Skip to main content
Log in

Impact of spatial resolution, interpolation and filtering algorithms on DEM accuracy for geomorphometric research: a case study from Sahel-Doukkala, Morocco

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Nowadays, digital elevation models (DEMs), with their simple data structure and widespread availability, became the main source for representing Earth’s surface and have been an integral part of any geospatial analysis, in particular, geomorphometric research. Spaceborne photogrammetry remains an important technique for obtaining high-resolution elevation data, especially over large or/and inaccessible areas. However, DEMs acquired directly through remote sensing based instruments; such as photogrammetric DEMs, are prone to a severe amount of uncertainty. The aim of this research is to provide a relatively comprehensive understanding of high-resolution Spaceborne photogrammetric DEM generation and enhancement for geomorphometric studies over regions with relatively low relief such as Sahel-Doukkala. To perform such analysis, a total of five interpolation algorithms available in most GIS software packages and commonly used in geomorphological studies; namely ANUDEM, IDW, OK, MQ and TPS, were selected and compared with respect to different spatial resolution, viz. 5 m, 10 m, 20 m and 30 m. Moreover, the impact of DEM filtering algorithms on introduced errors were examined in order to find the optimal strategy for removing errors and enhancing the modeled topographic surface. Results have been revealed that ANUDEM algorithm performs well when compared to other algorithms, in terms of accuracy as well as the natural look of the modeled surface. In addition, investigations demonstrate that spatial resolution of 10 m shows a satisfactory compromise between reducing errors and keeping topographic details. Furthermore, a combination of three digital filters which are Gaussian filter, median filter, and slope based filter, were able to reduce different sources of errors and to improve the elevation accuracy of DEM by 5% as so as the derived geomorphometric parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aguilar FJ, Agüera F, Aguilar M, Carvajal F (2005) Effects of terrain morphology, sampling density, and interpolation methods on grid DEM accuracy. Photogramm Eng Remote Sens 71:805–816. https://doi.org/10.14358/PERS.71.7.805

    Article  Google Scholar 

  • Akovetsky VG (1994) Efficiency improvement of stereoscopic measurements. Geod i Cartogr 1:29–33

    Google Scholar 

  • Albani M, Klinkenberg B (2003) A spatial filter for the removal of striping artifacts in digital elevation models. Photogramm Eng Remote Sens 69:755–765

    Article  Google Scholar 

  • Anderson ES, Thompson JA, Crouse DA, Austin RE (2005) Horizontal resolution and data density effects on remotely sensed LIDAR-based DEM. Geoderma 132:406–415. https://doi.org/10.1016/j.geoderma.2005.06.004

    Article  Google Scholar 

  • Arun PV (2013) A comparative analysis of different DEM interpolation methods. Egypt J Remote Sens Sp Sci 16:133–139. https://doi.org/10.1016/j.ejrs.2013.09.001

    Article  Google Scholar 

  • Caruso C, Quarta F (1998) Interpolation methods comparison. Comput Math with Appl 35:109–126. https://doi.org/10.1016/S0898-1221(98)00101-1

    Article  Google Scholar 

  • Carvalho Júnior OA, Guimarães RF, Montgomery DR et al (2013) Karst depression detection using ASTER, ALOS/PRISM and SRTM-derived digital elevation models in the Bambuí group, Brazil. Remote Sens 6:330–351. https://doi.org/10.3390/rs6010330

    Article  Google Scholar 

  • Chaplot V, Darboux F, Bourennane H et al (2006) Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density. Geomorphology 77:126–141. https://doi.org/10.1016/j.geomorph.2005.12.010

    Article  Google Scholar 

  • Conrad O, Bechtel B, Bock M et al (2015) System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci Model Dev 8:1991–2007. https://doi.org/10.5194/gmd-8-1991-2015

    Article  Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. Wiley, Hoboken

    Book  Google Scholar 

  • Davis BM (1987) Uses and abuses of cross-validation in geostatistics. Math Geol 19:241–248. https://doi.org/10.1007/BF00897749

    Article  Google Scholar 

  • Desmet PJJ (1997) Effects of interpolation errors on the analysis of DEMs. Earth Surf Process Landforms 22:563–580

    Article  Google Scholar 

  • Doucette P, Beard K (2000) Exploring the capability of some GIS surface interpolators for DEM gap fill. Photogramm Eng Remote Sens 66:881–888

    Google Scholar 

  • Elmahdy SI, Mohamed MM (2013) Remote sensing and GIS applications of surface and near-surface hydromorphological features in Darfur region, Sudan. Int J Remote Sens 34:4715–4735

    Article  Google Scholar 

  • Erdogan S (2009) A comparision of interpolation methods for producing digital elevation models at the field scale. Earth Surf Process Landf 34:366–376. https://doi.org/10.1002/esp.1731

