Skip to main content
Log in

Ternary AGa5S8 (A = K, Rb, Cs): Promising infrared nonlinear optical materials rationally realized by “one-for-multiple substitution” strategy

三元AGa5S8 (A = K, Rb, Cs): 通过“一替多取代”策略制备的红外非线性光学材料

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Commercially available infrared (IR) nonlinear optical (NLO) materials, such as diamond-like AgGaQ2 (Q = S, Se), display large NLO coefficients but relatively low laser-induced damage thresholds (LIDTs), which seriously hinder their widespread laser applications. Herein, the “one-for-multiple substitution” strategy, namely, [SZn46+ + 5Zn2+ ⇒ A+ + 5Ga3+] (A = K, Rb and Cs), is applied on the diamond-like zinc-blende ZnS, and affords three new polar ternary crystals AGa5S8 (A = K, Rb and Cs) through the solid-state method. These compounds inherit the diamond-like anionic backbone framework in ZnS where the NLO functional motifs GaS4 are arranged in a parallel manner. This characteristic accounts for the remarkable phase-matchable second-harmonic generation intensities (1.1–1.2 × AgGaS2). In addition, the inclusion of the highly electropositive A+ cations affords a band gap ranging from 3.10 to 3.37 eV, which facilitates the improvement of LIDT (9.3–12.4 × AgGaS2). To the best our knowledge, crystals AGa5S8 (A = K, Rb and Cs) are the first series of ternary A-inclusion chalcogenides with large second-harmonic generation responses (≥1.0 × AgGaS2) and wide band gaps (≥3.0 eV), fulfilling the rigorous requirements of outstanding IR NLO materials. In addition, the “one-for-multiple substitution” strategy presents the great significance of diamondlike structure evolution and provides a remarkable opportunity to achieve NLO materials.

摘要

目前, 商用的红外非线性光学晶体材料, 如具有类金刚石结构的硫属化合物AgGaQ2 (Q = S, Se), 具有强的非线性光学系数. 然而, 相对较低的抗激光损伤阈值制约了其在高能激光领域的应用. 以类金刚石结构的闪锌矿ZnS为模板, 我们通过“一替多取代”策略, 即[SZn46+ + 5Zn2+ ⇒ A+ + 5Ga3+] (A = K、 Rb和Cs), 采用固相合成方法, 获得了三元晶体AGa5S8 (A = K、 Rb和Cs). 极性结构的AGa5S8保持了类金刚石阴离子骨架框架, 非线性光学功能基元GaS4四面体以平行排列的方式堆积, 使其具有高的相位匹配倍频强度(1.1–1.2 × AgGaS2); 另外, 含有高正电性A+阳离子使其表现出3.10–3.37 eV的宽带隙, 进而提高抗激光损伤阈值(9.3–12.4 × AgGaS2). 晶体AGa5S8 (A = K、 Rb和Cs)是第一个具有大倍频响应(≥1.0 × AgGaS2)和宽带隙(≥3.0 eV)的三元含碱金属的硫属化合物, 满足了优秀红外非线性光学材料的严格要求. 此外, “一替多取代”策略在类金刚石结构演变中具有重要意义, 并为获得新非线性光学材料提供了良好的机遇.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mutailipu M, Poeppelmeier KR, Pan S. Borates: A rich source for optical materials. Chem Rev, 2021, 121: 1130–1202

    Article  CAS  Google Scholar 

  2. Abudurusuli A, Huang J, Wang P, et al. Li4MgGe2S7: The first alkali and alkaline-earth diamond-like infrared nonlinear optical material with exceptional large band gap. Angew Chem Int Ed, 2021, 60: 24131–24136

    Article  CAS  Google Scholar 

  3. Gao L, Huang J, Guo S, et al. Structure-property survey and computerassisted screening of mid-infrared nonlinear optical chalcohalides. Coord Chem Rev, 2020, 421: 213379

    Article  CAS  Google Scholar 

  4. Mutailipu M, Li F, Jin C, et al. Strong nonlinearity induced by coaxial alignment of polar chain and dense [BO3] units in CaZn2(BO3)2. Angew Chem Int Ed, 2022, 61: e202202096

