Skip to main content

Advertisement

Log in

Multi-track multi-layer friction stir additive manufacturing of AA6061-T6 alloy

  • Full Research Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

Friction stir additive manufacturing (FSAM) is a solid-state sheet-based metal additive manufacturing (MAM) process that utilizes the classical friction stir welding (FSW) process to join the layers. So far, FSAM has been explored for fabricating thin to thick metallic walls. However, to realize large-scale defect-free dense structures, FSAM demands multiple welding tracks in each layer with a suitable overlap. Therefore, this work investigates the effect of overlapping percentages (0%, 25%, 50%, and 75%) in joining two layers of AA6061-T6 alloy by a concave shouldered tool and a cylindrical taper pin. The multi-track FSAM strategy is incorporated to join the two layers with a raster pattern toolpath. The joined layer's cross-sectional micrographs showed the absence of the half-ellipse-shaped banded patterns and a high degree of plasticized material mixing with an increase in overlapping percentage. It has been noticed that the successive overlapping weld tracks act as a post-heat treatment process for pre-scanned tracks, leading to more heat exposure time and grain re-growth. High magnification images and energy dispersion spectroscopy (EDS) revealed the homogeneous distribution of secondary precipitates into the samples prepared by 50% overlap, resulting in relatively higher tensile strength and uniform hardness. As 50% overlap exhibited better mechanical and microstructural properties, it has been further implemented as a toolpath stepover to join multiple sheets of AA6061-T6 material to create a block. The outcomes showed a dense microstructure in the processed zones and good interlayer bonding with increased tensile strength (maximum UTS 258 MPa) and hardness (maximum value 102 HV0.1) along the building direction. Moreover, a spur gear has been realized by machining from the block created by multi-layered multi-track FSAM.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data related to any results in this article will be available upon request.

References

  1. Ngo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  Google Scholar 

  2. Fayazfar H, Salarian M, Rogalsky A, Sarker D, Russo P, Paserin V, Toyserkani E (2018) A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties. Mater Des 144:98–128. https://doi.org/10.1016/j.matdes.2018.02.018

    Article  Google Scholar 

  3. Javidani M, Arreguin-Zavala J, Danovitch J, Tian Y, Brochu M (2017) Additive manufacturing of AlSi10Mg alloy using direct energy deposition: microstructure and hardness characterization. J Therm Spray Technol 26(4):587–597. https://doi.org/10.1007/s11666-016-0495-4

    Article  Google Scholar 

  4. Yi S, Liu F, Zhang J, Xiong S (2004) Study of the key technologies of LOM for functional metal parts. J Mater Process Technol 150(1–2):175–181. https://doi.org/10.1016/j.jmatprotec.2004.01.035

    Article  Google Scholar 

  5. Liu HJ, Hou JC, Guo H (2013) Effect of welding speed on microstructure and mechanical properties of self-reacting friction stir welded 6061–T6 aluminum alloy. Mater Des 50:872–878. https://doi.org/10.1016/j.matdes.2013.03.105

    Article  Google Scholar 

  6. Vijayananth, S., Jayaseelan, V., & Kumar, N. M. High temperature superplasticity and its deformation mechanism of AA6063/SiCp. Case Studies in Thermal Engineering, 2019; 14, 100479. https://doi.org/10.1016/j.csite.2019.100479

  7. Chen, Z., Li, S., & Hihara, L. H. Microstructure, mechanical properties and corrosion of friction stir welded 6061 Aluminum Alloy. arXiv preprint arXiv:2015;1511.05507. https://doi.org/10.48550/arXiv.1511.05507

  8. Nezhadfar, P. D., Thompson, S., Saharan, A., Phan, N., & Shamsaei, N. Structural integrity of additively manufactured aluminum alloys: Effects of build orientation on microstructure, porosity, and fatigue behavior. Additive Manufacturing, 2021; 47, 102292. https://doi.org/10.1016/j.addma.2021.102292

