Skip to main content

Advertisement

Log in

A comparative modeling of landslides susceptibility at a meso-scale using frequency ratio and analytic hierarchy process models in geographic information system: the case of African Alpine Mountains (Rif, Morocco)

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Landslides represent a major natural hazard for all countries in the world. The Rif mountains in Morocco suffer from different types of landslides. Some of them are very active and present a significant risk to urban areas and transport systems. Consequently, in terms of sustainable development, landslide susceptibility mapping is essential to assess the levels of danger posed by these phenomena. This study aims at evaluating landslide susceptibility using two different approaches based on a statistical method (Frequency Ratio, FR) and on a heuristic method (Analytic Hierarchy Process, AHP). The second purpose is to compare them to select the most relevant and reproducible one with a view to applying it to areas having a similar geomorphological context. This study includes a precise inventory map representing the spatial distribution of three landslide categories within 892 sites. Rock falls, flows and landslides were studied using field survey and satellite imagery. Nine thematic layers of predisposing factors controlling landslides occurrence were prepared. The final result is presented in the form of six susceptibility maps of rockfalls, flows and landslides for FR and AHP models. The result of the success rates (AUC) indicates that the FR method is better with an AUC of 88% for rock fall, 89% for flows and 87% for landslides, while the AUC is 83%, 84% and 76%, respectively for the AHP method. Moreover, the results indicate which method to use for similar regions to produce indicative mapping and help users select priority areas prone to landslides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statements

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abedini A, Tulabi S (2018) Assessing LNRF, FR, and AHP models in landslide susceptibility mapping index: a comparative study of Nojian watershed in Lorestan province, Iran. Environ Earth Sci 77:405. https://doi.org/10.1007/s12665-018-7524-1

    Article  Google Scholar 

  • Abedini M, Ghasemyan B, Mogaddam MH (2017) Landslide susceptibility mapping in Bijar city, Kurdistan province, Iran: a comparative study by logistic regression and AHP models. Environ Earth Sci 76:308

    Google Scholar 

  • Agbor AT, Mohammed AF, Usman SO, Musa NW, Alabi AA, Adegbe M et al (2014) The October 13, 2010 landslides on the Azenge mountain in Imande Ukusu, Nkomon Disrict, Benue State, Nigeria. Environ Ecol Res 2(3):113–121

    Google Scholar 

  • Ait Brahim L, Chotin P (1989) Genèse et déformation des bassins néogènes du Rif central (Maroc) au cours du rapprochement Europe-Afrique. Geodin Acta 34:295–304

    Google Scholar 

  • Ardizzone F, Cardinali M, Carrara A, Guzzetti F, Reichenbach P (2002) Impact of mapping errors on the reliability of landslide hazard maps. Nat Hazards Earth Syst Sci 2:3–14. https://doi.org/10.5194/nhess-2-3-2002

    Article  Google Scholar 

  • Asebriy L, Burgois J, Cherkaoui TE, Azdimousa A (1993) Evolution tectonique récente de la zone de faille du Nékor: importance paléogéographique et structurale dans le Rif externe, Maroc. J Afr Earth Sci 17(1):65–74

    Google Scholar 

  • Atkinson PM, Massari R (1998) Mapping Susceptibility to Landsliding in the Central Apennines, Italy. Comput Geosci 24:373–385. https://doi.org/10.1016/S0098-3004(97)00117-9

    Article  Google Scholar 

  • Avenard JM (1965) L’érosion actuelle dans le basssin de Sebou. INRA, Rabat

    Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65(1):15–31. https://doi.org/10.1016/j.geomorph.2004.06.010

    Article  Google Scholar 

  • Beguería S (2006) Validation and evaluation of predictive models in hazard assessment and risk management. Nat Hazards 37:315–329

    Google Scholar 

  • Bhatt BP, Awasthi KD, Heyojoo BP, Silwal T, Kafle G (2013) Using geographic information system and analytical hierarchy process in landslide hazard zonation. Appl Ecol Environ Sci 2(1):14–22

