Skip to main content

Advertisement

Log in

Additive Manufacturing of Ti-6Al-4V alloy for Biomedical Applications

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Ti-6Al-4V alloy is one of the widely used titanium alloys for biomedical applications, especially in load-critical bio-implants, because of its high strength, biocompatibility, and corrosion resistance. However, conventional manufacturing processes pose many challenges for the fabrication and processing of Ti-6Al-4V alloy-based implants. The emerging additive manufacturing technologies, particularly selective laser melting, provide an ideal platform for manufacturing customized and complex-geometry implants with high-dimensional accuracy. This study evaluates the mechanical properties, and bio-corrosion resistance of selective laser melted Ti-6Al-4V alloy. The microstructural analysis showed the presence of a continuous networked structure of the β phase, which paved the way for an ample microhardness of 255 HV. A comprehensive analysis of the fracture mechanism and bio-corrosion mechanism of the selective laser melted Ti-6Al-4V alloy is presented. The fractography depicted a combination of ductile and brittle fracture mechanisms, resulting in a fair ultimate tensile strength value of 813 MPa. Meanwhile, the formation of calcium hydroxyapatite in the course of corrosion during the implantation period helps in bone growth and promotes implant–bone stability. The corrosion rate of the SLM Ti-6Al-4V alloy in simulated body fluid was 9 × 10–4 mm/year. The results provide a new avenue to fabricate selective laser melted Ti-6Al-4V alloy with desired mechanical properties and bio-corrosion resistance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Availability of data and material (data transparency)

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Code availability

Not Applicable.

References

  1. Rodri´guez D, et al (1999) Titanium levels in rats implanted with Ti6Al4V treated samples in the absence of wear. J Mater Sci Mater Med 10(12):847–851. https://doi.org/10.1023/A:1008912831051

    Article  Google Scholar 

  2. de Viteri VS (2013) Titanium and titanium alloys as biomaterials. In: Gegner EFEJ (eds) Rijeka: IntechOpen

  3. Vaira Vignesh R, Padmanaban R, Govindaraju M, Suganya Priyadharshini G (2019) Investigations on the corrosion behaviour and biocompatibility of magnesium alloy surface composites AZ91D-ZrO2 fabricated by friction stir processing. Trans IMF 97(5):261–270. https://doi.org/10.1080/00202967.2019.1648005

    Article  CAS  Google Scholar 

  4. Ramalingam VV, Ramasamy P, Kovukkal MD, Myilsamy G (2020) Research and development in magnesium alloys for industrial and biomedical applications: a review. Met Mater Int 26(4):409–430. https://doi.org/10.1007/s12540-019-00346-8

    Article  CAS  Google Scholar 

  5. Bingjing Z, Hong W, Ning Q, Chao W, Min H (2016) Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2016.07.045

    Article  Google Scholar 

  6. Veiga C, Davim JP, Loureiro AJR (2012) Properties and applications of titanium alloys: a brief review. Rev Adv Mater Sci 32(2):133–148

    CAS  Google Scholar 

  7. Avila JD, Bose S, Bandyopadhyay A (2018) Additive manufacturing of titanium and titanium alloys for biomedical applications. Titan Med Dent Appl. https://doi.org/10.1016/B978-0-12-812456-7.00015-9

    Article  Google Scholar 

  8. Niinomi M (2008) Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater 1(1):30–42

    Article  Google Scholar 

  9. Cimenoglu H, Gunyuz M, Kose GT, Baydogan M, Uğurlu F, Sener C (2011) Micro-arc oxidation of Ti6Al4V and Ti6Al7Nb alloys for biomedical applications. Mater Charact 62(3):304–311. https://doi.org/10.1016/j.matchar.2011.01.002

    Article  CAS  Google Scholar 

  10. Murr LE et al (2009) Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater 2(1):20–32. https://doi.org/10.1016/j.jmbbm.2008.05.004

    Article  CAS  Google Scholar 

  11. Zhou L, Yuan T, Tang J, He J, Li R (2019) Mechanical and corrosion behavior of titanium alloys additively manufactured by selective laser melting—a comparison between nearly β titanium, α titanium and α + β titanium. Opt Laser Technol 119:105625. https://doi.org/10.1016/j.optlastec.2019.105625