    Article  Google Scholar 

  • Evans JS, Hudak AT (2007) A multiscale curvature algorithm for classifying discrete return LiDAR in forested environments. IEEE Trans Geosci Remote Sens 45:1029–1038

    Article  Google Scholar 

  • Felicísimo AM (1994) Parametric statistical method for error detection in digital elevation models. ISPRS J Photogramm Remote Sens 49:29–33. https://doi.org/10.1016/0924-2716(94)90044-2

    Article  Google Scholar 

  • Fisher PF, Tate NJ (2006) Causes and consequences of error in digital elevation models. Prog Phys Geogr 30:467–489

    Article  Google Scholar 

  • Florinsky IV (1998) Accuracy of local topographic variables derieved from digital elevation models. Int J Geogr Inf Sci 12:47–61. https://doi.org/10.1080/136588198242003

    Article  Google Scholar 

  • Florinsky IV (2012) Digital terrain analysis in soil science and geology, 1st edn. Academic, New York

    Google Scholar 

  • Forkuor G, Maathuis B (2012) Comparison of SRTM and ASTER derived digital elevation models over two regions in Ghana—implications for hydrological and environmental modeling. In: Piacentini T, Miccadei E (eds) Studies on environmental and applied geomorphology. Intech, Zagreb, pp 219–240

    Google Scholar 

  • Gong J, Zhllin L, Zhu Q et al (2000) Effects of various factors on the accuracy of DEMs: an intensive experimental investigation. Photogramm Eng Remote Sens 66:1113–1117

    Google Scholar 

  • Guo Q, Li W, Yu H, Alvarez O (2010) Effects of topographic variability and Lidar sampling density on several DEM interpolation methods. Photogramm Eng Remote Sens 76:701–712. https://doi.org/10.14358/PERS.76.6.701

    Article  Google Scholar 

  • Habib A, Akdim N, El Ghandour F et al (2017) Extraction and accuracy assessment of high resolution DEM and derived orthoimages from ALOS-PRISM data over Sahel-Doukkala (Morocco). Earth Sci Inform 10:197–217. https://doi.org/10.1007/s12145-017-0287-5

    Article  Google Scholar 

  • Harrison JM, Lo C-P (1996) PC-based two-dimensional discrete fourier transform programs for terrain analysis. Comput Geosci 22:419–424. https://doi.org/10.1016/0098-3004(95)00104-2

    Article  Google Scholar 

  • Hodgson ME, Bresnahan P (2004) Accuracy of airborne lidar-derived elevation: empirical assessment and error budget. Photogramm Eng Remote Sensing 70:331–339

    Article  Google Scholar 

  • Huggett R, Cheesman J (2002) Topography and the environment. Longman Group, Harlow

    Google Scholar 

  • Jarvis A, Rubiano J, Nelson A et al (2004) Practical use of SRTM data in the tropics—comparisons with digital elevation models generated from cartographic data. Cali, Colombia CIAT Working Document no. 198.

    Google Scholar 

  • Jordan G (2007) Adaptive smoothing of valleys in DEMs using TIN interpolation from ridgeline elevations: an application to morphotectonic aspect analysis. Comput Geosci 33:573–585. https://doi.org/10.1016/j.cageo.2006.08.010

    Article  Google Scholar 

  • Kamp U, Bolch T, Olsenholler J (2003) DEM generation from ASTER satellite data for geomorphometric analysis of Cerro Sillajhuay, Chile/Bolivia. In: ASPRS 2003 annual conference. Anchorage, Alaska (USA), p 9

  • Karkee M, Steward BL, Aziz SA (2008) Improving quality of public domain digital elevation models through data fusion. Biosyst Eng 101:293–305. https://doi.org/10.1016/j.biosystemseng.2008.09.010

    Article  Google Scholar 

  • Kienzle S (2004) The effect of DEM raster resolution on first order, second order and compound terrain derivatives. Trans GIS 8:83–111. https://doi.org/10.1111/j.1467-9671.2004.00169.x

    Article  Google Scholar 

  • Kraus T, Schneider M, Reinartz P (2009) Orthorectification and DSM generation with ALOS-Prism data in urban areas. In: 2009 IEEE international geoscience and remote sensing symposium. IEEE, Cape Town, South Africa, pp V-33–V-36

  • Kravchenko AN (2003) Influence of spatial structure on accuracy of interpolation methods. Soil Sci Soc Am J 67:1564–1571. https://doi.org/10.2136/sssaj2003.1564

    Article  Google Scholar 

  • Li J, Chen CS (2002) A simple efficient algorithm for interpolation between different grids in both 2D and 3D. Math Comput Simul 58:125–132. https://doi.org/10.1016/S0378-4754(01)00348-2

