Skip to main content
Log in

Analysis of Dual Solutions in MHD Fluid Flow with Heat and Mass Transfer Past an Exponentially Shrinking/Stretching Surface in a Porous Medium

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The present study examines the nature of dual solutions in hydromagnetic boundary layer flow a conducting fluid past an exponentially shrinking/stretching sheet with simultaneous thermal and concentration distributions in a porous medium. Due to the non-linearity of the model boundary value problem, both similarity transformation and the “MATLAB built-in bvp4c numerical scheme” are utilized to solve this problem. For shrinking surface flow, the model exhibits non-unique dual solutions and a linear stability analysis is executed in order to identify the stable and physically achievable solution. Influences of various emerging parameters on the flow with heat and mass transfer are discussed through graphs and in tabular form. A comparison has been made with existing results and excellent agreement is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig.4
Fig.5
Fig. 6
Fig.7
Fig.8
Fig.9
Fig.10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Software application (MATLAB).

Abbreviations

\(C_{0}\) :

Concentration

\(a,c\) :

Constants

\(L\) :

Characteristics length,

\(T_{0}\) :

Characteristic temperature

\(C\) :

Concentration of the fluid

\(Kr*\) :

Chemical reaction rate on the species concentration

\(f^{\prime}(\eta )\) :

Dimensionless velocity

\(Kr\) :

Local chemical reaction parameter

\(M\) :

Magnetic field parameter

\(D\) :

Mass diffusivity

\(Nu\) :

Nusselt number

\(K\) :

Permeability of the porous medium,

\(\Pr\) :

Prandtl number

\({\text{Re}}\) :

Reynolds number

\(Sc\) :

Schmidt number

\(s\) :

Suction/injection parameter

\(C_{f}\) :

Skin friction coefficient

\(Sh\) :

Sherwood number

\(C_{p}\) :

Specific heat at constant pressure

\(B_{0}\) :

Strength of magnetic field

\(\psi\) :

Stream function

\(T\) :

Temperature of the fluid

\(k\) :

Thermal conductivity

\(t\) :

Time

\(u,v\) :

Velocity components along x,y – directions

\(\mu\) :

Dynamic viscosity

\(\rho\) :

Density of the fluid

\(\theta (\eta )\) :

Dimensionless temperature

\(\phi (\eta )\) :

Dimensionless concentration

\(\omega\) :

Eigen-value parameter.

\(\sigma\) :

Electrical conductivity

\(\upsilon\) :

Kinematic viscosity

\(\psi\) :

Stream function

\(\eta\) :

Similarity variable

\(\lambda\) :

Stretching/shrinking parameter

\(\tau\) :

Time variable

\(w\) :

At wall

\(\infty\) :

At infinity

\(^{\prime}\) :

Differentiation with respect to the dimensionless similarity variable \(\eta\)

References

  1. Crane, L.J.: ‘Flow past a stretching plate’, Zeitschrift für Angew. Math. und Phys. ZAMP 21(4), 645–647 (1970)

    Google Scholar 

  2. Kumar, R.: Combined effects of variable magnetic field and porous medium on the flow of Mhd fluid due to exponentially shrinking sheet. Int. J. Math. Archieve 6(6), 218–226 (2015)

    Google Scholar 

  3. Hussain, S.M., Sharma, R., Seth, G.S., Mishra, M.R.: Thermal radiation impact on boundary layer dissipative flow of magneto-nanofluid over an exponentially stretching sheet. Int. J. Heat Technol. 36(4), 1163–1173 (2018)

    Article  Google Scholar 

  4. Sharma, R., Hussain, S.M., Raju, C.S.K., Seth, G.S., Chamkha, A.J.: Study of graphene Maxwell nanofluid flow past a linearly stretched sheet: a numerical and statistical approach. Chinese J. Phys. 68, 671–683 (2020)

    Article  MathSciNet  Google Scholar 

  5. Hussain, S.M., Jain, J., Seth, G.S., Rashidi, M.M.: Effect of thermal radiation on magneto-nanofluids free convective flow over an ac-celerated moving ramped temperature plate. Sci. Iran. 25(3), 1243–57 (2017)

    Google Scholar 

  6. Hussain, S.M., Sharma, R., Mishra, M.R., Alrashidy, S.S.: Hydromagnetic dissipative and radiative graphene maxwell nanofluid flow past a stretched sheet-numerical and statistical analysis. Mathematics 8(11), 2020 (1929)

