Skip to main content
Log in

An Alternative to the Recycling of Fe-Contaminated Al

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Iron is considered an unavoidable impurity in Al–Si alloys, since it is collected during melting and casting operations. This is particularly critical when scraped and recycled materials are used. Excessive iron can reduce the mechanical properties. This is explained by the formation of Fe-bearing intermetallic particles, since the alloy properties are deeply related to their type, size, and amount within the microstructure. The effects of Ni addition on the microstructure of impure Al–Si alloys have not been established so far. As such, the present investigation examines Fe- and Fe/Ni-containing Al–9 wt% Si alloys. Two directionally solidified (DS) alloys are investigated: the Al–9 wt% Si–0.5 wt% Fe (nonmodified) and Al–9 wt% Si–0.5 wt% Fe–0.5 wt% Ni (Ni-modified) alloys. The focus is to determine solidification conditions (i.e., cooling rate, TR; and growth rate, VL) as well as Fe- and Fe/Ni-containing Al–9Si alloys that will yield particular volume fractions, sizes and shapes of Fe-bearing intermetallics. Considering a certain limit of the dendritic microstructure scale (i.e., λ1 > 100 μm), it is shown that the ultimate tensile strength of the Al–9Si–Fe–Ni alloy is higher than that of the Al–9Si–Fe alloy and quite close to that of an Al–9Si alloy, that is, the beneficial effect of Ni addition on providing lower fraction and more compacted Fe-bearing intermetallics has counterbalanced the deleterious effect of the Fe contaminated aluminum on the tensile strength. The elongation-to-fracture, however, only approaches that of the Al–9Si alloy for the smallest λ1 values, which are associated with the highest solidification cooling rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Maung KN, Yoshida T, Liu G, Lwin CM, Muller DB, Hashimoto S (2017) Assessment of secondary aluminum reserves of nations. Resour Conserv Recycl 126:34–41

    Article  Google Scholar 

  2. Sverdrup HU, Ragnarsdottir K, Koca D (2015) Aluminium for the future: modelling the global production, market supply, demand, price and long term development of the global reserves. Resour Conserv Recycl 103:139–154

    Article  Google Scholar 

  3. Petrík J (2009) The application of Ni for improvement of Al–Si–Fe alloys. Mater Eng 16:29–32

    Google Scholar 

  4. Petrík J, Horvath M (2011) The iron correctors in Al–Si alloys. Int J Eng 9:401–405

    Google Scholar 

  5. Gaustad G, Olivetti E, Kirchain R (2012) Improving aluminum recycling: a survey of sorting and impurity removal technologies. Resour Conserv Recycl 58:79–87

    Article  Google Scholar 

  6. Kaufman JG, Rooy EL (2004) Aluminum alloy castings: properties, processes, and applications. ASM International, Materials Park

    Google Scholar 

  7. Zolotorevsk VS, Belov NA, Glazoff MV (2007) Casting aluminum alloys. Elsevier Ltd, Amsterdam

    Book  Google Scholar 

  8. Ji S, Yang W, Gao F, Watson D, Fan Z (2013) Effect of iron on the microstructure and mechanical property of Al–Mg–Si–Mn and Al–Mg–Si diecast alloys. Mater Sci Eng A 564:130–139

    Article  CAS  Google Scholar 

  9. Jorstad JL (1986) Understanding sludge. Die Cast Eng 30:30–36

    Google Scholar 

  10. Wang L, Makhlouf M, Apelian D (1995) Aluminium die casting alloys: alloy composition, microstructure, and properties-performance relationships. Int Mater Rev 40:221–238

    Article  CAS  Google Scholar 

  11. Grosselle F, Timelli G, Bonollo F, Molina R (2009) Correlation between microstructure and mechanical properties of Al–Si diecast engine blocks. Metall Sci Technol 27–2:2–10

    Google Scholar 

  12. Kasprzak W, Sahoo M, Sokolowski J, Yamagata H, Kurita H (2009) The effect of the melt temperature and the cooling rate on the microstructure of the Al–20% Si alloy used for monolithic engine blocks. Int J Metalcast 9:55–71