    Article  Google Scholar 

  • Li Z, Zhu C, Gold C (2004) Digital terrain modeling. CRC, Boca Raton

    Book  Google Scholar 

  • Lloyd CD, Atkinson PM (2010) Deriving DSMs from LiDAR data with kriging. Int J Remote Sens 23:2519–2524. https://doi.org/10.1080/01431160110097998

    Article  Google Scholar 

  • Lopez C (1997) Locating some types of random errors in digital terrain models. Int J Geogr Inf Sci 11:677–698. https://doi.org/10.1080/136588197242149

    Article  Google Scholar 

  • MacEachren AM, Davidson JV (1987) Sampling and isometric mapping of continuous geographic surfaces. Cartogr Geogr Inf Sci 14:299–320. https://doi.org/10.1559/152304087783875723

    Article  Google Scholar 

  • Mardikis MG, Kalivas DP, Kollias VJ (2005) Comparison of interpolation methods for the prediction of reference evapotranspiration—an application in Greece. Water Resour Manag 19:251–278. https://doi.org/10.1007/s11269-005-3179-2

    Article  Google Scholar 

  • Meyer TH (2004) The discontinuous nature of kriging interpolation for digital terrain modeling. Cartogr Geogr Inf Sci 31:209–216. https://doi.org/10.1559/1523040042742385

    Article  Google Scholar 

  • Milan DJ, Heritage GL, Large ARG, Fuller IC (2010) Filtering spatial error from DEMs: implications for morphological change estimation. Geomorphology 125:160–171. https://doi.org/10.1016/j.geomorph.2010.09.012

    Article  Google Scholar 

  • Milledge DG, Lane SN, Warburton J (2009a) The potential of digital filtering of generic topographic data for geomorphological research. Earth Surf Process Landf 34:63–74. https://doi.org/10.1002/esp.1691

    Article  Google Scholar 

  • Milledge DG, Lane SN, Warburton J (2009b) Optimization of stereo-matching algorithms using existing DEM data. Photogramm Eng Remote Sens 75:323–333

    Article  Google Scholar 

  • Muller R, Schneider M, Radhadevi PV et al (2009) Stereo evaluation of ALOS PRISM and IKONOS in Yemen. In: 2009 IEEE international geoscience and remote sensing symposium. IEEE, Cape Town, South Africa, pp II-1–II-2

  • Oksanen J (2003) Tracing the gross errors of DEM-visualization techniques for preliminary quality analysis. In: Proceedings of the 21st international cartographic conference, pp 2410–2416

  • Prasannakumar V, Shiny R, Geetha N, Vijith H (2011) Applicability of SRTM data for landform characterisation and geomorphometry: a comparison with contour-derived parameters. Int J Digit Earth 4:387–401

    Article  Google Scholar 

  • Quackenbush LJ (2004) A review of techniques for extracting linear features from imagery. Photogramm Eng Remote Sens 70:1383–1392. https://doi.org/10.14358/PERS.70.12.1383

    Article  Google Scholar 

  • Quattrochi A, Goodchild MF (1997) Scale in remote sensing and GIS. CRC, Boca Raton

    Google Scholar 

  • Quincey DJ, Bishop MP, Kääb A et al (2014) Digital terrain modeling and glacier topographic characterization. In: Kargel JS, Leonard GJ, Bishop MP et al (eds) Global land ice measurements from space. Springer, Berlin, pp 113–144

    Google Scholar 

  • Reuter HI, Hengl T, Gessler P, Soille P (2009) Chap. 4 preparation of DEMs for geomorphometric analysis. In: Geomorphometry: concepts, software, applications. Elsevier, Oxford, pp 87–120

    Google Scholar 

  • Riley SJ, DeGloria SD, Elliot R (1999) A terrain ruggedness index that quantifies topographic heterogeneity. Intermt J Sci 5:23–27

    Google Scholar 

  • Ruiz L, Bodin X (2015) Analysis and improvement of surface representativeness of high resolution Pléiades DEMs: examples from glaciers and rock glaciers in two areas of the Andes. In: Jasiewicz J, Zwoliński Z, Mitasova H, Hengl T (eds) Geomorphometry for Geosciences. Bogucki wydawnictwo naukowe. Adam Mickiewicz University in Pozna’n, Institute of Geoecology and Geoinformation, Poznań, pp 223–226

    Google Scholar 

  • Setianto A, Triandini T (2013) Comparison of kriging and inverse distance weighted (IDW) interpolation methods in lineament extraction and analysis. J Southeast Asian Appl Geol 5:21–29

    Google Scholar 

  • Shaw G, Wheeler D (1985) Statistical techniques in geographical analysis. Wiley, Chichester

    Google Scholar 

  • Šiljeg A, Lozić S, Radoš D (2015) The effect of interpolation methods on the quality of a digital terrain model for geomorphometric analyses. Teh Vjesn Tech Gaz 22:1149–1156. https://doi.org/10.17559/TV-20131010223216

