Skip to main content

Advertisement

Log in

Simulation-Based Exergy and LCA Analysis of Aluminum Recycling: Linking Predictive Physical Separation and Re-melting Process Models with Specific Alloy Production

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Recycling and process metallurgy are the main enablers of Circular Economy (CE). To assess the circularity of CE, a detailed understanding of the limits of the current recycling infrastructure is required. For this paper, a predictive physical separation model for Eddy Current Separator was developed using 3D particle-level detail acquired by Computed Tomography. The developed model was combined with re-melting and alloying models to create an aluminum recycling flowsheet in a simulation platform HSC Sim. Different simulation scenarios were considered, and the impact of the physical separation stage to resource efficiency was quantified by measuring the required additional resources to produce specific alloy types. The resource efficiency and environmental impacts were estimated through exergy analysis and Life Cycle Assessment based on the detailed physical and thermochemistry simulation models. The paper demonstrates how digitalization and exergy analysis allow more efficient use of resources in the sense of CE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Geissdoerfer M, Savaget P, Bocken NMP, Hultink EJ (2017) The circular economy—a new sustainability paradigm? J Clean Prod 143:757–768

    Article  Google Scholar 

  2. Reuter MA, van Schaik A, Gutzmer J, Bartie N, Abadías-Llamas A (2019) Challenges of the circular economy: a material, metallurgical, and product design perspective. Annu Rev Mater Res 49:253–274

    Article  CAS  Google Scholar 

  3. European Aluminium Association (2018) Environmental profile report: life-cycle inventory data for aluminium production and transformation processes in Europe. https://european-aluminium.eu/resource-hub/environmental-profile-report-2018/

  4. European Aluminium Association (2015) Recycling aluminium: a pathway to a sustainable economy, p. 3990. https://www.european-aluminium.eu/media/1712/ea_recycling-brochure-2016.pdf

  5. Xiao Y, Reuter MA, Boin U (2005) Aluminium recycling and environmental issues of salt slag treatment. J Environ Sci Heal Part A 40(10):1861–1875

    Article  CAS  Google Scholar 

  6. Biganzoli L, Gorla L, Nessi S, Grosso M (2012) Volatilisation and oxidation of aluminium scraps fed into incineration furnaces. Waste Manage 32(12):2266–2272

    Article  CAS  Google Scholar 

  7. Nakajima K, Takeda O, Miki T, Matsubae K, Nakamura S, Nagasaka T (2010) Thermodynamic analysis of contamination by alloying elements in aluminum recycling. Environ Sci Technol 44(14):5594–5600

    Article  CAS  Google Scholar 

  8. Gaustad G, Olivetti E, Kirchain R (2012) Improving aluminum recycling: a survey of sorting and impurity removal technologies. Resour Conserv Recycl 58:79–87

    Article  Google Scholar 

  9. Capuzzi S, Giulio T (2018) Preparation and melting of scrap in aluminum recycling: a review. Metals (Basel) 8(4):249

    Article  Google Scholar 

  10. Werheit P, Fricke-Begemann C, Gesing M, Noll R (2011) Fast single piece identification with a 3D scanning LIBS for aluminium cast and wrought alloys recycling. J Anal At Spectrom 26(11):2166–2174

    Article  CAS  Google Scholar 

  11. Barnabé P, Braibant L, Dislaire G, Leroy S, Pirard E (2018) Non-ferrous scrap metals classification by hyperspectral and multi-energy X-ray transmission imaging. 8th Sens Based Sort Control Proc, pp. 39–47

  12. Picón A (2012) Real-time hyperspectral processing for automatic nonferrous material sorting. J Electron Imaging 21(1):013018

    Article  Google Scholar 

  13. Candiani G, Picone N, Pompilio L, Pepe M, Colledani M (2017) Characterization of fine metal particles derived from shredded WEEE using a hyperspectral image system: preliminary results. Sensors (Switzerland) 17(5):1117

    Article  Google Scholar 

  14. Chang J, Olivetti E, Fjeldbo SK, Kirchain R (2015) Data mining toward increased use of aluminum dross. J Sustain Metall 1(1):53–64

