Skip to main content
Log in

Nanoarray-Based Monolithic Adsorbers for SO2 Removal

  • Special Issue: 2019 CLEERS October 17 - 19, Ann Arbor, MI, USA
  • Published:
Emission Control Science and Technology Aims and scope Submit manuscript

Abstract

Nanoarray-based monolithic catalysts have been developed for various applications, including CO oxidation, hydrocarbon combustion, lean NOx trapping, and low-pressure CO2 hydrogenation. In this work, SO2 adsorption properties have been explored and evaluated on the cordierite honeycomb monoliths grown with zinc oxide nanoarray (ZnO), zinc oxide nanoarray washcoated by BaCO3 nanoparticles (ZnO/BaCO3), and manganese oxide nanowire array with cryptomelane structure (MnOx) at a temperature range from 50 to 425 °C. All samples show temperature-dependent SO2 adsorption behaviors. The adsorption results reveal the performance order: MnOx > ZnO/BaCO3 > ZnO, with ~ 90% SO2 adsorbed in MnOx at 425 °C. Washcoated BaCO3 contributes to the improvement of SO2 adsorption in ZnO nanoarray, and the best performance displayed in MnOx may be attributed to their high specific surface area. After regeneration, nanoarrays all exhibit good thermal stability during test-regeneration cycles. No additional phase is formed in regenerated ZnO nanoarrays (ZnO-R), while BaCO3 is converted to BaSO4 in the regenerated ZnO/BaCO3 nanoarrays (ZnO/BaCO3-R), and the sulfur species (possibly MnSO4) and Mn2O3 are found in regenerated MnOx nanoarrays (MnOx-R). It is noted that a small amount of sulfur species (possibly MnSO4) may promote the SO2 adsorption of MnOx-R at a lower temperature, while the formed Mn2O3 contributes to the deactivation of MnOx-R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Greenberg, N., Carel, R.S., Derazne, E., Bibi, H., Shpriz, M., Tzur, D., Portnov, B.A.: Different effects of long-term exposures to SO2 and NO2 air pollutants on asthma severity in young adults. J. Toxic. Environ. Health A. 79(8), 342–351 (2016)

    Article  Google Scholar 

  2. Kan, H., Wong, C.-M., Vichit-Vadakan, N., Qian, Z.: Short-term association between sulfur dioxide and daily mortality: the public health and air pollution in Asia (PAPA) study. Environ. Res. 110(3), 258–264 (2010)

    Article  Google Scholar 

  3. Weerasinghe, S.: A missing values imputation method for time series data: an efficient method to investigate the health effects of sulphur dioxide levels. Environmetrics. 21(2), 162–172 (2010)

    Google Scholar 

  4. Choi, J.-S., Partridge, W.P., Pihl, J.A., Daw, C.S.: Sulfur and temperature effects on the spatial distribution of reactions inside a lean NOx trap and resulting changes in global performance. Catal. Today. 136(1), 173–182 (2008)

    Article  Google Scholar 

  5. Mathieu, Y., Tzanis, L., Soulard, M., Patarin, J., Vierling, M., Molière, M.: Adsorption of SOx by oxide materials: a review. Fuel Process. Technol. 114, 81–100 (2013)

    Article  Google Scholar 

  6. Pineda, M., Palacios, J., Alonso, L., Garcıa, E., Moliner, R.: Performance of zinc oxide based sorbents for hot coal gas desulfurization in multicycle tests in a fixed-bed reactor. Fuel. 79(8), 885–895 (2000)

    Article  Google Scholar 

  7. Sasaoka, E., Hirano, S., Kasaoka, S., Sakata, Y.: Stability of zinc oxide high-temperature desulfurization sorbents for reduction. Energy Fuel. 8(3), 763–769 (1994)

    Article  Google Scholar 

  8. Siriwardane, R. V.; Cicero, D. C.; Jain, S.; Gupta, R. P.; Turk, B. S. Durable zinc oxide-based regenerable sorbents for desulfurization of syngas in a fixed-bed reactor; National Energy Technology Laboratory, Morgantown, WV; Research Triangle: 2002

  9. Prades, J., Cirera, A., Morante, J.: Ab initio calculations of NO2 and SO2 chemisorption onto non-polar ZnO surfaces. Sensors Actuators B Chem. 142(1), 179–184 (2009)

    Article  Google Scholar 

  10. Luo, S., Liu, J., Wu, Z.: Interaction of SO2 with ZnO nanoshapes: impact of surface polarity. J. Phys. Chem. C. (2019)

  11. Wu, C.-M., Baltrusaitis, J., Gillan, E.G., Grassian, V.H.: Sulfur dioxide adsorption on ZnO nanoparticles and nanorods. J. Phys. Chem. C. 115(20), 10164–10172 (2011)

    Article  Google Scholar 

  12. Wang, J., Liang, B., Parnas, R.: Manganese-based regenerable sorbents for high temperature H2S removal. Fuel. 107, 539–546 (2013)