  9. Olakanmi EO (2013) Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: Effect of processing conditions and powder properties. J Mater Process Technol 213(8):1387–1405. https://doi.org/10.1016/j.jmatprotec.2013.03.009

    Article  Google Scholar 

  10. Wang Z, Wu W, Qian G, Sun L, Li X, Correia JA (2019) In-situ SEM investigation on fatigue behaviors of additive manufactured Al-Si10-Mg alloy at elevated temperature. Eng Fract Mech 214:149–163. https://doi.org/10.1016/j.engfracmech.2019.03.040

    Article  Google Scholar 

  11. Tang M, Pistorius PC (2017) Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting. Int J Fatigue 94:192–201. https://doi.org/10.1016/j.ijfatigue.2016.06.002

    Article  Google Scholar 

  12. Hang, Z. Y., Jones, M. E., Brady, G. W., Griffiths, R. J., Garcia, D., Rauch, H. A., ... & Hardwick, N. Non-beam-based metal additive manufacturing enabled by additive friction stir deposition. Scripta Materialia, 2018; 153, 122–130. https://doi.org/10.1016/j.scriptamat.2018.03.025

  13. Tongne A, Desrayaud C, Jahazi M, Feulvarch E (2017) On material flow in friction stir welded Al alloys. J Mater Process Technol 239:284–296. https://doi.org/10.1016/j.jmatprotec.2016.08.030

    Article  Google Scholar 

  14. Mishra RS, Haridas RS, Agrawal P (2022) Friction stir-based additive manufacturing. Sci Technol Weld Joining 27(3):141–165. https://doi.org/10.1080/13621718.2022.2027663

    Article  Google Scholar 

  15. Rivera, O. G., Allison, P. G., Jordon, J. B., Rodriguez, O. L., Brewer, L. N., McClelland, Z., ... & Hardwick, N. Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing. Materials Science and Engineering: A, 2017; 694, 1–9. https://doi.org/10.1016/j.msea.2017.03.105

  16. Griffths RJ, Petersen DT, Garcia D, Yu HZ (2019) Additive friction stir-enabled solid-state additive manufacturing for the repair of 7075 aluminum alloy. Appl Sci 9:3486. https://doi.org/10.3390/app9173486

    Article  Google Scholar 

  17. Avery, D.Z., Phillips, B.J., Mason, C.J.T., Palermo, M., Williams, M.B., Cleek, C., Rodriguez, O.L., Allison, P.G., Jordon, J.B., Influence of grain refnement and microstructure on fatigue behavior for solid-state additively manufactured Al-ZnMg-Cu alloy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2020; https://doi.org/10.1007/s11661-020-05746-9

  18. Phillips, B.J., Avery, D.Z., Liu, T., Rodriguez, O.L., Mason, C.J.T., Jordon, J.B., Brewer, L. N., Allison, P.G., Microstructure-deformation relationship of additive friction stir-deposition Al–Mg–Si. Materialia 2019; 7. https://doi.org/10.1016/J.MTLA.2019.100387

  19. Jordon, J.B., Allison, P.G., Phillips, B.J., Avery, D.Z., Kinser, R.P., Brewer, L.N., Cox, C., Doherty, K., Direct recycling of machine chips through a novel solid-state additive manufacturing process. Mater. Des. 2020; 193, 108850. https://doi.org/10.1016/j.matdes.2020.108850

  20. Agrawal, P., Haridas, R. S., Yadav, S., Thapliyal, S., Gaddam, S., Verma, R., & Mishra, R. S. Processing-structure-property correlation in additive friction stir deposited Ti-6Al-4V alloy from recycled metal chips. Additive Manufacturing, 2021; 47, 102259. https://doi.org/10.1016/j.addma.2021.102259

  21. Palanivel S, Sidhar H, Mishra RS (2015) Friction stir additive manufacturing: route to high structural performance. Jom 67(3):616–621. https://doi.org/10.1007/s11837-014-1271-x