    Article  CAS  Google Scholar 

  12. Almangour B (2018) Additive manufacturing of emerging materials. Addit Manuf Emerg Mater. https://doi.org/10.1007/978-3-319-91713-9

    Article  Google Scholar 

  13. Yan Q et al (2020) Comparison study on microstructure and mechanical properties of Ti-6Al-4V alloys fabricated by powder-based selective-laser-melting and sintering methods. Mater Charact. https://doi.org/10.1016/j.matchar.2020.110358

    Article  Google Scholar 

  14. Tamayo JA, Riascos M, Vargas CA, Baena LM (2021) Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry. Heliyon. https://doi.org/10.1016/j.heliyon.2021.e06892

    Article  Google Scholar 

  15. Liu S, Shin YC (2019) Additive manufacturing of Ti6Al4V alloy: a review. Mater Des 164:107552. https://doi.org/10.1016/j.matdes.2018.107552

    Article  CAS  Google Scholar 

  16. Soyama H, Sanders D (2019) Use of an abrasive water cavitating jet and peening process to improve the fatigue strength of titanium alloy 6al-4v manufactured by the electron beam powder bed melting (EBPB) additive manufacturing method. JOM 71(12):4311–4318. https://doi.org/10.1007/s11837-019-03673-8

    Article  CAS  Google Scholar 

  17. Hao Y-L, Li S-J, Yang R (2016) Biomedical titanium alloys and their additive manufacturing. Rare Met 35(9):661–671. https://doi.org/10.1007/s12598-016-0793-5

    Article  CAS  Google Scholar 

  18. Arias-González F et al (2018) Microstructure and crystallographic texture of pure titanium parts generated by laser additive manufacturing. Met Mater Int 24(1):231–239. https://doi.org/10.1007/s12540-017-7094-x

    Article  CAS  Google Scholar 

  19. Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Technol 83(1):389–405. https://doi.org/10.1007/s00170-015-7576-2

    Article  Google Scholar 

  20. Pal S et al (2020) Evolution of the metallurgical properties of Ti-6Al-4V, produced with different laser processing parameters, at constant energy density in Selective Laser Melting. Results Phys 17:103186. https://doi.org/10.1016/j.rinp.2020.103186

    Article  Google Scholar 

  21. Beese AM, Carroll BE (2016) Review of mechanical properties of ti-6al-4v made by laser-based additive manufacturing using powder feedstock. JOM 68(3):724–734. https://doi.org/10.1007/s11837-015-1759-z

    Article  CAS  Google Scholar 

  22. Xie Z, Dai Y, Ou X, Ni S, Song M (2020) Effects of selective laser melting build orientations on the microstructure and tensile performance of Ti-6Al-4V alloy. Mater Sci Eng A 776:139001. https://doi.org/10.1016/j.msea.2020.139001

    Article  CAS  Google Scholar 

  23. Tuomi JT et al (2017) In vitro cytotoxicity and surface topography evaluation of additive manufacturing titanium implant materials. J Mater Sci Mater Med 28(3):53. https://doi.org/10.1007/s10856-017-5863-1

    Article  CAS  Google Scholar 

  24. Sharma A, Oh MC, Kim J-T, Srivastava AK, Ahn B (2020) Investigation of electrochemical corrosion behavior of additive manufactured Ti-6Al-4V alloy for medical implants in different electrolytes. J Alloys Compd 830:154620. https://doi.org/10.1016/j.jallcom.2020.154620

    Article  CAS  Google Scholar 

  25. Yang J, Yu H, Yin J, Gao M, Wang Z, Zeng X (2016) Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting. Mater Des 108:308–318. https://doi.org/10.1016/j.matdes.2016.06.117

    Article  CAS  Google Scholar 

  26. Pal S, Lojen G, Kokol V, Drstvensek I (2018) Evolution of metallurgical properties of Ti-6Al-4V alloy fabricated in different energy densities in the Selective Laser Melting technique. J Manuf Process 35:538–546. https://doi.org/10.1016/j.jmapro.2018.09.012

    Article  Google Scholar 

  27. Chandramohan P, Bhero S, Obadele BA, Olubambi PA (2017) Laser additive manufactured Ti-6Al-4V alloy: tribology and corrosion studies. Int J Adv Manuf Technol 92(5):3051–3061. https://doi.org/10.1007/s00170-017-0410-2