    Google Scholar 

  • Bouzerda M, Mehdi K, Fadili A, Boualla O (2019) Collapse dolines susceptibility mapping using frequency ratio method and GIS in Sahel-Doukkala, Morocco. Model Earth Syst Environ. https://doi.org/10.1007/s40808-019-00683-y

    Article  Google Scholar 

  • Brenning A (2005) Spatial prediction models for landslide hazards: review, comparison and evaluation. Nat Hazards Earth Syst Sci 5:853–862. https://doi.org/10.5194/nhess-5-853

    Article  Google Scholar 

  • Bulti DT, Abebe BG, Biru Z (2021) Analysis of the changes in historical and future extreme precipitation under climate change in Adama city, Ethiopia. Model Earth Syst Environ. https://doi.org/10.1007/s40808-020-01019-x

    Article  Google Scholar 

  • Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards, advances in natural and technological hazards research. Springer, Dordrecht, pp 135–175

    Google Scholar 

  • Castellanos Abella EA, Van Westen CJ (2007) Qualitative landslide susceptibility assessment by multi-criteria evaluation. Landslides 4:311–325. https://doi.org/10.1007/s10346-007-0087-y

    Article  Google Scholar 

  • Chacuki A (1991) Les mouvements de terrain et les risques associés dans la région de Bab Taza (Rif occidental), Thèse de l’Université de Strasbourg

  • Chen W, Chai H, Sun X, Wang Q, Ding X, Hong H (2016) A GIS-based comparative study of frequency ratio, statistical index and weights-of-evidence models in landslide susceptibility mapping. Arab J Geosci. https://doi.org/10.1007/s12517-015-2150-7

    Article  Google Scholar 

  • Chung CF, Fabbri AG (2001) Prediction models for landslide hazard using fuzzy set approach. In: Marchetti M, Rivas V (eds) Geomorphology and environmental impact assessment. Balkema, Rotterdam, pp 31–47

    Google Scholar 

  • Chung CF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472

    Google Scholar 

  • Cornforth DH (2005) Landslides in practice: In investigation, analysis, and remedial/preventative options in soils. Wiley, Hoboken

    Google Scholar 

  • Corominas J, van Westen CJ, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, van den Eeckhaut M, Mavrouli OC, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervás J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk: bull Eng. Geol Environ 73(2):209–263

    Google Scholar 

  • Cruden DM (1991) A simple definition of a landslide. Bull Int Assoc Eng Geol 43:27–29

    Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42(3–4):213–228

    Google Scholar 

  • Dehban Avan Stakhri M (2013) Landslide susceptibility mapping for Poulrood earth fill dam reservoir (the comparison of two methods) Iran, Guilan Province. Univ J Geosci 2(1):69–76. https://doi.org/10.13189/ujg.2013.010205

    Article  Google Scholar 

  • Delga MD, Hottinger L, Marcais J, Mattauer M, Milliard Y, Suter G (1962) Données actuelles sur la structure du Rif. Livre Mém. P. Fallot 1:399–422

    Google Scholar 

  • Demir G, Aytekin M, Akgun A, Ikizler SB, Tatar O (2013) A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods. Nat Hazards 65(3):1481–1506

    Google Scholar 

  • Dietrich WE, Montgomery DR (1998) SHALSTAB: a digital terrain model for mapping shallow landslide potential. NCASI National Council of the Paper Industry for Air and Stream Improvement Technical Report 1998

  • El Fellah B, Asebriy L (1996) Le glissement de terrain de Bou Houda (Rif central, Maroc): nature des mouvements, conséquences et remèdes. In: 6th Spanish congress and international conference on environmental geology and land-use planning, Granada, Spain, 22–25, p 465-474

  • Elmoulat M, Ait Brahim L, Elmahsani A, Abdelouafi A, Mastere M (2021) Mass movements susceptibility mapping by using heuristic approach. Case study: province of Tétouan (North of Morocco). Geoenviron Disast 8:20. https://doi.org/10.1186/s40677-021-00192-0

    Article  Google Scholar 

  • Esmali Ouri A, Amirian S (2009) Landslide hazard zonation using MR and AHP methods and GIS techniques in Langan watershed, Ardabil, Iran. In: International conference on ACRS 2009, Beijing

