the continuity equation (Eq. (4)) reads

$$\begin{aligned} \varvec{H}\bar{\varvec{p}}=\varvec{F}_{p} \end{aligned}$$
(28)

where

$$\begin{aligned} \varvec{H}= & {} \left( \frac{1}{ \varDelta t} \mathbf{M }_{1} + \frac{1}{ {\varDelta t}^2} \mathbf{M }_{2} + \mathbf{L}+\mathbf{M}_{b} \right) \end{aligned}$$
(29)
$$\begin{aligned} \varvec{F}_{p}= & {} \frac{\mathbf{M }_{1}}{\varDelta t}{\bar{\varvec{p}}^n } + \frac{ \mathbf{M }_{2}}{{\varDelta t}^2} \left( {{\bar{{\varvec{p}}}}^n }+ { \bar{\dot{\varvec{p}}}^n} \varDelta t \right) +{\varvec{f}}_{p} - \mathbf{Q}^T\ {\bar{{{\varvec{v}}}}^{n+1}} \end{aligned}$$
(30)

with

$$\begin{aligned} \displaystyle {M}_{1_{IJ}}= & {} \int _{\varOmega } \frac{1}{\kappa }{N}_I {N}_J d\varOmega \end{aligned}$$
(31)
$$\begin{aligned} \displaystyle {M}_{2_{IJ}}= & {} \int _{\varOmega } \tau \frac{\rho }{\kappa }{N}_I {N}_J d\varOmega \end{aligned}$$
(32)
$$\begin{aligned} {L}_{{IJ}}= & {} \int _{\varOmega } \tau ({\pmb \nabla }^T {N}_I) {\pmb \nabla }{N}_J d\varOmega \end{aligned}$$
(33)
$$\begin{aligned} \displaystyle {M}_{b_{IJ}}= & {} \int _{\varGamma _t} \frac{2\tau }{h_n} {N}_I {N}_J d\varGamma \end{aligned}$$
(34)

where \(\varGamma _t\) is the free-surface contour and the stabilization parameter \(\tau \) is defined as

$$\begin{aligned} \displaystyle \tau = \left( \frac{8 \mu }{h^2}+ \frac{2\rho }{\delta } \right) ^{-1} \end{aligned}$$
(35)

where h and \( \delta \) are characteristic distances in space and time [52].

Finally,

$$\begin{aligned} \displaystyle {f}_{p_I}= & {} \int _{\varGamma _t}\tau {N}_I \left[ \rho \frac{Du_n}{Dt}-\frac{2}{h_n} (2 \mu d_n - {\hat{t}})\right] d\varGamma \nonumber \\&- \int _{\varOmega } \tau {\pmb \nabla }^T {N}_I {\rho {\varvec{g}}} d\varOmega \end{aligned}$$
(36)
$$\begin{aligned} \mathbf{Q }_{IJ}= & {} \int _{\varOmega } \mathbf{B }_I^T \mathbf{m } N_J d\varOmega \end{aligned}$$
(37)

where in 3D \( \mathbf{m } = [1,1,1,0,0,0]^T\).

Details on the derivation of above matrices and vectors can be found in [52].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franci, A., de-Pouplana, I., Casas, G. et al. PFEM–DEM for particle-laden flows with free surface. Comp. Part. Mech. 7, 101–120 (2020). https://doi.org/10.1007/s40571-019-00244-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-019-00244-1

Keywords

Navigation