    Article  Google Scholar 

  28. Longhitano GA et al (2018) Heat treatments effects on functionalization and corrosion behavior of Ti-6Al-4V ELI alloy made by additive manufacturing. J Alloys Compd 765:961–968. https://doi.org/10.1016/j.jallcom.2018.06.319

    Article  CAS  Google Scholar 

  29. Tsai M-T et al (2020) Heat-treatment effects on mechanical properties and microstructure evolution of Ti-6Al-4V alloy fabricated by laser powder bed fusion. J Alloys Compd 816:152615. https://doi.org/10.1016/j.jallcom.2019.152615

    Article  CAS  Google Scholar 

  30. Kusano M et al (2020) Tensile properties prediction by multiple linear regression analysis for selective laser melted and post heat-treated Ti-6Al-4V with microstructural quantification. Mater Sci Eng A 787:139549. https://doi.org/10.1016/j.msea.2020.139549

    Article  CAS  Google Scholar 

  31. Ettefagh AH, Zeng C, Guo S, Raush J (2019) Corrosion behavior of additively manufactured Ti-6Al-4V parts and the effect of post annealing. Addit Manuf 28:252–258. https://doi.org/10.1016/j.addma.2019.05.011

    Article  CAS  Google Scholar 

  32. Mierzejewska ŻA, Hudák R, Sidun J (2019) Mechanical properties and microstructure of DMLS Ti6Al4V alloy dedicated to biomedical applications. Mater (Basel, Switzerland) 12(1):176. https://doi.org/10.3390/ma12010176

    Article  CAS  Google Scholar 

  33. Shunmugavel M, Polishetty A, Goldberg M, Singh R, Littlefair G (2017) A comparative study of mechanical properties and machinability of wrought and additive manufactured (selective laser melting) titanium alloy—Ti-6Al-4V. Rapid Prototyp J 23(6):1051–1056. https://doi.org/10.1108/RPJ-08-2015-0105

    Article  Google Scholar 

  34. Sun J, Zhu X, Qiu L, Wang F, Yang Y, Guo L (2019) The microstructure transformation of selective laser melted Ti-6Al-4V alloy. Mater Today Commun 19:277–285. https://doi.org/10.1016/j.mtcomm.2019.02.006

    Article  CAS  Google Scholar 

  35. Vignesh RV, Padmanaban R, Govindaraju M (2019) Study on the corrosion and wear characteristics of magnesium alloy AZ91D in simulated body fluids. Bull Mater Sci 43(1):8. https://doi.org/10.1007/s12034-019-1973-3

    Article  CAS  Google Scholar 

  36. Tahmasebifar A, Kayhan SM, Evis Z, Koç M, Tezcaner A, Çinici H (2016) AC SC. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2016.05.256

    Article  Google Scholar 

  37. Bharathi BM, Vignesh RV, Padmanaban R, Govindaraju M (2020) Effect of friction stir processing and heat treatment on the corrosion properties of AZ31 alloy. Aust J Mech Eng. https://doi.org/10.1080/14484846.2020.1815999

    Article  Google Scholar 

  38. Fontana MG (1986) Corrosion engineering. McGraw-Hill, New York

    Google Scholar 

  39. Shi X, Zeng W, Sun Y, Han Y, Zhao Y, Guo P (2015) Microstructure-tensile properties correlation for the Ti-6Al-4V titanium alloy. J Mater Eng Perform 24(4):1754–1762. https://doi.org/10.1007/s11665-015-1437-x

    Article  CAS  Google Scholar 

  40. Poondla N, Srivatsan TS, Patnaik A, Petraroli M (2009) A study of the microstructure and hardness of two titanium alloys: Commercially pure and Ti-6Al-4V. J Alloys Compd 486(1):162–167. https://doi.org/10.1016/j.jallcom.2009.06.172

    Article  CAS  Google Scholar 

  41. TIMET (1999) Corrosion resistance of titanium. https://www.nrc.gov/docs/ML9932/ML993210187.pdf. Accessed 27 Aug 2022

  42. Spacht RB (1946) The corrosion resistance of aluminum and its alloys. J Chem Educ 23(5):253. https://doi.org/10.1021/ed023p253