    Article  Google Scholar 

  15. Li P, Dahmus J, Guldberg S, Riddervold HO, Kirchain R (2011) How much sorting is enough: identifying economic and scrap-reuse benefits of sorting technologies. J Ind Ecol 15(5):743–759

    Article  Google Scholar 

  16. Borrotti M, Pievatolo A, Critelli I, Degiorgi A, Colledani M (2016) A computer-aided methodology for the optimization of electrostatic separation processes in recycling. Appl Stoch Model Bus Ind 32(1):133–148

    Article  Google Scholar 

  17. Hiraki T, Miki T, Nakajima K, Matsubae K, Nakamura S, Nagasaka T (2014) Thermodynamic analysis for the refining ability of salt flux for aluminum recycling. Materials (Basel) 7(8):5543–5553

    Article  CAS  Google Scholar 

  18. Xiao Y, Reuter MA (2002) Recycling of distributed aluminium turning scrap. Miner Eng 15(11 Suppl. 1):963–970

    Article  CAS  Google Scholar 

  19. Zhou B, Yang Y, Reuter MA, Boin UMJ (2006) Modelling of aluminium scrap melting in a rotary furnace. Miner Eng 19(3):299–308

    Article  CAS  Google Scholar 

  20. Ayres RU, Ayres LW, Martínas K (1998) Exergy, waste accounting, and life-cycle analysis. Energy 23(5):355–363

    Article  CAS  Google Scholar 

  21. Finnveden G, Arushanyan Y, Brandão M (2016) Exergy as a measure of resource use in life cyclet assessment and other sustainability assessment tools. Resources 5(3):23

    Article  Google Scholar 

  22. Amini SH, Remmerswaal JAM, Castro MB, Reuter MA (2007) Quantifying the quality loss and resource efficiency of recycling by means of exergy analysis. J Clean Prod 15(10):907–913

    Article  Google Scholar 

  23. Castro MBG, Remmerswaal JAM, Reuter MA, Boin UJM (2004) A thermodynamic approach to the compatibility of materials combinations for recycling. Resour Conserv Recycl 43(1):1–19

    Article  Google Scholar 

  24. Abadías Llamas A et al (2019) Simulation-based exergy, thermo-economic and environmental footprint analysis of primary copper production. Miner. Eng. 131(2018):51–65

    Article  Google Scholar 

  25. Stotz PM, Niero M, Bey N, Paraskevas D (2017) Environmental screening of novel technologies to increase material circularity: a case study on aluminium cans. Resour Conserv Recycl 127:96–106

    Article  Google Scholar 

  26. Gatti JB, De Castilho-Queiroz G, Garcia EEC (2008) Recycling of aluminum can in terms of life cycle inventory (LCI). Int J Life Cycle Assess 13(3):219–225

    Article  Google Scholar 

  27. Soo VK, Peeters J, Paraskevas D, Compston P, Doolan M, Duflou JR (2018) Sustainable aluminium recycling of end-of-life products: a joining techniques perspective. J Clean Prod 178:119–132

    Article  Google Scholar 

  28. Niero M, Olsen SI (2016) Circular economy: to be or not to be in a closed product loop? A life cycle assessment of aluminium cans with inclusion of alloying elements. Resour Conserv Recycl 114:18–31

    Article  Google Scholar 

  29. Paraskevas D, Kellens K, Dewulf W, Duflou JR (2015) Environmental modelling of aluminium recycling: a life cycle assessment tool for sustainable metal management. J Clean Prod 105:357–370

    Article  CAS  Google Scholar 

  30. Reuter MA, van Schaik A, Gediga J (2015) Simulation-based design for resource efficiency of metal production and recycling systems: cases—copper production and recycling, e-waste (LED lamps) and nickel pig iron. Int J Life Cycle Assess 20(5):671–693

    Article  CAS  Google Scholar 

  31. Outotec, HSC Sim 9.9, (2019). https://www.outotec.com/products/digital-solutions/hsc-chemistry/. Accessed 27 Sept 2019

