Skip to main content

Advertisement

Log in

Are Mesenchymal Stem Cells Fibroblasts with Benefits?

  • Stem Cells: Policies from the Bench to the Clinic (G Moll and N Drzeniek, Section Editors)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Summary

Purpose of Review

Mesenchymal stem or stromal cells (MSCs) are a heterogeneous group of non-hematopoietic, multipotent progenitor cells that share a multitude of similarities with fibroblasts and other cell types. The question of how to distinguish MSCs from other cell types lacks a definitive answer. Here, we discuss the differences and similarities between MSCs and other cell types with regard to their cellular characteristics, origins, and immune interactions. Furthermore, the distribution of MSCs and their regional effects within the body are outlined.

Recent Findings

We give insights into the current methods to track MSC distribution and homing within the body and review the mode of action of MSC therapy. The local and systemic effects of MSC therapy and possible alternatives such as the application of MSC-derived vesicles are also discussed.

Summary

Important mechanisms regarding MSC therapy are not yet completely understood. This review provides insights into the current methods used to better understand these issues, which is a prerequisite for the clinical application of MSC-based therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues Cloning in vitro and retransplantation in vivo. Transplantation. 1974;17:331–40.

    Article  CAS  PubMed  Google Scholar 

  2. Viswanathan S, Shi Y, Galipeau J, Krampera M, Leblanc K, Martin I, et al. Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy. 2019;21:1019–24.

    Article  CAS  PubMed  Google Scholar 

  3. Caplan AI. Mesenchymal stem cells: time to change the name! Stem Cells Transl Med. 2017;6:1445–51.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lemos DR, Duffield JS. Tissue-resident mesenchymal stromal cells: implications for tissue-specific antifibrotic therapies. Sci Transl Med. 2018;10:eaan5174.

    Article  PubMed  Google Scholar 

  5. Lai P-L, Lin H, Chen S-F, Yang S-C, Hung K-H, Chang C-F, et al. Efficient generation of chemically induced mesenchymal stem cells from human dermal fibroblasts. Sci Rep. 2017;7:44534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Leuning DG, Engelse MA, Lievers E, Bijkerk R, Reinders MEJ, de Boer HC, et al. The human kidney capsule contains a functionally distinct mesenchymal stromal cell population. PLoS ONE. 2017;12:e0187118.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Leuning DG, Reinders MEJ, Li J, Peired AJ, Lievers E, de Boer HC, et al. Clinical-grade isolated human kidney perivascular stromal cells as an organotypic cell source for kidney regenerative medicine. Stem Cells Transl Med. 2017;6:405–18.

    Article  CAS  PubMed  Google Scholar 

  8. Caplan H, Olson SD, Kumar A, George M, Prabhakara KS, Wenzel P, et al. Mesenchymal stromal cell therapeutic delivery: translational challenges to clinical application. Front Immunol. 2019;10:1645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Denu RA, Nemcek S, Bloom DD, Goodrich AD, Kim J, Mosher DF, et al. Fibroblasts and mesenchymal stromal/stem cells are phenotypically indistinguishable. Acta Haematol. 2016;136:85–97.

    Article  CAS  PubMed  Google Scholar 

  10. Soundararajan M, Kannan S. Fibroblasts and mesenchymal stem cells: two sides of the same coin? J Cell Physiol. 2018;233:9099–109.

    Article  CAS  PubMed  Google Scholar 

  11. LeBleu VS, Neilson EG. Origin and functional heterogeneity of fibroblasts. FASEB J. 2020;34:3519–36.

    Article  CAS  PubMed  Google Scholar 

  12. Ugurlu B, Karaoz E. Comparison of similar cells: mesenchymal stromal cells and fibroblasts. Acta Histochem. 2020;122:151634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Davidson S, Coles M, Thomas T, Kollias G, Ludewig B, Turley S, et al. Fibroblasts as immune regulators in infection, inflammation and cancer. Nat Rev Immunol. 2021;1–14.

  14. Zhuang Y, Li D, Fu J, Shi Q, Lu Y, Ju X. Comparison of biological properties of umbilical cord-derived mesenchymal stem cells from early and late passages: immunomodulatory ability is enhanced in aged cells. Mol Med Rep Spandidos Publications. 2015;11:166–74.

    Article  CAS  Google Scholar 

  15. Schellenberg A, Lin Q, Schüler H, Koch CM, Joussen S, Denecke B, et al. Replicative senescence of mesenchymal stem cells causes DNA-methylation changes which correlate with repressive histone marks. Aging (Albany NY). 2011;3:873–88.