    Article  CAS  Google Scholar 

  5. Xia M, Li F, Mutailipu M, et al. Discovery of first magnesium fluorooxoborate with stable fluorine terminated framework for deep-UV nonlinear optical application. Angew Chem Int Ed, 2021, 60: 14650–14656

    Article  CAS  Google Scholar 

  6. Gong P, Liang F, Kang L, et al. Mid-infrared nonlinear optical halides with diamond-like structures: A theoretical and experimental study. Chem Mater, 2022, 34: 5301–5310

    Article  CAS  Google Scholar 

  7. Li XH, Shi ZH, Yang M, et al. Sn7Br10S2: The first ternary halogen-rich chalcohalide exhibiting a chiral structure and pronounced nonlinear optical properties. Angew Chem Int Ed, 2022, 61: e202115871

    CAS  Google Scholar 

  8. Pan Y, Guo SP, Liu BW, et al. Second-order nonlinear optical crystals with mixed anions. Coord Chem Rev, 2018, 374: 464–496

    Article  CAS  Google Scholar 

  9. Chen X, Jo H, Ok KM. Lead mixed oxyhalides satisfying all fundamental requirements for high-performance mid-infrared nonlinear optical materials. Angew Chem Int Ed, 2020, 59: 7514–7520

    Article  CAS  Google Scholar 

  10. Dong X, Huang L, Zeng H, et al. High-performance sulfate optical materials exhibiting giant second harmonic generation and large birefringence. Angew Chem Int Ed, 2022, 61: e202116790

    Article  CAS  Google Scholar 

  11. Chen J, Chen H, Xu F, et al. Mg2In3Si2P7: A quaternary diamond-like phosphide infrared nonlinear optical material derived from ZnGeP2. J Am Chem Soc, 2021, 143: 10309–10316

    Article  CAS  Google Scholar 

  12. Li RA, Zhou Z, Lian YK, et al. A2SnS5: A structural incommensurate modulation exhibiting strong second-harmonic generation and a high laser-induced damage threshold (A = Ba, Sr). Angew Chem Int Ed, 2020, 59: 11861–11865

    Article  CAS  Google Scholar 

  13. Zhang Y, Bian Q, Wu H, et al. Designing a new infrared nonlinear optical material, β-BaGa2Se4 inspired by the phase transition of the BaB2O4 (BBO) crystal. Angew Chem Int Ed, 2022, 134: e202115374

    Google Scholar 

  14. Jiang XM, Deng S, Whangbo MH, et al. Material research from the viewpoint of functional motifs. Natl Sci Rev, 2022, 9

  15. Li MY, Li B, Lin H, et al. Sn2Ga2S5: A polar semiconductor with exceptional infrared nonlinear optical properties originating from the combined effect of mixed asymmetric building motifs. Chem Mater, 2019, 31: 6268–6275

    Article  CAS  Google Scholar 

  16. Xing W, Tang C, Wang N, et al. AXHg3P2S8 (A = Rb, Cs; X = Cl, Br): New excellent infrared nonlinear optical materials with mixed-anion chalcohalide groups of trigonal planar [HgS2X]3− and tetrahedral [HgS3X]5−. Adv Opt Mater, 2021, 9: 2100563

    Article  CAS  Google Scholar 

  17. Wu C, Jiang X, Lin L, et al. A congruent-melting mid-infrared nonlinear optical vanadate exhibiting strong second-harmonic generation. Angew Chem Int Ed, 2021, 60: 22447–22453

    Article  CAS  Google Scholar 

  18. Chen WF, Liu BW, Pei SM, et al. ASb5S8 (A = K, Rb, and Cs): Thermal switching of infrared nonlinear optical properties across the crystal/glass transformation. Chem Mater, 2021, 33: 3729–3735

    Article  CAS  Google Scholar 

  19. Nikogosyan DN. Nonlinear Optical Crystals: A Complete Survey, 1st ed. New York: Springer, 2005, 75–107

    Google Scholar 

  20. Bera TK, Song JH, Freeman AJ, et al. Soluble direct-band-gap semiconductors LiAsS2 and NaAsS2: Large electronic structure effects from weak As—S interactions and strong nonlinear optical response. Angew Chem Int Ed, 2008, 47: 7828–7832