    Article  Google Scholar 

  13. Cruz KS, Meza ES, Fernandes FAP, Quaresma JMV, Casteletti LC, Garcia A (2010) Dendritic arm spacing affecting mechanical properties and wear behavior of Al–Sn and Al–Si alloys directionally solidified under unsteady-state conditions. Metall Mater Trans A 41:972–984

    Article  CAS  Google Scholar 

  14. Peres M, Siqueira C, Garcia A (2004) Macrostructural and microstructural development in Al–Si alloys directionally solidified under unsteady-state conditions. J Alloys Compd 381:168–181

    Article  CAS  Google Scholar 

  15. Rosa D, Spinelli JE, Garcia A (2006) Tertiary dendrite arm spacing during downward transient solidification of Al Cu and Al Si alloys. Mater Lett 60:1871–1874

    Article  CAS  Google Scholar 

  16. Dinnis CM, Taylor JA, Dahle AK (2006) Iron-related porosity in Al–Si–(Cu) foundry alloys. Mater Sci Eng A 425:286–296

    Article  CAS  Google Scholar 

  17. Lu L, Dahle AK (2005) Iron-rich intermetallic phases and their role in casting defect formation in hypoeutectic Al–Si alloys. Metall Mater Trans A 36A:819–835

    CAS  Google Scholar 

  18. Taylor JA (2012) Iron-containing intermetallic phases in Al–Si based casting alloys. Proc Math Sci 1:19–33

    CAS  Google Scholar 

  19. Couture A (1981) Iron in aluminum casting alloys—a literature survey. AFS Int Cast Met J 6:9–17

    Google Scholar 

  20. Wen KY, Hu W, Gottstein G (2003) Intermetallic compounds in thixoformed aluminium alloy A356. Mater Sci Technol 19:762–768

    Article  CAS  Google Scholar 

  21. Osório WR, Goulart PR, Santos GA, Neto CM, Garcia A (2006) Effect of Dendritic arm spacing on mechanical properties and corrosion resistance of Al 9 WtPct Si and Zn 27 WtPct Al alloys. Metall Mater Trans A 37A:2525–2538

    Article  Google Scholar 

  22. Reyes RV, Bello TS, Kakitani R, Costa TA, Garcia A, Cheung N, Spinelli JE (2017) Tensile properties and related microstructural aspects of hypereutectic Al–Si alloys directionally solidified under different melt superheats and transient heat flow conditions. Mater Sci Eng A 685:235–243

    Article  CAS  Google Scholar 

  23. Kattner UR (1990) Al–Fe (aluminum–iron), binary alloy phase diagrams. In: Massalski TB, II edn, vol 1, pp 147–149

  24. Okamoto H (2000) Phase Diagrams for binary alloys, desk handbook. ASM International, Materials Park

    Google Scholar 

  25. Taylor JA, Schaffer GB, Stjohn DH (1999) The role of iron in the formation of porosity in Al–Si–Cu-based casting alloys: part I. Initial experimental observations. Metall Mater Trans A 30A:1643–1650

    Article  CAS  Google Scholar 

  26. Taylor JA, Schaffer GB, Stjohn DH (1999) The role of iron in the formation of porosity in Al–Si–Cu-based casting alloys: part II. A phase-diagram approach. Metall Mater Trans A 30A:1651–1655

    Article  CAS  Google Scholar 

  27. Malavazi J, Baldan R, Couto AA (2015) Microstructure and mechanical behaviour of Al9Si alloy with different Fe contents. Mater Sci Technol 31:737–744

    Article  CAS  Google Scholar 

  28. Rana RS, Purohit R, Das S (2012) Reviews on the influences of alloying elements on the microstructure and mechanical properties of aluminum alloys and aluminum alloy composites. Int J Sci Res Publ 2:1–7

    Google Scholar 

  29. Baldan R, Malavazi J, Couto AA (2017) Microstructure and mechanical behavior of Al9Si0.8Fe alloy with different Mn contents. Mater Sci Technol 33:1192–1199

    Article  CAS  Google Scholar 

  30. Silva BL, Silva VCE, Garcia A, Spinelli JE (2017) Effects of solidification thermal parameters on microstructure and mechanical properties of Sn-Bi solder alloys. J Electron Mater 46:1754–1769

    Article  CAS  Google Scholar 

  31. Bertelli F, Freitas ES, Cheung N, Arenas MA, Conde A, Damborenea J, Garcia A (2017) Microstructure, tensile properties and wear resistance correlations on directionally solidified Al-Sn-(Cu;Si) alloys. J Alloys Compd 695:3621–3631

