Skip to main content
Log in

Experimental and numerical studies of a three-dimensional bonded contact model of cemented granular soils

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

The simulation of the mechanical behavior of cemented granular material using the discrete element method depends heavily on the bonded contact model. In this study, a three-dimensional discrete element method bond contact model is presented and validated by a series of experimental micromechanical tests on ideal bonded particles (cement-bridged aluminum spheres) subjected to different loading modes. The model uses the cement content and water/cement ratio as parameters affecting the behavior of cemented specimens. The empirical relations between the bonded contact model properties—bond geometry, bond strengths (tensile, compressive, shear, rolling, and torsional strengths) and bond stiffnesses—cement content, water/cement ratio, bonded particle diameter, and particle distance are determined. Discrete element method simulations of drained triaxial tests on cemented specimens are conducted with different cement contents (1, 2, and 3%) and water/cement ratios (0.3, 0.6, 0.9, 1.2, and 1.5) under various confining pressures (100, 300, and 500 kPa) to evaluate the capability of the proposed bonded contact model to predict the mechanical behavior of cemented soils. A comparison between numerical and experimental test results revealed that the bonded contact model can capture the primary mechanical behaviors of these materials (strain softening and dilatancy) with reasonable accuracy by considering two parameters (cement content and water/cement ratio). Microscopically, it is observed that the increase in cement content and the reduction in water/cement ratio increase the maximum inter-particle force magnitude. The number of bonds formed between particles at the beginning and end of the test is affected by the cement content and water/cement ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Clough G, Sitar N, Bachus R, Rad N (1981) Cemented sands under static loading. J Geotech Eng Div (ASCE) 107(6):799–817

    Article  Google Scholar 

  2. Coop M, Atkinson J (1993) The mechanics of cemented carbonate sands. Geotechnique 43(1):53–67

    Article  Google Scholar 

  3. Lade P, Overton D (1989) Cementation effects in frictional materials. J Geotech Eng 115:1373–1387

    Article  Google Scholar 

  4. Leroueil S, Vaughan P (1990) The general and congruent effects of structure in natural soils and weak rocks. Geotechnique 40(3):467–488

    Article  Google Scholar 

  5. Airey D (1993) Triaxial testing of naturally cemented carbonate soil. J Geotech Eng (ASCE) 119(9):1379–1398

    Article  Google Scholar 

  6. Huang J, Airey D (1998) Properties of artificially cemented carbonate sand. J Geotech Geoenviron Eng 124(6):492–499

    Article  Google Scholar 

  7. Cuccovillo T, Coop M (1999) On the mechanics of structured sands. Geotechnique 49(6):741–760

    Article  Google Scholar 

  8. Schnaid F, Prietto P, Consoli N (2001) Characterization of cemented sand in triaxial compression. J Geotech Geoenviron Eng 127:857–868

    Article  Google Scholar 

  9. Coop M, Willson S (2003) Behaviour of hydrocarbon reservoir sands and sandstones. J Geotech Geoenviron Eng 129(11):1010–1019

    Article  Google Scholar 

  10. Wang Y, Leung S (2008) Characterization of cemented sand by experimental and numerical investigations. J Geotech Geoenviron Eng 134(7):992–1004

    Article  Google Scholar 

  11. Wang Y, Leung S (2008) A particulate-scale investigation of cemented sand behaviour. Canada Geotech J 45:29–44

    Article  Google Scholar 

  12. Collins B, Sitar N (2011) Stability of steep slopes in cemented sands. J Geotech Geoenviron Eng 137(1):43–51

    Article  Google Scholar 

  13. Rios S, Viana da Fonseca A, Baudet BA (2014) On the shearing behaviour of an artificially cemented soil. Acta Geotech 9:215–226

    Article  Google Scholar 

  14. Amini Y, Hamidi A (2014) Triaxial shear behavior of a cement-treated sand–gravel mixture. J Rock Mech Geotech Eng 6(5):455–465

    Article  Google Scholar 

  15. Hoek E, Martin CD (2014) Fracture initiation and propagation in intact rock—a review. J Rock Mech Geotech Eng 6(4):287–300

    Article  Google Scholar 

  16. Cundall PA (1971) A computer model for simulating progressive, large scale movements in blocky rock systems. In: Proceedings of the international symposium on rock fracture, international society for rock mechanics (ISRM), pp 129–136

  17. Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  18. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364

    Article  Google Scholar 

  19. Brendel L, Török J, Kirsch R, Bröckel U (2011) A contact model for the yielding of caked granular materials. Granular Matter 13(6):777–786