    Article  Google Scholar 

  13. Wang, H. Q.; Ju, S. G.; Liu, L. P.; Zhao, X. W.; Mi, J. In The regeneration properties of manganese oxide sorbent under SO2 atmosphere, Materials Science Forum, Trans Tech Publ: 2016; pp 140–145

  14. Li, L., King, D.L.: High-capacity sulfur dioxide absorbents for diesel emissions control. Ind. Eng. Chem. Res. 44(1), 168–177 (2005)

    Article  Google Scholar 

  15. Li, L., King, D.L.: Cryptomelane as high-capacity sulfur dioxide absorbent for diesel emission control: a stability study. Ind. Eng. Chem. Res. 44(19), 7388–7397 (2005)

    Article  Google Scholar 

  16. Weng, J., Lu, X., Gao, P.X.: Nano-array integrated structured catalysts: a new paradigm upon conventional wash-coated monolithic catalysts? Catalysts. 7(9), 253 (2017)

    Article  Google Scholar 

  17. Elmer, T. H.. Ultra-low expansion ceramic articles. Google Patents: 1976

  18. Xiao, W., Guo, Y., Ren, Z., Wrobel, G., Ren, Z., Lu, T., Gao, P.-X.: Mechanical-agitation-assisted growth of large-scale and uniform ZnO nanorod arrays within 3D multichannel monolithic substrates. Cryst. Growth Des. 13(8), 3657–3664 (2013)

    Article  Google Scholar 

  19. Liu, Z., Wu, D., Ren, S., Chen, X., Qiu, M., Wu, X., Yang, C., Zeng, G., Sun, Y.: Solvent-free synthesis of c-axis oriented ZSM-5 crystals with enhanced methanol to gasoline catalytic activity. ChemCatChem. 8(21), 3317–3322 (2016)

    Article  Google Scholar 

  20. Wang, S., Wu, Y., Miao, R., Zhang, M., Lu, X., Zhang, B., Kinstler, A., Ren, Z., Guo, Y., Lu, T., Suib, S.L., Gao, P.X.: Scalable continuous flow synthesis of ZnO nanorod arrays in 3-D ceramic honeycomb substrates for low-temperature desulfurization. CrystEngComm. 19(34), 5128–5136 (2017)

    Article  Google Scholar 

  21. Thongtem, T., Tipcompor, N., Phuruangrat, A., Thongtem, S.: Characterization of SrCO3 and BaCO3 nanoparticles synthesized by sonochemical method. Mater. Lett. 64(4), 510–512 (2010)

    Article  Google Scholar 

  22. Koballa, T. E.; Dudukovic, M. In Sulfur dioxide adsorption on metal oxides supported on alumina, AIChE Symposium Series, 1977; pp 199–228

  23. Cheng, S., Søgaard, M., Han, L., Zhang, W., Chen, M., Kaiser, A., Hendriksen, P.V.: A novel CO2- and SO2-tolerant dual phase composite membrane for oxygen separation. Chem. Commun. 51(33), 7140–7143 (2015)

    Article  Google Scholar 

  24. Ostroff, A.G., Sanderson, R.T.: Thermal stability of some metal sulphates. J. Inorg. Nucl. Chem. 9(1), 45–50 (1959)

    Article  Google Scholar 

  25. Lietti, L., Forzatti, P., Nova, I., Tronconi, E.: NOx Storage reduction over Pt-Ba/γ-Al2O3 catalyst. J. Catal. 204(1), 175–191 (2001)

    Article  Google Scholar 

  26. Yang, L., Jiang, X., Yang, Z.-S., Jiang, W.-J.: Effect of MnSO4 on the removal of SO2 by manganese-modified activated coke. Ind. Eng. Chem. Res. 54(5), 1689–1696 (2015)

    Article  Google Scholar 

  27. Qu, Y.-F., Guo, J.-X., Chu, Y.-H., Sun, M.-C., Yin, H.-Q.: The influence of Mn species on the SO2 removal of Mn-based activated carbon catalysts. Appl. Surf. Sci. 282, 425–431 (2013)

    Article  Google Scholar 

Download references

Funding

This work was sponsored by the US DOE Building Technologies Office, with Antonio Bouza as a program manager, the US National Science Foundation, and the University of Connecticut START PPOC Fund. J. Weng was partially supported by the Thermo Fisher Scientific Graduate Fellowship. The microscopy studies were performed using the facilities in the UConn/Thermo Fisher Scientific Center for Advanced Microscopy and Materials Analysis (CAMMA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pu-Xian Gao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, J., Gao, PX., Gao, Z. et al. Nanoarray-Based Monolithic Adsorbers for SO2 Removal. Emiss. Control Sci. Technol. 6, 315–323 (2020). https://doi.org/10.1007/s40825-020-00161-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40825-020-00161-3

Keywords

Navigation