    Google Scholar 

  7. Abbas, Z., Hasnain, J., Sajid, M.: Effects of Slip on MHD Flow of a Dusty Fluid over a Stretching Sheet through Porous Space. J. Eng. Thermophys. 28(1), 84–102 (2019)

    Article  Google Scholar 

  8. Petrović, J., Stamenković, Ž, Kocić, M.: MHD flow and heat transfer in porous medium with induced magnetic field effects. ANN. Fac. Eng. Hunedoara-Int. J. Eng. 16, 171–174 (2018)

    Google Scholar 

  9. Dey, D.: Hydromagnetic Oldroyd fluid flow past a flat surface with density and electrical conductivity stratification. Lat. Am. Appl. Res. 42(2), 41–45 (2017)

    Google Scholar 

  10. Dey, D.: Non-newtonian effects on hydromagnetic dusty stratified fluid flow through a porous medium with volume fraction. Proc. Nat. Acad. Sci. India Sect. A: Phys. Sci. 86(1), 47–56 (2016). https://doi.org/10.1007/s40010-015-0230-4

    Article  MathSciNet  MATH  Google Scholar 

  11. Bhukta, D., Dash, G.C., Mishra, S.R.: Heat and mass transfer on mhd flow of a viscoelastic fluid through porous media over a shrinking sheet. Int. Sch. Res. Not. 1–11, 2014 (2014)

    MATH  Google Scholar 

  12. Debnath, K., Dey, D., Borah, R.: Thermophoresis and diffusion thermo effects on shear thickenning and shear thining cases of fluid motion past a permeable surface. J. Mech. Continnua Math. Sci. 15(5), 68–81 (2020)

    Google Scholar 

  13. Hussain, S.M., Jain, J., Seth, G.S., Rashidi, M.M.: Free convective heat transfer with hall effects, heat absorption and chemical reaction over an accelerated moving plate in a rotating system. J. Magn. Magn. Mater. 422, 112–123 (2017)

    Article  Google Scholar 

  14. Makinde, O.D., Khan, W.A., Khan, Z.H.: Stagnation point flow of MHD chemically reacting nanofluid over a stretching convective surface with slip and radiative heat. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 231(4), 695–703 (2017). https://doi.org/10.1177/0954408916629506

    Article  Google Scholar 

  15. Das, S., Chakraborty, S., Makinde, O.D., Jana, R.N.: Entropy analysis of MHD variable thermal conductivity fluid flow past a convectively heated stretching cylinder. Defect Diffus. Forum 387, 244–259 (2018)

    Article  Google Scholar 

  16. Magyari, E., Keller, B.: Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. J. Phys. D. Appl. Phys. 32(5), 577–585 (1999)

    Article  Google Scholar 

  17. Elbashbeshy, E.M.A.: Heat transfer over an exponentially stretching continuous surface with suction. Arch. Mech. 53(6), 643–651 (2001)

    MATH  Google Scholar 

  18. Dey, D., Borah, R.: Dual solutions of boundary layer flow with heat and mass transfers over an exponentially shrinking cylinder: stability analysis. Lat. Am. Appl. Res. 50(4), 247–253 (2020)

    Google Scholar 

  19. Nayak, O.D., Mabood, M.K., Makinde, F.: Heat transfer and buoyancy-driven convective MHD flow of nanofluids impinging over a thin needle moving in a parallel stram influenced by Prandtl number. Heat Transf. - Asian Res. 42(2), 655–672 (2020)

    Article  Google Scholar 

  20. Rehman, O.D., Malik, K.U., Makinde, M.Y.: Parabolic curve fitting study subject to Joule heating in MHD thermally stratified mixed convection stagnation point flow of Eyring-Powell fluid induced by an inclined cylindrical surface. J. King Saud Univ. - Sci. 30, 440–449 (2018)

    Article  Google Scholar 

  21. Shampine, L., Kierzenka, J., Reichelt, M.: Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c. Tutor. Notes 75275, 1–27 (2000)

    Google Scholar 

  22. Dey, D., Hazarika, M.: Entropy generation of hydro-magnetic stagnation point flow of micropolar fluid with energy transfer under the effect of uniform suction/injection. Latin Am. Appl. Res. – Int. J. 50(3), 209–214 (2020). https://doi.org/10.52292/j.laar.2020.206