    Article  CAS  Google Scholar 

  43. Sherif E-S, Abdo H, Alharthi N (2020) Beneficial effects of vanadium additions on the corrosion of Ti6AlxV alloys in chloride solutions. Met—Open Access Metall J 10:264. https://doi.org/10.3390/met10020264

    Article  CAS  Google Scholar 

  44. Vignesh RV, Padmanaban R, Govindaraju M, Priyadharshini GS (2019) Mechanical properties and corrosion behaviour of AZ91D-HAP surface composites fabricated by friction stir processing. Mater Res Express 6(8):85401. https://doi.org/10.1088/2053-1591/ab1ded

    Article  CAS  Google Scholar 

  45. Vaira VR, Padmanaban R, Govindaraju M (2020) Synthesis and characterization of magnesium alloy surface composite (AZ91D–SiO2) by friction stir processing for bioimplants. Silicon 12(5):1085–1102. https://doi.org/10.1007/s12633-019-00194-6

    Article  CAS  Google Scholar 

  46. Sherif KP, Narayan R (1989) Electrochemical behaviour of aluminium in 1M NaCl solution: part 1: open circuit potential measurements. Br Corros J 24(3):199–203. https://doi.org/10.1179/000705989798270018

    Article  CAS  Google Scholar 

  47. Ma K, Zhang R, Sun J, Liu C (2020) Oxidation mechanism of biomedical titanium alloy surface and experiment. Int J Corros 2020:1678615. https://doi.org/10.1155/2020/1678615

    Article  CAS  Google Scholar 

  48. Minh DP, Lyczko N, Sebei H, Nzihou A, Sharrock P (2012) Synthesis of calcium hydroxyapatite from calcium carbonate and different orthophosphate sources: a comparative study. Mater Sci Eng B 177(13):1080–1089. https://doi.org/10.1016/j.mseb.2012.05.007

    Article  CAS  Google Scholar 

  49. Witte F et al (2005) In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26(17):3557–3563. https://doi.org/10.1016/j.biomaterials.2004.09.049

    Article  CAS  Google Scholar 

  50. Khanra AK, Jung HC, Yu SH, Hong KS, Shin KS (2010) Microstructure and mechanical properties of Mg-HAP composites. Bull Mater Sci 33(1):43–47. https://doi.org/10.1007/s12034-010-0006-z

    Article  CAS  Google Scholar 

  51. Vignesh RV, Padmanaban R, Govindaraju M (2019) Investigations on the surface topography, corrosion behavior, and biocompatibility of friction stir processed magnesium alloy AZ91D. Surf Topogr Metrol Prop 7(2):25020. https://doi.org/10.1088/2051-672x/ab269c

    Article  CAS  Google Scholar 

  52. Zhang Y, Li J, Che S, Tian Y (2020) Electrochemical polishing of additively manufactured Ti-6Al-4V alloy. Met Mater Int 26(6):783–792. https://doi.org/10.1007/s12540-019-00556-0

    Article  CAS  Google Scholar 

  53. Ramalingam VV, Ramasamy P, Datta M (2019) Microstructure, hardness and corrosion behaviour of friction-stir processed AA5083. Anti-Corrosion Methods Mater 66(6):791–801. https://doi.org/10.1108/ACMM-07-2017-1816

    Article  CAS  Google Scholar 

Download references

Funding

The authors and co-authors did not receive a specific grant from any funding agency in the public, commercial, or not-for-profit sectors to carry out the research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. All the authors performed material preparation, data collection, and analysis. The first draft of the manuscript was written by B G Yashwant Kumar and R Lokesh Kumar. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vaira Vignesh Ramalingam.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest or competing interests in the research work.

Ethics approval

Not Applicable.

Consent to participate

Not Applicable.

Consent for publication

The author transfers to the concerned publisher the non-exclusive publication rights and the warrants that his/her contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. This transfer of publication rights covers the non-exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balasubramanian Gayathri, Y.K., Kumar, R.L., Ramalingam, V.V. et al. Additive Manufacturing of Ti-6Al-4V alloy for Biomedical Applications. J Bio Tribo Corros 8, 98 (2022). https://doi.org/10.1007/s40735-022-00700-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-022-00700-1

Keywords

Navigation