    Article  CAS  PubMed  Google Scholar 

  16. Andrzejewska A, Catar R, Schoon J, Qazi TH, Sass FA, Jacobi D, et al. Multi-parameter analysis of biobanked human bone marrow stromal cells shows little influence for donor age and mild comorbidities on phenotypic and functional properties. Front Immunol. 2019;10:2474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pasumarthy KK, Doni Jayavelu N, Kilpinen L, Andrus C, Battle SL, Korhonen M, et al. Methylome analysis of human bone marrow MSCs reveals extensive age- and culture-induced changes at distal regulatory elements. Stem Cell Rep. 2017;9:999–1015.

    Article  CAS  Google Scholar 

  18. Wiese DM, Ruttan CC, Wood CA, Ford BN, Braid LR. Accumulating transcriptome drift precedes cell aging in human umbilical cord-derived mesenchymal stromal cells serially cultured to replicative senescence. Stem Cells Transl Med. 2019;8:945–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koliaraki V, Prados A, Armaka M, Kollias G. The mesenchymal context in inflammation, immunity and cancer. Nat Immunol. 2020;21:974–82.

    Article  CAS  PubMed  Google Scholar 

  20. •• Steens J, Unger K, Klar L, Neureiter A, Wieber K, Hess J, et al. Direct conversion of human fibroblasts into therapeutically active vascular wall-typical mesenchymal stem cells. Cell Mol Life Sci. 2020;77:3401–22. This study reports a novel method to convert human skin fibroblasts towards MSCs using a lentiviral vector or a Tet-On system. This shows that patient-specific MSCs can be obtained from fibroblasts in large amounts by a direct conversion into induced MSCs, which could open novel ways for MSC-based therapies.

    Article  CAS  PubMed  Google Scholar 

  21. Leuning DG, Beijer NRM, du Fossé NA, Vermeulen S, Lievers E, van Kooten C, et al. The cytokine secretion profile of mesenchymal stromal cells is determined by surface structure of the microenvironment. Sci Rep. 2018;8:7716.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hoogduijn MJ, Issa F, Casiraghi F, Reinders MEJ. Cellular therapies in organ transplantation. Transpl Int. 2021;34:233–44.

    Article  PubMed  Google Scholar 

  23. Pinho S, Frenette PS. Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol. 2019;20:303–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Buechler MB, Kim K-W, Onufer EJ, Williams JW, Little CC, Dominguez CX, et al. A stromal niche defined by expression of the transcription factor WT1 mediates programming and homeostasis of cavity-resident macrophages. Immunity. 2019;51:119-130.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang W, Xu J. Immune modulation by mesenchymal stem cells. Cell Prolif. 2020;53:e12712.

    Article  PubMed  Google Scholar 

  26. Obermajer N, Dahlke MH. (Compl)Ex-Th17-Treg cell inter-relationship. Oncoimmunology. 2016;5:e1040217.

    Article  PubMed  Google Scholar 

  27. Terraza-Aguirre C, Campos-Mora M, Elizondo-Vega R, Contreras-López RA, Luz-Crawford P, Jorgensen C, et al. Mechanisms behind the immunoregulatory dialogue between mesenchymal stem cells and Th17 cells. Cells. 2020;9:E1660.

    Article  Google Scholar 

  28. Weiss ARR, Dahlke MH. Immunomodulation by mesenchymal stem cells (MSCs): mechanisms of action of living, Apoptotic, and Dead MSCs. Front Immunol. 2019;10:1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Weiss ARR, Lee O, Eggenhofer E, Geissler E, Korevaar SS, Soeder Y, et al. Differential effects of heat-inactivated, secretome-deficient MSC and metabolically active MSC in sepsis and allogenic heart transplantation. Stem Cells. 2020;38:797–807.

    Article  CAS  PubMed  Google Scholar 

  30. Gonçalves F da C, Luk F, Korevaar SS, Bouzid R, Paz AH, López-Iglesias C, et al. Membrane particles generated from mesenchymal stromal cells modulate immune responses by selective targeting of pro-inflammatory monocytes. Sci Rep. 2017;7:12100.

  31. Luk F, de Witte SFH, Korevaar SS, Roemeling-van Rhijn M, Franquesa M, Strini T, et al. Inactivated mesenchymal stem cells maintain immunomodulatory capacity. Stem Cells Dev. 2016;25:1342–54.

    Article  CAS  PubMed  Google Scholar 

  32. Rocha RA, Fox JM, Genever PG, Hancock Y. Biomolecular phenotyping and heterogeneity assessment of mesenchymal stromal cells using label-free Raman spectroscopy. Sci Rep. 2021;11:4385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Musiał-Wysocka A, Kot M, Majka M. The pros and cons of mesenchymal stem cell-based therapies. Cell Transplant SAGE Publications Inc. 2019;28:801–12.