    Article  Google Scholar 

  • Sithole G, Vosselman G (2004) Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS J Photogramm Remote Sens 59:85–101. https://doi.org/10.1016/j.isprsjprs.2004.05.004

    Article  Google Scholar 

  • Smith S, Holland D, Longley P (2004) The importance of understanding error in lidar digital elevation models. In: Altan O (ed) The international archives of the photogrammetry, remote sensing and spatial information sciences. International Society for Photogrammetry and Remote Sensing, Istanbul, pp 996–1001

    Google Scholar 

  • Smith SL, Holland DA, Longley PA (2005) Quantifying interpolation errors in urban airborne laser scanning models. Geogr Anal 37:200–224. https://doi.org/10.1111/j.1538-4632.2005.00636.x

    Article  Google Scholar 

  • Sulebak JR (2000) Applications of digital elevation models. DYNAMAP “white paper”. SINTEF, Oslo

    Google Scholar 

  • Thompson JA, Bell JC, Butler CA (2001) Digital elevation model resolution: effects on terrain attribute calculation and quantitative soil-landscape modeling. Geoderma 100:67–89

    Article  Google Scholar 

  • Tobler AWR (1970) A computer movie simulation urban growth in detroit region. Econ Geogr 46:234–240. https://doi.org/10.1126/science.11.277.620

    Article  Google Scholar 

  • Toutin T (2002) Impact of terrain slope and aspect on radargrammetric DEM accuracy. ISPRS J Photogramm Remote Sens 57:228–240. https://doi.org/10.1016/S0924-2716(02)00123-5

    Article  Google Scholar 

  • Tunalioglu N (2012) Quality test of interpolation methods on steepness regions for the use in surface modelling. Teh Vjesn Gaz 19:501–507

    Google Scholar 

  • Vosselman G (2000) Slope based filtering of laser altimetry data. In: Schenk T, Vosselman G (eds) The international archives of photogrammetry and remote sensing. International Society for Photogrammetry and Remote Sensing, Amsterdam, pp 935–942

    Google Scholar 

  • Wahba G (1990) Spline models for observational data. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  • Walker JP, Willgoose GR (2006) A comparative study of Australian cartometric and photogrammetric digital elevation model accuracy. Photogramm Eng Remote Sens 72:771–779

    Article  Google Scholar 

  • Wechsler SP, Kroll CN (2006) Quantifying DEM uncertainty and its effect on topographic parameters. Photogramm Eng Remote Sens 72:1081–1090

    Article  Google Scholar 

  • Wichmann V, Conrrad V, Jochem O (2013) LiDAR point cloud processing with SAGA GIS. Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie 20:81–90

    Google Scholar 

  • Wilson JP, Gallant JC (2000) Digital Terrain Analysis. In: Wilson JP, Gallant JC (eds) Terrain analysis: principles and applications. Wiley, New York, pp 1–27

    Google Scholar 

  • Wood JD, Fisher PF (1993) Assessing interpolation accuracy in elevation models. IEEE Comput Graph Appl 13:48–56. https://doi.org/10.1109/38.204967

    Article  Google Scholar 

  • Yamazaki D, Baugh CA, Bates PD et al (2012) Adjustment of a spaceborne DEM for use in floodplain hydrodynamic modeling. J Hydrol 436–437:81–91. https://doi.org/10.1016/j.jhydrol.2012.02.045

    Article  Google Scholar 

  • Yang GJ, Huang TS (1981) The effect of median filtering on edge location estimation. Comput Graph Image Process 15:224–245. https://doi.org/10.1016/0146-664X(81)90057-5

    Article  Google Scholar 

  • Yu Q, Tian J, Liu J (2004) A NOVEL contour-based 3D terrain matching algorithm using wavelet transform. Pattern Recognit Lett 25:87–99. https://doi.org/10.1016/j.patrec.2003.09.004

    Article  Google Scholar 

  • Zani H, Assine ML, McGlue MM (2012) Remote sensing analysis of depositional landforms in alluvial settings: method development and application to the Taquari megafan, Pantanal (Brazil). Geomorphology 161–162:82–92. https://doi.org/10.1016/j.geomorph.2012.04.003

    Article  Google Scholar 

  • Zevenbergen LW, Thorne CR (1987) Quantitative analysis of land surface topography. Earth Surf Process Landf 12:47–56

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnane Habib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habib, A., Khoshelham, K., Akdim, N. et al. Impact of spatial resolution, interpolation and filtering algorithms on DEM accuracy for geomorphometric research: a case study from Sahel-Doukkala, Morocco. Model. Earth Syst. Environ. 4, 1537–1554 (2018). https://doi.org/10.1007/s40808-018-0512-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-018-0512-3

Keywords

Navigation