    Article  CAS  Google Scholar 

  32. Gunduz M, Çadirli E (2002) Directional solidification of aluminium-copper alloys. Mater Sci Eng A 327:167–185

    Article  Google Scholar 

  33. ImageJ (2018) Image processing and analysis in Java. http://rsbweb.nih.gov/ij/index.html/. Accessed 13 Dec 2017

  34. Çadirli E, Büyük U, Engin S, Kaya H (2017) Effect of silicon content on microstructure, mechanical and electrical properties of the directionally solidified Al-based quaternary alloys. J Alloys Compd 694:471–479

    Article  CAS  Google Scholar 

  35. Jackson KA, Hunt JD (1966) Lamellar and rod eutectic growth. Trans Metall Soc AIME 236:1129–1142

    CAS  Google Scholar 

  36. Hansen V, Hauback B, Sundberg M, Rømming C, Gjønnes J (1998) β-Al4. 5FeSi: a combined synchrotron powder diffraction, electron diffraction, high-resolution electron microscopy and single-crystal X-ray diffraction study of a faulted structure. Acta Crystallogr 54:351–357

    Article  Google Scholar 

  37. Igor C, Richter KW, Ipser H (2007) The Fe–Ni–Al phase diagram in the Al-rich (> 50 at.% Al) corner. Intermetallics 15:1416–1424

    Article  CAS  Google Scholar 

  38. Inorganic Crystal Structure Database (2015) Crystallographic information framework (CIF) files. https://icsd-fiz-karlsruhe-de.proxy01.dotlib.com.br/. Accessed 10 Oct 2015

  39. Sundaram K, Babu NH, Scamans GM, Eskin DG, Fan Z (2012) Solidification behaviour of an AA5754 Al alloy ingot cast with high impurity content. Int J Mater Res 103:1228–1234

    Article  CAS  Google Scholar 

  40. Brito CC, Reinhart G, Nguyen-Thi H, Mangelinck-Noël N, Cheung N, Spinelli JE, Garcia A (2015) High cooling rate cells, dendrites, microstructural spacings and microhardness in a directionally solidified Al–Mg–Si alloy. J Alloys Compd 636:145–149

    Article  CAS  Google Scholar 

  41. Brito CC, Vida T, Freitas E, Cheung N, Spinelli JE, Garcia A (2016) Cellular/dendritic arrays and intermetallic phases affecting corrosion and mechanical resistances of an Al–Mg–Si alloy. J Alloys Compd 673:220–230

    Article  CAS  Google Scholar 

  42. Hosch T, England LG, Napolitano RE (2009) Analysis of the high growth-rate transition in Al–Si eutectic solidification. J Mater Sci 44:4892–4899

    Article  CAS  Google Scholar 

  43. Islam RA, Chan YC, Jillek W, Islam S (2006) Comparative study of wetting behavior and mechanical properties (microhardness) of Sn–Zn and Sn–Pb solders. Microelectron J 37:705–713

    Article  CAS  Google Scholar 

  44. Gaustad G, Olivetti E, Kirchain R (2010) Design for recycling: evaluation and efficient alloy modification. J Ind Ecol 14:286–308

    Article  CAS  Google Scholar 

  45. Basak CB, Babu NH (2017) Influence of Cu on modifying the beta phase and enhancing the mechanical properties of recycled Al-Si-Fe cast alloys. Sci Rep 7:5779. https://doi.org/10.1038/s41598-017-05937-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to FAPESP (São Paulo Research Foundation, Brazil: Grants 2016/10596-6, 2015/11863-5, 2017/12741-6, 2017/16058-9) and CNPq—the Brazilian Research Council for their financial supports. The authors are also grateful to the Brazilian Nanotechnology National Laboratory—LNNano, CNPEM, Campinas, Brazil for their support on the XRD analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Spinelli.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

The contributing editor for this article was Brajendra Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canté, M.V., Lima, T.S., Brito, C. et al. An Alternative to the Recycling of Fe-Contaminated Al. J. Sustain. Metall. 4, 412–426 (2018). https://doi.org/10.1007/s40831-018-0188-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-018-0188-y

Keywords

Navigation