  34. Szydlak R. Biological, chemical and mechanical factors regulating migration and homing of mesenchymal stem cells. World J Stem Cells. 2021;13:619–31.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Alanazi A, Munir H, Alassiri M, Ward LSC, McGettrick HM, Nash GB. Comparative adhesive and migratory properties of mesenchymal stem cells from different tissues. Biorheology IOS Press. 2019;56:15–30.

    Article  CAS  Google Scholar 

  36. Sheriff L, Alanazi A, Ward LSC, Ward C, Munir H, Rayes J, et al. Origin-specific adhesive interactions of mesenchymal stem cells with platelets influence their behavior after infusion. STEM CELLS. 2018;36:1062–74.

    Article  CAS  PubMed  Google Scholar 

  37. De Becker A, Riet IV. Homing and migration of mesenchymal stromal cells: how to improve the efficacy of cell therapy? World J Stem Cells. 2016;8:73–87.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Meleshko A, Prakharenia I, Kletski S, Isaikina Y. Chimerism of allogeneic mesenchymal cells in bone marrow, liver, and spleen after mesenchymal stem cells infusion. Pediatr Transplant. 2013;17:E189-194.

    Article  PubMed  Google Scholar 

  39. Nitzsche F, Müller C, Lukomska B, Jolkkonen J, Deten A, Boltze J. Concise review: MSC adhesion cascade–insights into homing and transendothelial migration. Stem Cells. 2017;35:1446–60.

    Article  PubMed  Google Scholar 

  40. Shahror RA, Ali AAA, Wu C-C, Chiang Y-H, Chen K-Y. Enhanced homing of mesenchymal stem cells overexpressing fibroblast growth factor 21 to injury site in a mouse model of traumatic brain injury. Int J Mol Sci. 2019;20:E2624.

    Article  Google Scholar 

  41. Shahror RA, Linares GR, Wang Y, Hsueh S-C, Wu C-C, Chuang D-M, et al. Transplantation of mesenchymal stem cells overexpressing fibroblast growth factor 21 facilitates cognitive recovery and enhances neurogenesis in a mouse model of traumatic brain injury. J Neurotrauma. 2020;37:14–26.

    Article  PubMed  Google Scholar 

  42. Wang X, Zhu Y, Sun C, Wang T, Shen Y, Cai W, et al. Feedback activation of basic fibroblast growth factor signaling via the Wnt/β-catenin pathway in skin fibroblasts. Front Pharmacol. 2017;8:32.

    PubMed  PubMed Central  Google Scholar 

  43. Li X, Hong Y, He H, Jiang G, You W, Liang X, et al. FGF21 mediates mesenchymal stem cell senescence via regulation of mitochondrial dynamics. Oxid Med Cell Longev. 2019;2019:4915149.

    PubMed  PubMed Central  Google Scholar 

  44. Pesaresi M, Bonilla-Pons SA, Sebastian-Perez R, Di Vicino U, Alcoverro-Bertran M, Michael R, et al. The chemokine receptors Ccr5 and Cxcr6 enhance migration of mesenchymal stem cells into the degenerating retina. Mol Ther. 2021;29:804–21.

    Article  CAS  PubMed  Google Scholar 

  45. Guo Y, Chi X, Wang Y, Heng BC, Wei Y, Zhang X, et al. Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing. Stem Cell Res Ther. 2020;11:245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Galipeau J, Sensébé L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell. 2018;22:824–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. de Witte SFH, Luk F, Sierra Parraga JM, Gargesha M, Merino A, Korevaar SS, et al. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells. 2018;36:602–15.

    Article  PubMed  Google Scholar 

  48. Sierra-Parraga JM, Munk A, Andersen C, Lohmann S, Moers C, Baan CC, et al. Mesenchymal stromal cells are retained in the porcine renal cortex independently of their metabolic state after renal intra-arterial infusion. Stem Cells Dev. 2019;28:1224–35.

    Article  CAS  PubMed  Google Scholar 

  49. Moll G, Ankrum JA, Kamhieh-Milz J, Bieback K, Ringdén O, Volk H-D, et al. Intravascular mesenchymal stromal/stem cell therapy product diversification: time for new clinical guidelines. Trends Mol Med. 2019;25:149–63.

    Article  PubMed  Google Scholar 

  50. Xia Y, Bao H, Huang J, Li X, Yu C, Zhang Z, et al. Near-infrared-persistent luminescence/bioluminescence imaging tracking of transplanted mesenchymal stem cells in pulmonary fibrosis. Biomater Sci. 2020;8:3095–105.