    Article  CAS  Google Scholar 

  21. He J, Iyer AK, Waters MJ, et al. Giant non-resonant infrared second order nonlinearity in γ-NaAsSe2. Adv Opt Mater, 2021, 10: 2101729

    Article  Google Scholar 

  22. Chen H, Li YY, Li B, et al. Salt-inclusion chalcogenide [Ba4Cl2]-[ZnGa4S10]: Rational design of an IR nonlinear optical material with superior comprehensive performance derived from AgGaS2. Chem Mater, 2020, 32: 8012–8019

    Article  CAS  Google Scholar 

  23. Liu BW, Zeng HY, Jiang XM, et al. Phase matching achieved by bandgap widening in infrared nonlinear optical materials [ABa3Cl2]-[Ga5S10] (A= K, Rb, and Cs). CCS Chem, 2021, 3: 964–973

    Article  CAS  Google Scholar 

  24. Liang F, Kang L, Lin Z, et al. Analysis and prediction of mid-IR nonlinear optical metal sulfides with diamond-like structures. Coord Chem Rev, 2017, 333: 57–70

    Article  CAS  Google Scholar 

  25. Guo Y, Liang F, Li Z, et al. Li4HgSn2Se7: The first second-order nonlinear optical-active selenide in the I4-II-IV2-VI7 diamond-like family. Cryst Growth Des, 2019, 19: 5494–5497

    Article  CAS  Google Scholar 

  26. Zhang JH, Clark DJ, Brant JA, et al. α-Li2ZnGeS4: A wide-bandgap diamond-like semiconductor with excellent balance between laser-induced damage threshold and second harmonic generation response. Chem Mater, 2020, 32: 8947–8955

    Article  CAS  Google Scholar 

  27. Zhang JH, Stoyko SS, Craig AJ, et al. Phase matching, strong frequency doubling, and outstanding laser-induced damage threshold in the biaxial, quaternary diamond-like semiconductor Li4CdSn2S7. Chem Mater, 2020, 32: 10045–10054

    Article  CAS  Google Scholar 

  28. Li G, Chu Y, Zhou Z. From AgGaS2 to Li2ZnSiS4: Realizing impressive high laser damage threshold together with large second-harmonic generation response. Chem Mater, 2018, 30: 602–606

    Article  CAS  Google Scholar 

  29. Isaenko L, Yelisseyev A, Lobanov S, et al. Growth and properties of LiGaX2 (X = S, Se, Te) single crystals for nonlinear optical applications in the mid-IR. Cryst Res Technol, 2003, 38: 379–387

    Article  CAS  Google Scholar 

  30. Rigaku Oxford Diffraction, 2019, CrysAlisPro Software system, version v40.67a, Rigaku Corporation, Oxford, UK

    Google Scholar 

  31. Siemens. SHELXTL Version 5 Reference Manual. Siemens Energy &Automation Inc., Madison, WI, 1994

    Google Scholar 

  32. Korum G. Reflectance Spectroscopy. New York: Springer, 1969, 1–336

    Book  Google Scholar 

  33. Gonze X. Perturbation expansion of variational principles at arbitrary order. Phys Rev A, 1995, 52: 1086–1095

    Article  CAS  Google Scholar 

  34. Gonze X. Adiabatic density-functional perturbation theory. Phys Rev A, 1995, 52: 1096–1114

    Article  CAS  Google Scholar 

  35. Baroni S, de Gironcoli S, dal Corso A, et al. Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys, 2001, 73: 515–562

    Article  CAS  Google Scholar 

  36. Ghosez P, Gonze X, Godby RW. Long-wavelength behavior of the exchange-correlation kernel in the Kohn-Sham theory of periodic systems. Phys Rev B, 1997, 56: 12811–12817

    Article  CAS  Google Scholar 

  37. Yin W, Feng K, He R, et al. BaGa2MQ6 (M = Si, Ge; Q = S, Se): A new series of promising IR nonlinear optical materials. Dalton Trans, 2012, 41: 5653–5661