    Article  Google Scholar 

  23. Vaidya, H., Rajashekhar, C., Manjunatha, G., Prasad, K.V., Makinde, O.D., Vajravelu, K.: Heat and mass transfer analysis of MHD peristaltic flow through a complaint porous channel with variable thermal conductivity. Phys. Scr. 95, 4 (2020)

    Article  Google Scholar 

  24. Dey, D., Hazarika, M., Borah, R.: Entropy generation analysis of magnetized micropolar fluid streaming above an exponentially extending plane. Lat. Am. Appl. Res. 51(4), 255–260 (2021)

    Google Scholar 

  25. Merkin, J.H.: On dual solutions occurring in mixed convection in a porous medium. J. Eng. Math. 20(2), 171–179 (1986)

    Article  MathSciNet  Google Scholar 

  26. Dey, D., Borah, R., Mahanta, B.: Boundary layer flow and its dual solutions over a stretching cylinder: stability analysis. In: Hassanien, A.E., Bhattacharyya, S., Chakrabati, S., Bhattacharya, A., Dutta, S. (eds.) Emerging Technologies in Data Mining and Information Security: Proceedings of IEMIS 2020, Volume 1, pp. 27–38. Springer Singapore, Singapore (2021). https://doi.org/10.1007/978-981-15-9927-9_3

    Chapter  Google Scholar 

  27. Mishra, G.S., Hussain, M.R., Makinde, S.M., Seth, O.D.: Stability analysis and dual multiple solutions of a hydromagnetic dissipative flow over a stretching / shrinking sheet. Bulg. Chem. Commun. 52(2), 259–271 (2020)

    Google Scholar 

  28. Sarkar, G.M., Sahoo, B.: Dual solutions of magnetohydrodynamic boundary layer flow and a linear temporal stability analysis. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 234(6), 553–561 (2020). https://doi.org/10.1177/0954408920934220

    Article  Google Scholar 

  29. Sarkar, G.M., Sahoo, B.: Dual solutions of a magnetohydrodynamic stagnation point flow of a non-Newtonian fluid over a shrinking sheet and a linear temporal stability analysis. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 235(2), 527–535 (2021). https://doi.org/10.1177/0954408920971135

    Article  Google Scholar 

  30. Najib, N., Bachok, N., Arifin, N.M.: Stability of dual solutions in boundary layer flow and heat transfer over an exponentially shrinking cylinder. Indian J. Sci. Technol. 9, 48 (2017)

    Article  Google Scholar 

  31. Ghosh, S., Mukhopadhyay, S.: Flow and heat transfer of nanofluid over an exponentially shrinking porous sheet with heat and mass fluxes. Propuls. Power Res. 7(3), 268–275 (2018)

    Article  Google Scholar 

  32. Khashi’ie, N.S., Arifin, N.M., Pop, I., Wahid, N.S.: Flow and heat transfer of hybrid nanofluid over a permeable shrinking cylinder with Joule heating: A comparative analysis. Alexandria Eng. J. 59(3), 1787–1798 (2020). https://doi.org/10.1016/j.aej.2020.04.048

    Article  Google Scholar 

  33. Waini, I., Ishak, A., Pop, I.: Hiemenz flow over a shrinking sheet in a hybrid nanofluid. Results Phy. 19, 103351 (2020). https://doi.org/10.1016/j.rinp.2020.103351

    Article  Google Scholar 

  34. Harish Babu, D., Satya Narayana, P.V.: Influence of variable permeability and radiation absorption on heat and mass transfer in mhd micropolar flow over a vertical moving porous plate. ISRN Thermodyn 2013, 1–17 (2013). https://doi.org/10.1155/2013/953536

    Article  Google Scholar 

  35. Sastry, R.V.S.R.K.: Melting and radiation effects on mixed convection boundary layer viscous flow over a vertical plate in presence of homogeneous higher order chemical reaction. Frontiers in Heat and Mass Transfer,(2018). https://doi.org/10.5098/hmt.11.3

    Article  Google Scholar 

Download references

Funding

The authors have not received any fund for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupjyoti Borah.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, D., Makinde, O.D. & Borah, R. Analysis of Dual Solutions in MHD Fluid Flow with Heat and Mass Transfer Past an Exponentially Shrinking/Stretching Surface in a Porous Medium. Int. J. Appl. Comput. Math 8, 66 (2022). https://doi.org/10.1007/s40819-022-01268-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01268-7

Keywords

Navigation