  • Fallah-Zazuli M, Vafaeinejad A, Asghar Alesheikh A, Modiri M, Aghamohammadi H (2019) Mapping landslide susceptibility in the Zagros Mountains, Iran: a comparative study of different data mining models. Earth Sci Inf. https://doi.org/10.1007/s12145-019-00389-w

    Article  Google Scholar 

  • Fares A (1994) Essai méthodologique de la cartographie des risques naturels liés aux mouvements de terrain : application à l’aménagement de la ville de Taounate (Rif, Maroc). Thèse de Doctorat, Université de Franche Comté, France

  • Farr TG, Kobrick M (2000) Shuttle radar topography mission produces a wealth of data. EOS Trans Am Geophys Union 81:583–585. https://doi.org/10.1029/EO081i048p00583

    Article  Google Scholar 

  • Farr TG, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Rosen P, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M (2007) The shuttle radar topography mission. Rev Geophys 45:RG2004. https://doi.org/10.1029/2005RG000183

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard, and risk zoning for land-use planning, joint technical committee (JTC-1) on landslides and engineered slopes. Eng Geol 102:85–98

    Google Scholar 

  • Flageollet JC (1989) Les mouvements de terrain et leur prévention. Masson, Paris

    Google Scholar 

  • Fonseca A, Catalao J, Zezere JL, Madeira J, Fellah, B (2013) Identification of active deep-seated landslides in the Central Rif Mountains through PSI, hotspot and cluster analysis. ESA Living Planet, Edinburgh.

  • Fressard M, Thiery Y, Maquaire O (2014) Which data for quantitative landslide susceptibility mapping at operational scale? Case study of the Pays d’Auge plateau hillslopes (Normandy, France). Nat Hazards Earth Syst Sci 14:569–588. https://doi.org/10.5194/nhess-14-569-2014

    Article  Google Scholar 

  • Froude MJ, Petley D (2018) Global fatal landslide occurrence from 2004 to 2016. Nat Hazards Earth Syst Sci 18:2161–2181. https://doi.org/10.5194/nhess-18-2161-2018

    Article  Google Scholar 

  • Ghanavati E (2016) Landslide hazard zonation by using AHP (analytical hierarchy process) model in GIS (geographic information system) environment (case study: Kordan watershed). Int J Sci High Technol 2:24–39

    Google Scholar 

  • Ghosh D, Sarkar A (2021) Avulsion potential modeling using integrated Fuzzy-AHP in lower catchment of Chel river of North Bengal, India. Model Earth Syst Environ. https://doi.org/10.1007/s40808-021-01230-4

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31(1–4):181–216

    Google Scholar 

  • Guzzetti F (2006) Landslide Hazard and Risk Assessment. Ph.D. thesis, University of Bonn, Bonn, Germany

  • Guzzetti F, Ardizzone F, Cardinali M, Rossi M, Valigi D (2009) Landslide volumes and landslide mobilization rates in Umbria, Central Italy. Earth Planet Sci Lett 279:222–229

    Google Scholar 

  • Hembram TK, Paul GC, Saha S (2018) Spatial prediction of susceptibility to gully erosion in Jainti River basin, Eastern India: a comparison of information value and logistic regression models. Model Earth Syst Environ. https://doi.org/10.1007/s40808-018-0560-8

    Article  Google Scholar 

  • Humbert (1977) La cartographie en France des zones exposées à des risques liés aux mouvements du sol-cartes zermos. Bull Int Assoc Eng Geol Bulletin De L’association Internationale De Géologie De L’ingénieur 16:80–82

    Google Scholar 

  • Hussin HY, Zumpano V, Reichenbach P, Sterlacchini S, Micu M, Van Westen C, Bălteanu D (2016) Different landslide sampling strategies in a grid-based bi-variate statistical susceptibility model. Geomorphology 253:508–523

    Google Scholar 

  • Janssen R, Van Herwijnen M (1994) DEFINITE: a system to support decisions on a finite set of alternatives: user manual. Environment and management, vol 3. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Javier DN, Kumar L (2019) Frequency ratio landslide susceptibility estimation in a tropical mountain region. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol XLII-3/W8, 2019 Gi4DM 2019—GeoInformation for Disaster Management, 3–6. https://doi.org/10.5194/isprs-archives-XLII-3-W8-173-2019

  • Jenks GF (1967) The data model concept in statistical mapping. Int Yearb Cartogr 7:186–190

    Google Scholar 

  • Jenks GF (1977) Optimal data classification for choropleth maps. University of Kansas, Department of Geography Occasional Paper No. 2, Lawrence, Kansas.