    Article  Google Scholar 

  22. Yuqing M, Liming K, Chunping H, Fencheng L, Qiang L (2016) Formation characteristic, microstructure, and mechanical performances of aluminum-based components by friction stir additive manufacturing. The International Journal of Advanced Manufacturing Technology 83(9–12):1637–1647. https://doi.org/10.1007/s00170-015-7695-9

    Article  Google Scholar 

  23. He, C., Li, Y., Zhang, Z., Wei, J., & Zhao, X. Investigation on microstructural evolution and property variation along building direction in friction stir additive manufactured Al–Zn–Mg alloy. Materials Science and Engineering: 2020; A, 777, 139035. https://doi.org/10.1016/j.msea.2020.139035

  24. Zhang, Z., Tan, Z. J., Li, J. Y., Zu, Y. F., Liu, W. W., & Sha, J. J. (2019). Experimental and numerical studies of re-stirring and re-heating effects on mechanical properties in friction stir additive manufacturing. The International Journal of Advanced Manufacturing Technology, 2019; 104(1–4), 767–784. https://doi.org/10.1007/s00170-019-03917-6

  25. Palanivel S, Nelaturu P, Glass B, Mishra RS (2015) Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy. Mater Des 65:934–952. https://doi.org/10.1016/j.matdes.2014.09.082

    Article  Google Scholar 

  26. Zhao Z, Yang X, Li S, Li D (2019) Interfacial bonding features of friction stir additive manufactured build for 2195–T8 aluminum-lithium alloy. J Manuf Process 38:396–410. https://doi.org/10.1016/j.jmapro.2019.01.042

    Article  Google Scholar 

  27. Aktarer, S. M., Sekban, D. M., Saray, O., Kucukomeroglu, T., Ma, Z. Y., & Purcek, G. Effect of two-pass friction stir processing on the microstructure and mechanical properties of as-cast binary Al–12Si alloy. Materials Science and Engineering: 2015; A, 636, 311–319. https://doi.org/10.1016/j.msea.2015.03.111

  28. Nazari, M., Eskandari, H., & Khodabakhshi, F. Production and characterization of an advanced AA6061-Graphene-TiB2 hybrid surface nanocomposite by multi-pass friction stir processing. Surface and Coatings Technology, 2019; 377, 124914. https://doi.org/10.1016/j.surfcoat.2019.124914

  29. Derazkola, H. A., Khodabakhshi, F., & Simchi, A. Evaluation of a polymer-steel laminated sheet composite structure produced by friction stir additive manufacturing (FSAM) technology. 2020; Polymer Testing, 90, 106690. https://doi.org/10.1016/j.polymertesting.2020.106690

  30. He C, Li Y, Wei J, Zhang Z, Tian N, Qin G, Zhao X (2022) Enhancing the mechanical performance of Al–Zn–Mg alloy builds fabricated via underwater friction stir additive manufacturing and post-processing aging. J Mater Sci Technol 108:26–36. https://doi.org/10.1016/j.jmst.2021.08.050

    Article  Google Scholar 

  31. Liu F, Zhang Y, Dong P (2022) Large area friction stir additive manufacturing of intermetallic-free aluminum-steel bimetallic components through interfacial amorphization. J Manuf Process 73:725–735. https://doi.org/10.1016/j.jmapro.2021.11.042

    Article  Google Scholar 

  32. Zou S, Ma S, Liu C, Chen C, Ma L, Lu J, Guo J (2017) Multi-track friction stir lap welding of 2024 aluminum alloy: processing, microstructure and mechanical properties. Metals 7(1):1. https://doi.org/10.3390/met7010001

    Article  Google Scholar 

  33. Zhao, Y., Luo, Y., Lu, Y., He, Y., Guo, X., Wang, S., ... & Wang, Z. Effect of welding parameters on the microstructures and mechanical properties of double-pass aluminum/magnesium dissimilar metal friction stir lap welding joint. Materials Today Communications, 2021; 26, 102132. https://doi.org/10.1016/j.mtcomm.2021.102132