    Article  CAS  Google Scholar 

  38. Chen MC, Li LH, Chen YB, et al. In-phase alignments of asymmetric building units in Ln4GaSbS9 (Ln = Pr, Nd, Sm, Gd-Ho) and their strong nonlinear optical responses in middle IR. J Am Chem Soc, 2011, 133: 4617–4624

    Article  CAS  Google Scholar 

  39. Li YY, Liu PF, Wu LM. Ba6Zn7Ga2S16: A wide band gap sulfide with phase-matchable infrared NLO properties. Chem Mater, 2017, 29: 5259–5266

    Article  CAS  Google Scholar 

  40. Feng J, Hu CL, Li B, et al. LiGa2PS6 and LiCd3PS6: Molecular designs of two new mid-infrared nonlinear optical materials. Chem Mater, 2018, 30: 3901–3908

    Article  CAS  Google Scholar 

  41. Zou G, Ye N, Huang L, et al. Alkaline-alkaline earth fluoride carbonate crystals ABCO3F (A = K, Rb, Cs; B = Ca, Sr, Ba) as nonlinear optical materials. J Am Chem Soc, 2011, 133: 20001–20007

    Article  CAS  Google Scholar 

  42. Jamieson JC, DemarestJr. HH. A note on the compression of cubic ZnS. J Phys Chem Solids, 1980, 41: 963–964

    Article  CAS  Google Scholar 

  43. Wu K, Yang Z, Pan S. Na2Hg3M2S8 (M = Si, Ge, and Sn): New infrared nonlinear optical materials with strong second harmonic generation effects and high laser-damage thresholds. Chem Mater, 2016, 28: 2795–2801

    Article  CAS  Google Scholar 

  44. Liao JH, Marking GM, Hsu KF, et al. α- and β-A2Hg3M2S8 (A = K, Rb; M = Ge, Sn): Polar quaternary chalcogenides with strong nonlinear optical response. J Am Chem Soc, 2003, 125: 9484–9493

    Article  CAS  Google Scholar 

  45. Marking GA, Hanko JA, Kanatzidis MG. New quaternary thiostannates and thiogermanates A2Hg3M2S8 (A = Cs, Rb; M = Sn, Ge) through Molten A2Sx. Reversible glass formation in Cs2Hg3M2S8. Chem Mater, 1998, 10: 1191–1199

    Article  CAS  Google Scholar 

  46. Yang Y, Wu K, Wu X, et al. A new family of quaternary thiosilicates SrA2SiS4 (A = Li, Na, Cu) as promising infrared nonlinear optical crystals. J Mater Chem C, 2020, 8: 1762–1767

    Article  CAS  Google Scholar 

  47. Kurtz SK, Perry TT. A powder technique for the evaluation of nonlinear optical materials. J Appl Phys, 1968, 39: 3798–3813

    Article  CAS  Google Scholar 

  48. Li JN, Li XH, Yao WD, et al. New nonlinear optical-active AAgGa6S10 (A = K, Rb, Cs) featuring {[AgGa6S10]} framework and high laser damage threshold. Chem Commun, 2021, 57: 5175–5178

    Article  CAS  Google Scholar 

  49. Pei SM, Liu BW, Jiang XM, et al. Superior infrared nonlinear optical performance achieved by synergetic functional motif and vacancy site modulations. Chem Mater, 2021, 33: 8831–8837

    Article  CAS  Google Scholar 

  50. Liu BW, Jiang XM, Zeng HY, et al. [ABa2Cl][Ga4S8] (A = Rb, Cs): Wide-spectrum nonlinear optical materials obtained by polycation-substitution-induced nonlinear optical (NLO)-functional motif ordering. J Am Chem Soc, 2020, 142: 10641–10645

    Article  CAS  Google Scholar 

  51. Zhang MJ, Jiang XM, Zhou LJ, et al. Two phases of Ga2S3: Promising infrared second-order nonlinear optical materials with very high laser induced damage thresholds. J Mater Chem C, 2013, 1: 4754–4760