  • Jin GC, Che OY, Choi CU (2010) The comparative research of landslide susceptibility mapping using FR, AHP, LR, ANN. Korean Soc Geosp Inf Syst 9:13–20

    Google Scholar 

  • Kamp U, Growley BJ, Khattak GA, Owen LA (2008) GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology 101(4):631–642. https://doi.org/10.1016/j.geomorph.2008.03.003

    Article  Google Scholar 

  • Kanwal S et al (2017) GIS based landslide susceptibility mapping of northern areas of Pakistan, a case study of Shigar and Shyok Basins”. Geomat Nat Hazards Risk 8(2):348–366

    Google Scholar 

  • Komac M (2006) Landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia. Geomorphology 74:17–28

    Google Scholar 

  • Kumar K, Annadurai R (2015) Comparison of frequency ratio model and analytic hierarchy process methods upon landslide susceptibility mapping using geospatial techniques. Disaster Adv 8(5)

  • Lad S, Ayachit R, Kadam A, Umrikar B (2018) Groundwater vulnerability assessment using DRASTIC model: a comparative analysis of conventional, AHP, Fuzzy logic and frequency ratio method. Model Earth Syst Environ. https://doi.org/10.1007/s40808-018-0545-7

    Article  Google Scholar 

  • Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4:33–41. https://doi.org/10.1007/s10346-006-0047-y

    Article  Google Scholar 

  • Lee S, Choi J, Woo I (2004) The effect of spatial resolution on the accuracy of landslide susceptibility mapping: a case study in Boun, Korea. Geosci J 8(1):51

    Google Scholar 

  • Leroi E (1996) Landslide hazard—risk maps at different scales: objectives, tools and development, In: Senneset K (ed) Proceedings of the 7th international symposium on landslides, Trondheim, Norway, Balkema, Rotterdam, p 35–52

  • Li J, Zhou CH (2003) Appropriate grid size for terrain-based landslide risk assessment in Lantau Island, Hong Kong. J Remote Sens Beijing 7(2):86–92

    Google Scholar 

  • Mahalingam R, Olsen MJ (2016) Evaluation of the influence of source and spatial resolution of DEMs on derivative products used in landslide mapping. Geomat Nat Haz Risk 7(6):1835–1855

    Google Scholar 

  • Mahalingam R, Olsen MJ, O’Banion MS (2016) Evaluation of landslide susceptibility mapping techniques using lidar derived conditioning factors, Oregon case study. Geomat Nat Haz Risk 7(6):1884–1907

    Google Scholar 

  • Mansour Z, Thiery Y, Aissa S et al (2021) The susceptibility analysis of landslide using bivariate and multivariate modeling techniques in western Algeria: case of Fergoug watershed (Beni-Chougrane Mountains). Arab J Geosci 14:1962. https://doi.org/10.1007/s12517-021-07919-1

    Article  Google Scholar 

  • Maqsoom A, Aslam B, Khalil U, Kazmi ZA, Azam S, Mehmood T, Nawaz A (2021) Landslide susceptibility mapping along the China Pakistan Economic Corridor (CPEC) route using multi-criteria decision-making method. Model Earth Syst Environ. https://doi.org/10.1007/s40808-021-01226-0

    Article  Google Scholar 

  • Margaa K (1994) Essai de cartographie des risques naturels : application à l’aménagement de la région d’Al Hoceima (Rif, Nord-Maroc). Thèse Doctorat, Université de Franche-Comté

  • Mastere M, El Fellah B, Maquaire O (2020) Landslides inventory map as a first step for hazard and risk assessment: Rif mountains, Morocco. Bulletin de l’institut Scientifique, Rabat, Section Sciences De La Terre 42:49–62