    Article  Google Scholar 

  20. Obermayr M, Dressler K, Vrettos C, Eberhard P (2013) A bonded-particle model for cemented sand. Comput Geotech 49:299–313

    Article  Google Scholar 

  21. Brown NJ, Chen JF, Ooi JY (2014) A bond model for DEM simulation of cementitious materials and deformable structures. Granular Matter 16(3):299–311

    Article  Google Scholar 

  22. Jiang M, Zhang F, Thornton C (2015) A simple three-dimensional distinct element modeling of the mechanical behavior of bonded sands. Int J Numer Anal Meth Geomech 39(16):1791–1820

    Article  Google Scholar 

  23. Shen Z, Jiang M, Thornton C (2016) DEM simulation of bonded granular material. Part I: contact model and application to cemented sand. Comput Geotech 75:192–209

    Article  Google Scholar 

  24. Mahboubi-Ardakani AR (1995) Contribution à l'étude micromécanique du comportement des matériaux granulaires par homogénéisation et approche numérique. (Doctoral dissertation, Ecully, Ecole centrale de Lyon)

  25. Yoon J (2007) Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int J Rock Mech Min Sci 44(6):871–889

    Article  Google Scholar 

  26. Hanley KJ, O’sullivan C, Oliveira JC, Cronin K, Byrne EP (2011) Application of Taguchi methods to DEM calibration of bonded agglomerates. Powder Technol 210(3):230–240

    Article  Google Scholar 

  27. Johnstone M, Ooi J (2010) Calibration of DEM models using rotating drum and confined compression measurements. In: 6th world congress on particle technology, Nuremberg Germany 2010

  28. Cheng H, Shuku T, Thoeni K, Tempone P, Luding S, Magnanimo V (2019) An iterative Bayesian filtering framework for fast and automated calibration of DEM models. Comput Methods Appl Mech Eng 350:268–294

    Article  MathSciNet  MATH  Google Scholar 

  29. Pachón-Morales J, Do H, Colin J, Puel F, Perre P, Schott D (2019) DEM modelling for flow of cohesive lignocellulosic biomass powders: Model calibration using bulk tests. Adv Powder Technol 30(4):732–750

    Article  Google Scholar 

  30. Do HQ, Aragón AM, Schott DL (2018) A calibration framework for discrete element model parameters using genetic algorithms. Adv Powder Technol 29(6):1393–1403

    Article  Google Scholar 

  31. Wang Y, Tonon F (2009) Modeling Lac du Bonnet granite using a discrete element model. Int J Rock Mech Min Sci 46(7):1124–1135

    Article  Google Scholar 

  32. Wang Y, Tonon F (2010) Calibration of a discrete element model for intact rock up to its peak strength. Int J Numer Anal Meth Geomech 34(5):447–469

    Article  MATH  Google Scholar 

  33. Qu T, Feng YT, Wang M, Jiang S (2020) Calibration of parallel bond parameters in bonded particle models via physics-informed adaptive moment optimisation. Powder Technol 366:527–536

    Article  Google Scholar 

  34. Jiang M, Liu F, Zhou Y (2014) A bond failure criterion for DEM simulations of cemented geomaterials considering variable bond thickness. Int J Numer Anal Meth Geomech 38(18):1871–1897

    Article  Google Scholar 

  35. Jiang M, Jin S, Shen Z, Liu W, Coop M (2015) Preliminary experimental study on three-dimensional contact behavior of bonded granules. In: International symposium on geohazards and geomechanics (ISGG2015), IOP Conf. Series: Earth and Environmental Science 26–012007

  36. Shen Z, Jiang M, Wan R (2016) Numerical study of inter-particle bond failure by 3D discrete element method. Int J Numer Anal Meth Geomech 40:523–545

    Article  Google Scholar 

  37. Potyondy DO (2015) The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions. Geosyst Eng 18(1):1–28

    Article  Google Scholar 

  38. Feng K, Montoya BM (2016) Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading. J Geotech Geoenvironm Eng 142(1):4015–4057

    Article  Google Scholar 

  39. Yang P, O’Donnell S, Hamdan N, Kavazanjian E, Neithalath N (2017) 3D DEM simulations of drained triaxial compression of sand strengthened using microbially induced carbonate precipitation. Int J Geomech 17(6):1–12