    Article  CAS  Google Scholar 

  52. Guo Y, Zhou Y, Lin X, et al. Growth and characterizations of BaGa4S7 crystal. Optical Mater, 2014, 36: 2007–2011

    Article  CAS  Google Scholar 

  53. Liu BW, Jiang XM, Li BX, et al. Li[LiCs2Cl][Ga3S6]: A nanoporous framework of GaS4 tetrahedra with excellent nonlinear optical performance. Angew Chem Int Ed, 2020, 59: 4856–4859

    Article  CAS  Google Scholar 

  54. Zhang G, Li Y, Jiang K, et al. A new mixed halide, Cs2HgI2Cl2: Molecular engineering for a new nonlinear optical material in the infrared region. J Am Chem Soc, 2012, 134: 14818–14822

    Article  CAS  Google Scholar 

  55. Bhar GC, Smith RC. Optical properties of II-IV-V2 and I-III-VI2 crystals with particular reference to transmission limits. Phys Stat Sol (a), 1972, 13: 157–168

    Article  CAS  Google Scholar 

  56. Isaenko LI, Yelisseyev AP. Recent studies of nonlinear chalcogenide crystals for the mid-IR. Semicond Sci Technol, 2016, 31: 123001

    Article  Google Scholar 

  57. Tyazhev A, Vedenyapin V, Marchev G, et al. Singly-resonant optical parametric oscillation based on the wide band-gap mid-IR nonlinear optical crystal LiGaS2. Optical Mater, 2013, 35: 1612–1615

    Article  CAS  Google Scholar 

  58. Fossier S, Salaün S, Mangin J, et al. Optical, vibrational, thermal, electrical, damage, and phase-matching properties of lithium thioin-date. J Opt Soc Am B, 2004, 21: 1981–2007

    Article  CAS  Google Scholar 

  59. Androulakis J, Peter SC, Li H, et al. Dimensional reduction: A design tool for new radiation detection materials. Adv Mater, 2011, 23: 4163–4167

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21827813, 21921001, 22175172, 22075283, and 92161125), the Youth Innovation Promotion Association of Chinese Academy of Sciences (2020303 and 2021300), and the Natural Science Foundation of Fujian Provinces, China (2020J01115).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Chen WF performed the experiments, data analyses, and paper writing; Jiang XM performed the theoretical analyses; Liu BW and Guo GC guided and supervised the experiments, and revised the paper. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Bin-Wen Liu  (刘彬文) or Guo-Cong Guo  (郭国聪).

Additional information

Conflict of interest The authors declare that they have no conflict of interest.

Supplementary information Supporting data are available in the online version of the paper.

Wen-Fa Chen received his BE degree from Beijing University of Chemical Technology in 2017 and ME degree in materials engineering from the University of Chinese Academy of Sciences in 2021. He is currently a PhD student and focuses on nonlinear optical materials at the University of Chinese Academy of Sciences.

Bin-Wen Liu received his BE degree from Hunan University in 2010 and PhD degree in inorganic chemistry from Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences in 2016. Since 2019, he has been working as an associate professor at Fujian Institute of Research on the Structure of Matter. His current research interests include solid-state inorganic chemistry, and nonlinear optical materials.

Guo-Cong Guo received his BS degree from Xiamen University in 1986 and PhD degree from The Chinese University of Hong Kong in 1999. Since 2000, he has been working as a full professor at Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. His current research interests include inorganic-organic hybrid photofunctional materials, infrared nonlinear optical materials, and catalytic materials.

Supporting Information

40843_2022_2181_MOESM1_ESM.pdf

Ternary AGa5S8 (A = K, Rb, Cs): Promising infrared nonlinear optical materials rationally realized by “one-for-multiple substitution” strategy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WF., Jiang, XM., Pei, SM. et al. Ternary AGa5S8 (A = K, Rb, Cs): Promising infrared nonlinear optical materials rationally realized by “one-for-multiple substitution” strategy. Sci. China Mater. 66, 740–747 (2023). https://doi.org/10.1007/s40843-022-2181-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2181-4

Keywords

Navigation