    Google Scholar 

  • Maurer G (1968) Les montagnes du Rif central. Etude géomorphologique. Thèse lettres, université Paris 7, 499

  • McCalpin J (1984) Preliminary age classification of landslides for inventory mapping. In: 21st Annual symposium on engineering geology and soils engineering, proceedings, University of Idaho, Moscow, p 99–111

  • Mertens K, Jacobs L, Maes J, Kabaseke C, Maertens M, Poesen J, Kervyn M, Vranken L (2016) The direct impact of landslides on household income in tropical regions: a case study from the Rwenzori Mountains in Uganda. Sci Total Environ 550:1032–1043. https://doi.org/10.1016/j.scitotenv.2016.01.171

    Article  Google Scholar 

  • Millies-Lacroix CA (1968) Les glissements de terrains. Présentation d’une carte prévisionnelle des mouvements de masse dans le Rif (Maroc septentrional). Mines Et géologie 27:45–55

    Google Scholar 

  • Morel JC (1989) États de contrainte et cinématique de la chaîne rifaine (Maroc) du Tortonien à l’actuel. Geodin Acta 3:283–294

    Google Scholar 

  • Nahayo L, Kalisa E, Maniragaba A, Nshimiyimana FX (2019) Comparison of analytical hierarchy process and certain factor models in landslide susceptibility mapping in Rwanda. Model Earth Syst Environ. https://doi.org/10.1007/s40808-019-00575-1

    Article  Google Scholar 

  • NASA Shuttle Radar Topography Mission (2013) https://earthdata.nasa.gov and https://earthexplorer.usgs.gov/

  • Nefeslioglu HA, Gokceoglu C, Sonmez H (2008) An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol 97(3):171–191. https://doi.org/10.1016/j.enggeo.2008.01.004

    Article  Google Scholar 

  • Nijmeijer R, de Haas A, Dost RJJ, Budde PE (2001) Ilwis 3.0 academic user’s guide. International Institude for Geo-Information Science and Earth Observation, Enschede

    Google Scholar 

  • Ozer BC, Mutlu B, Nefeslioglu HA, Sezer EA, Rouai M, Dekayir A, Gokceoglu C (2019) On the use of hierarchical fuzzy inference systems (HFIS) in expert-based landslide susceptibility mapping: the central part of the Rif Mountains (Morocco). Bull Eng Geol Environ. https://doi.org/10.1007/s10064-019-01548-5

    Article  Google Scholar 

  • Poli S, Sterlacchini S (2007) Landslide representation strategies in susceptibility studies using weights-of-evidence modeling technique. Nat Resour Res 16:121–134

    Google Scholar 

  • Pourghasemi HR, Rossi M (2017) Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods. Theor Appl Climatol 130(1–2):609–633. https://doi.org/10.1007/s00704-016-1919-2

    Article  Google Scholar 

  • Pourghasemi HR, Mohammady M, Pradhan B (2012) Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. CATENA 97:71–84

    Google Scholar 

  • Pourghasemi HR, Teimoori Yansari Z, Panagos P, Pradhan B (2018) Analysis and evaluation of landslide susceptibility: a review on articles published during 2005–2016 (periods of 2005–2012 and 2013–2016). Arab J Geosci 11:193. https://doi.org/10.1007/s12517-018-3531-5

    Article  Google Scholar 

  • Pradhan B, Sameen MI (2017) Effects of the spatial resolution of digital elevation models and their products on landslide susceptibility mapping. In: Laser scanning applications in landslide assessment, p 133–150

  • Rasyid AR, Bhandary NP, Yatabe R (2016) Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia. Geoenviron Disasters 3:19. https://doi.org/10.1186/s40677-016-0053-x

    Article  Google Scholar 

  • Razavizadeh S, Solaimani K, Massironi Kavian M (2017) Mapping landslide susceptibility with frequency ratio, statistical index, and weights of evidence models: a case study in northern Iran. Environ Earth Sci 76:499

    Google Scholar 

  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility models. Earth Sci Rev 180:60–91

    Google Scholar 

  • Romer C, Ferentinou M (2016) Shallow landslide susceptibility assessment in a semiarid environment-a quaternary catchment of KwaZulu-Natal, South Africa. Eng Geol 201:29–44