  32. Thinkstep, GaBi Software, (2019). https://www.thinkstep.com. Accessed 27 Sept 2019

  33. Pyral AG, (2019). https://www.pyralag.com/. Accessed 27 Sept 2019

  34. Steinert, (2019). https://steinertglobal.com/. Accessed 04 Oct 2019

  35. XRE-Tescan, (2019). https://xre.be/. Accessed 27 Sept 2019

  36. Schindelin J et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676

    Article  CAS  Google Scholar 

  37. Arganda-Carreras I et al (2017) Trainable Weka segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33(15):2424–2426

    Article  CAS  Google Scholar 

  38. FEI Company, Avizo 9.3. (2019). https://www.fei.com/software/avizo/?LangType=2052. Accessed 27 Sept 2019

  39. The MathWorks Inc (2019a) MATLAB and Statistics and Machine Learning Toolbox Release 2019a. The MathWorks Inc, Natick

    Google Scholar 

  40. Hannula J, Kern M, Luukkanen S, Roine A, van den Boogaart KG, Reuter MA (2018) Property-based modelling and simulation of mechanical separation processes using dynamic binning and neural networks. Miner Eng 126(June):52–63

    Article  CAS  Google Scholar 

  41. Llewellyn D, Hudd R (1998) Steels: metallurgy and applications. Elsevier, Amsterdam

    Google Scholar 

  42. Factsage 7.3, (2019). https://www.factsage.com/. Accessed 27 Sept 2019

  43. ISO, ISO 14040:2006 (2006) Environmental management—life cycle assessment—principles and framework.

  44. ISO, ISO 14044:2006 (2006) Environmental management—life cycle assessment—requirements and guidelines

  45. Valero A, Serra L, Uche J (2006) Fundamentals of exergy cost accounting and thermoeconomics. Part I: theory. J Energy Resour Technol Trans ASME 128(1):1–8

    Article  Google Scholar 

  46. Szargut J (1989) Chemical exergies of the elements. Appl Energy 32(4):269–286

    Article  CAS  Google Scholar 

  47. Castro MBG (2005) Design for resource efficiency—preserving the quality in the (automotive) resource cycles, Doctoral Thesis.

  48. Valero A, Usón S, Torres C, Stanek W (2017) Theory of Exergy Cost and Thermo-ecological Cost. In: Stanek W (ed) Thermodynamics for sustainable management of natural resources. Springer, Cham, pp 167–202

    Chapter  Google Scholar 

  49. Zheng J, Ruan J, Dong L, Zhang T, Huang M, Xu Z (2017) Hollow aluminum particle in eddy current separation of recovering waste toner cartridges. ACS Sustain Chem Eng 5(1):161–167

    Article  CAS  Google Scholar 

  50. Rem PC, Leest PA, van den Akker AJ (1997) A model for eddy current separation. Int J Miner Process 49(3–4):193–200

    Article  CAS  Google Scholar 

  51. Maraspin F, Bevilacqua P, Rem PC (2004) Modelling the throw of metals and nonmetals in eddy current separations. Int J Miner Process 73(1):1–11

    Article  CAS  Google Scholar 

Download references

Acknowledgements

PYRAL AG is acknowledged for providing the sample material. TU Bergakademie Freiberg is acknowledged for the use of its facilities and machinery for the separation tests with Eddy Current Separator. We also thank the valuable comments from the anonymous reviewers. The funding was provided by Helmholtz-Gemeinschaft (Grant no. 1022280014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hannula.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The contributing editor for this article was Hongmin Zhu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 36 kb)

Supplementary file2 (DOCX 683 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hannula, J., Godinho, J.R.A., Llamas, A.A. et al. Simulation-Based Exergy and LCA Analysis of Aluminum Recycling: Linking Predictive Physical Separation and Re-melting Process Models with Specific Alloy Production. J. Sustain. Metall. 6, 174–189 (2020). https://doi.org/10.1007/s40831-020-00267-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-020-00267-6

Keywords

Navigation