    Article  CAS  PubMed  Google Scholar 

  51. • Ali AAA, Shahror RA, Chen K-Y. Efficient labeling of mesenchymal stem cells for high sensitivity long-term MRI monitoring in live mice brains. Int J Nanomedicine. 2020;15:97–114. This study provides a promising tool to label and track engineered MSCs without altering their viability, secretion and differentiation capabilities in vivo using non-invasive iron oxide nanoparticles for MRI monitoring.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Oh EJ, Lee HW, Kalimuthu S, Kim TJ, Kim HM, Baek SH, et al. In vivo migration of mesenchymal stem cells to burn injury sites and their therapeutic effects in a living mouse model. J Control Release. 2018;279:79–88.

    Article  CAS  PubMed  Google Scholar 

  53. Giri J, Galipeau J. Mesenchymal stromal cell therapeutic potency is dependent upon viability, route of delivery, and immune match. Blood Adv. 2020;4:1987–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brennan MÁ, Layrolle P, Mooney DJ. Biomaterials functionalized with MSC secreted extracellular vesicles and soluble factors for tissue regeneration. Adv Funct Mater. 2020;30:1909125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang Y, Chopp M, Zhang ZG, Katakowski M, Xin H, Qu C, et al. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem Int. 2017;111:69–81.

    Article  CAS  PubMed  Google Scholar 

  56. Angioni R, Calì B, Vigneswara V, Crescenzi M, Merino A, Sánchez-Rodríguez R, et al. Administration of human MSC-derived extracellular vesicles for the treatment of primary sclerosing cholangitis: preclinical data in MDR2 knockout mice. Int J Mol Sci. 2020;21.

  57. Zhang Y, Hao Z, Wang P, Xia Y, Wu J, Xia D, et al. Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF-1α-mediated promotion of angiogenesis in a rat model of stabilized fracture. Cell Prolif. 2019;52:e12570.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chen S, Tang Y, Liu Y, Zhang P, Lv L, Zhang X, et al. Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif. 2019;52:e12669.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Man K, Brunet MY, Jones M-C, Cox SC. Engineered extracellular vesicles: tailored-made nanomaterials for medical applications. Nanomaterials (Basel). 2020;10:E1838.

    Article  Google Scholar 

  60. Mardpour S, Ghanian MH, Sadeghi-abandansari H, Mardpour S, Nazari A, Shekari F, et al. Hydrogel-mediated sustained systemic delivery of mesenchymal stem cell-derived extracellular vesicles improves hepatic regeneration in chronic liver failure. ACS Appl Mater Interfaces Am Chem Soc. 2019;11:37421–33.

    Article  CAS  Google Scholar 

  61. Wechsler ME, Rao VV, Borelli AN, Anseth KS. Engineering the MSC secretome: a hydrogel focused approach. Adv Healthc Mater. 2021;10:e2001948.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ogle ME, Doron G, Levy MJ, Temenoff JS. Hydrogel culture surface stiffness modulates mesenchymal stromal cell secretome and alters senescence. Tissue Eng Part A. 2020;26:1259–71.

    Article  CAS  PubMed  Google Scholar 

  63. Han C, Zhou J, Liang C, Liu B, Pan X, Zhang Y, et al. Human umbilical cord mesenchymal stem cell derived exosomes encapsulated in functional peptide hydrogels promote cardiac repair. Biomater Sci Royal Soc Chem. 2019;7:2920–33.

  64. Han C, Jeong D, Kim B, Jo W, Kang H, Cho S, et al. Mesenchymal stem cell engineered nanovesicles for accelerated skin wound closure. ACS Biomater Sci Eng Am Chem Soc. 2019;5:1534–43.

    Article  CAS  Google Scholar 

  65. Cha JM, Shin EK, Sung JH, Moon GJ, Kim EH, Cho YH, et al. Efficient scalable production of therapeutic microvesicles derived from human mesenchymal stem cells. Sci Rep. 2018;8:1171.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by grants (DA572/11–4) and RBK-KKF (Robert Bosch Stiftung, Stuttgart) to MHD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc-H. Dahlke.

Ethics declarations

Conflict of Interest

Dina Mönch, Jana Koch, and Marc-H. Dahlke declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain studies with human or animal subjects performed by any of the authors.

Disclaimer

The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Stem Cells: Policies from the Bench to the Clinic

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mönch, D., Koch, J. & Dahlke, MH. Are Mesenchymal Stem Cells Fibroblasts with Benefits?. Curr Stem Cell Rep 8, 53–60 (2022). https://doi.org/10.1007/s40778-022-00210-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-022-00210-3

Keywords

Navigation