    Google Scholar 

  • Rouai M, Jaaidi EB (2003) Scaling properties of landslides in the Rif mountains of Morocco. Eng Geol 68:353–359

    Google Scholar 

  • Roy J, Saha S (2019) Landslide susceptibility mapping using knowledge driven statistical models in Darjeeling District, West Bengal, India. Geoenviron Disasters 6:11. https://doi.org/10.1186/s40677-019-0126-8

    Article  Google Scholar 

  • Roy S, Bose A, Manda G (2021) Modeling and mapping geospatial distribution of groundwater potential zones in Darjeeling Himalayan region of India using analytical hierarchy process and GIS technique. Model Earth Syst Environ. https://doi.org/10.1007/s40808-021-01174-9

    Article  Google Scholar 

  • Saaty T (1980) The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill, New York

    Google Scholar 

  • Saaty TL (1984) Décider face à la complexité : une approche analytique multicritère d’aide à la décision (traduit par Lionel Dahan). Entreprise Moderne d’Édition, Paris

    Google Scholar 

  • Saaty TL, Vargas LG (2001) Models, methods, concepts and applications of the analytic hierarchy process. Kluwer Academic Publishers, Norwell. https://doi.org/10.1007/978-1-4615-1665-1

    Book  Google Scholar 

  • Saadi SEM, Hilali EA, Bensoid M (1979) Geological map of Dhar Souk Region. Notes et Memoires du Service Géologique du Maroc Editions, Rabat, Maroc, No: 298

  • Sam K (2021) Modeling the effectiveness of natural and anthropogenic disturbances on forest health in Buxa Tiger Reserve, India, using fuzzy logic and AHP approach. Model Earth Syst Environ. https://doi.org/10.1007/s40808-021-01227-z

    Article  Google Scholar 

  • Samanta RK, Bhunia GS, Shit PK, Pourghasemi HR (2018) Flood susceptibility mapping using geospatial frequency ratio technique: a case study of Subarnarekha River Basin, India. Model Earth Syst Environ. https://doi.org/10.1007/s40808-018-0427-z

    Article  Google Scholar 

  • Shano L, Raghuvanshi TK, Meten M (2020) Landslide susceptibility evaluation and hazard zonation techniques—a review. Geoenviron Disasters. https://doi.org/10.1186/s40677-020-00152-0

    Article  Google Scholar 

  • Sharma S, Mahajan AK (2018) Comparative evaluation of GIS-based landslide susceptibility mapping using statistical and heuristic approach for Dharamshala region of Kangra Valley, India. Geoenviron Disasters 5:4. https://doi.org/10.1186/s40677-018-0097-1

    Article  Google Scholar 

  • Shirzadi A, Bui DT, Pham BT, Solaimani K (2017a) Shallow landslide susceptibility assessment using a novel hybrid intelligence approach. Environ Earth Sci 76:60

    Google Scholar 

  • Shirzadi A, Chapi K, Shahabi H, Solaimani K, Kavian A, Ahmad BB (2017b) Rock fall susceptibility assessment along a mountainous road: an evaluation of bivariate statistic, analytical hierarchy process and frequency ratio. Environ Earth Sci 76:152

    Google Scholar 

  • Soeters R, Van Westen CJ (1996) slope instability recognition analysis and zonation. In: Turner KT, Schuster RL (eds) Landslides: investigation and mitigation, special report no. 247, Transportation Research Board National Research Council, Washington DC, p 129–177

  • Sterlacchini S, Masetti M, Poli S (2004) Spatial integration of thematic data for predictive landslide mapping: a case study from Oltrepo Pavese area, Italy. In: Lacerda, Fontoura, Sayao (eds) Landslides: Evaluation and stabilization. Taylor & Francis Group, London, pp 109–115

    Google Scholar 

  • Thiery Y (2007) Susceptibilité du Bassin de Barcelonnette (Alpes du sud, France) aux mouvements de versant : cartographie morphodynamique, analyse spatiale et modélisation probabiliste. Thèse de doctorat. Département Géographie Physique et Environnement. Université de Caen. https://tel.archives-ouvertes.fr/tel-00259135