    Article  Google Scholar 

  40. Kavazanjian E, O’Donnell S, Hamdan N (2015) Biogeotechnical mitigation of earthquake-induced soil liquefaction by denitrification: A two stage process. In: 6th international conference on earthquake geotechnical engineering, The conference company New Zealand, Christchurch, New Zealand

  41. O'Donnell S (2016) Mitigation of earthquake-induced soil liquefaction via microbial denitrification: A two-stage process. PhD Dissertation. Arizona State University

  42. Wang W, Pan J, Jin F (2019) Mechanical behavior of cemented granular aggregates under uniaxial compression. J Mater Civ Eng 31(5):1–10

    Article  Google Scholar 

  43. Willett CD, Adams MJ, Johnson SA, Seville JP (2000) Capillary bridges between two spherical bodies. Langmuir 16(24):9396–9405

    Article  Google Scholar 

  44. El Shamy U, Gröger T (2008) Micromechanical aspects of the shear strength of wet granular soils. Int J Numer Anal Meth Geomech 32(14):1763–1790

    Article  MATH  Google Scholar 

  45. Chen Y, Zhao Y, Gao H, Zheng J (2011) Liquid bridge force between two unequal-sized spheres or a sphere and a plane. Particuology 9(4):374–380

    Article  Google Scholar 

  46. Scholtès L, Nicot BCF, Darve F (2012) Discrete modelling of capillary mechanisms in multi-phase granular media. http://arxiv.org/abs/1203.1234

  47. Liu K, Yin J H, Chen WB, Feng WQ, Zhou C (2020) The stress–strain behaviour and critical state parameters of an unsaturated granular fill material under different suctions. Acta Geotechnica, 1–16

  48. Wang M, Pande GN, Pietruszczak S, Zeng ZX (2020) Determination of strain-dependent soil water retention characteristics from gradation curve. J Rock Mech Geotech Eng 12(6):1356–1360

    Article  Google Scholar 

  49. Lian G, Thornton C, Adams M (1993) A theoretical study of the liquid bridge forces between two rigid spherical bodies. J Colloid Interface Sci 161(1):138–147

    Article  Google Scholar 

  50. Krenzer K, Mechtcherine V, Palzer U (2019) Simulating mixing processes of fresh concrete using the discrete element method (DEM) under consideration of water addition and changes in moisture distribution. Cem Concr Res 115:274–282

    Article  Google Scholar 

  51. de Bono J, McDowell G, Wanatowski D (2012) Modelling cemented sand using DEM. In: Proceedings of 2nd international conference on transportation geotechnics (ICTG)

  52. de Bono J, McDowell G, Wanatowski D (2015) Investigating the micro mechanics of cemented sand using DEM. Int J Numer Anal Meth Geomech 39(6):655–675

    Article  Google Scholar 

  53. Tang Y, Xu G, Lian J, Yan Y, Fu D, Sun W (2019) Research on simulation analysis method of microbial cemented sand based on discrete element method. Adv Mater Sci Eng, 2019:1–18 https://doi.org/10.1155/2019/7173414

  54. Coulomb CA (1776) Essai sur une application des regles des Maximis et Minimis a quelques problemes de Statique relatifs a l'Architecture. Memoirs Academie Royal Pres. Division Say. 7, Par~s, France (in French)

  55. Ladd RS (1978) Preparing test specimens using undercompaction. Geotech Test J 1:16–23

    Article  Google Scholar 

  56. Itasca Consulting group Inc (2018), Particle flow code in three dimensions (PFC3D). Version 6.00. Minneapolis, USA

  57. Mahboubi AR, Cambou B, Fry JJ (1997) Numerical modelling of the mechanical behavior of non spherical, crushable particles. Powders Grains 97:139–142

    Google Scholar 

  58. Zhou C, Xu C, Karakus M, Shen J (2018) A systematic approach to the calibration of micro-parameters for the flat-jointed bonded particle model. Geomech Eng 16(5):471–482

    Google Scholar 

  59. Asghari E, Toll D, Haeri S (2003) Triaxial behaviour of a cemented gravely sand, Tehran alluvium. Geotech Geol Eng 21(1):1–28

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad-Reza Mahboubi Ardakani.

Ethics declarations

Conflicts of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motlagh, N.M., Ardakani, AR.M. & Noorzad, A. Experimental and numerical studies of a three-dimensional bonded contact model of cemented granular soils. Comp. Part. Mech. 10, 445–463 (2023). https://doi.org/10.1007/s40571-022-00502-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-022-00502-9

Keywords

Navigation