  • Thiery Y, Malet JP, Sterlacchini S, Puissant A, Maquaire O (2007) Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment. Geomorphology 92(1):38–59. https://doi.org/10.1016/j.geomorph.2007.02.020

    Article  Google Scholar 

  • Thiery Y, Maquaire O, Fressard M (2014) Application of expert rules in indirect approaches for landslide susceptibility assessment. Landslides 11:411–424. https://doi.org/10.1007/s10346-013-0390-8

    Article  Google Scholar 

  • Thiery Y, Terrier M, Colas B, Fressard M, Maquaire O, Grandjean G, Gourdier S (2020) Improvement of landslide hazard assessments for regulatory zoning in France: state-of-the-art perspectives and considerations. Int J Disaster Risk Reduct 47:101562. https://doi.org/10.1016/j.ijdrr.2020.101562

    Article  Google Scholar 

  • Tribak A, El Garouani A, Abahrour M (2012) Hydrous erosion in the catchment area of the Wadi Larbaa (Rif mountains, morocco): agents, processes and modeling. Present Environ Sustain Dev 6(2)

  • Van Den Eeckhaut M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G, Vandekerckhove L (2006) Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology 76:392–410. https://doi.org/10.1016/j.geomorph.2005.12.003

    Article  Google Scholar 

  • Van Westen CJ (2016) National Scale Landslide Susceptibility Assessment for SVG. CHARIM Caribbean Handbook on Risk Information Management, World Bank GFDRR, ACP‐EU Natural Disaster Risk Reduction Program. www.charim.net

  • Van Westen C, Farifteh J (2001) ILWIS user’s guide. International Institute for Aerospace Survey and Earth Sciences (ITC) Enschede, Netherlands, p 43–47

  • Van Westen C, van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation-why is it so difficult? Bull Eng Geol Environ 65:167–184

    Google Scholar 

  • Voogd H (1983) Multicriteria evaluation for urban and regional planning. Pion Ltd, London

    Google Scholar 

  • Wu Y, Li W, Liu P, Bai H, Wang Q, He J, Liu Y, Sun S (2016) Application of analytic hierarchy process model for landslide susceptibility mapping in the Gangu county, Gansu Province. Environ Earth Sci 75:422. https://doi.org/10.1007/s12665-015-5194-9

    Article  Google Scholar 

  • Wubalem A (2021) Landslide susceptibility mapping using statistical methods in Uatzau catchment area, northwestern Ethiopia. Geoenviron Disaster 8:1. https://doi.org/10.1186/s40677-020-00170-y

    Article  Google Scholar 

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey). CATENA 72(1):1–12

    Google Scholar 

  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process. Bivariate statistics and logistics regression methods for landslide susceptibility mapping İn Trabzon, Ne Turkey. CATENA 85:274–287

    Google Scholar 

  • Yilmaz I (2010) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci 61:821–836

    Google Scholar 

  • Zhou S, Chen G, Fang L, Nie Y (2016) GIS-based integration of subjective and objective weighting methods for regional landslides susceptibility mapping. Sustainability 8(4):334

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Hubert Curien Toubkal partnership program Toubkal (PHC) (TBK/20/97), project “Multi-hazard and multi-scale assessment of North African mountain areas in the context of global change” (2020–2022) and the “Priority Research Projects” program PPR2 (1466/16) “Vulnerability and management of natural hazards in the Rif: Seismic risk, risk of land movement and risk of flooding”, financed by the Moroccan National Centre for Scientific and Technical Research (CNRST). We thank Mohand Medjkane from Normandie University, UNICAEN, CNRS, IDEES for the proofreading and the suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nada Boukhres.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukhres, N., Mastere, M., Thiery, Y. et al. A comparative modeling of landslides susceptibility at a meso-scale using frequency ratio and analytic hierarchy process models in geographic information system: the case of African Alpine Mountains (Rif, Morocco). Model. Earth Syst. Environ. 9, 1949–1975 (2023). https://doi.org/10.1007/s40808-022-01605-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-022-01605-1

Keywords

Navigation