  34. Al-Fadhalah KJ, Almazrouee AI, Aloraier AS (2014) Microstructure and mechanical properties of multi-pass friction stir processed aluminum alloy 6063. Mater Des 53:550–560. https://doi.org/10.1016/j.matdes.2013.07.062

    Article  Google Scholar 

  35. Leitao C, Arruti E, Aldanondo E, Rodrigues DM (2016) Aluminium-steel lap joining by multipass friction stir welding. Mater Des 106:153–160. https://doi.org/10.1016/j.matdes.2016.05.101

    Article  Google Scholar 

  36. Kumar, K. S. V. K., & Kailas, S. V. The role of friction stir welding tool on material flow and weld formation. Materials Science and Engineering: 2008; A, 485(1–2), 367–374. https://doi.org/10.1016/j.msea.2007.08.013

  37. Gratecap F, Girard M, Marya S, Racineux G (2012) Exploring material flow in friction stir welding: tool eccentricity and formation of banded structures. IntJ Mater Form 5(2):99–107. https://doi.org/10.1007/s12289-010-1008-5

    Article  Google Scholar 

  38. Geyer, M., Vidal, V., Pottier, T., Boher, C., & Rézaï-Aria, F. Investigations on the material flow and the role of the resulting hooks on the mechanical behaviour of dissimilar friction stir welded Al2024-T3 to Ti-6Al-4V overlap joints. Journal of Materials Processing Technology, 2021; 292, 117057. https://doi.org/10.1016/j.jmatprotec.2021.117057

  39. Zhou N, Song D, Qi W, Li X, Zou J, Attallah MM (2018) Influence of the kissing bond on the mechanical properties and fracture behaviour of AA5083-H112 friction stir welds. Mater Sci Eng, A 719:12–20. https://doi.org/10.1016/j.msea.2018.02.011

    Article  Google Scholar 

  40. Pabandi HK, Jashnani HR, Paidar M (2018) Effect of precipitation hardening heat treatment on mechanical and microstructure features of dissimilar friction stir welded AA2024-T6 and AA6061-T6 alloys. J Manuf Process 31:214–220. https://doi.org/10.1016/j.jmapro.2017.11.019

    Article  Google Scholar 

  41. Jayaseelan V, Jayabalakrishnan D, Muthuramalingam T, Francis Xavier J (2022) Impact of the novel square wave tool path pattern on AA6061-T6 friction stir welding. Mater Manuf Processes 37(8):886–895. https://doi.org/10.1080/10426914.2021.1973028

    Article  Google Scholar 

  42. Banik, A., Saha, A., Barma, J. D., Acharya, U., & Saha, S. C. Determination of best tool geometry for friction stir welding of AA 6061-T6 using hybrid PCA-TOPSIS optimization method. Measurement, 2021; 173, 108573. https://doi.org/10.1016/j.measurement.2020.108573

  43. Kalinenko, A., Kim, K., Vysotskiy, I., Zuiko, I., Malopheyev, S., Mironov, S., & Kaibyshev, R. Microstructure-strength relationship in friction-stir welded 6061-T6 aluminum alloy. Materials Science and Engineering:2020; A793, 139858. https://doi.org/10.1016/j.msea.2020.139858

  44. Banik A, Deb Barma J, Saha SC (2020) Effect of threaded pin tool for friction stir welding of AA6061-T6 at varying traverse speeds: torque and force analysis. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 44:749–764. https://doi.org/10.1007/s40997-019-00289-w

    Article  Google Scholar 

  45. Nami H, Adgi H, Sharifitabar M, Shamabadi H (2011) Microstructure and mechanical properties of friction stir welded Al/Mg2Si metal matrix cast composite. Mater Des 32(2):976–983. https://doi.org/10.1016/j.matdes.2010.07.008

    Article  Google Scholar 

  46. Hakem M, Lebaili S, Mathieu S, Miroud D, Lebaili A, Cheniti B (2019) Effect of microstructure and precipitation phenomena on the mechanical behavior of AA6061-T6 aluminum alloy weld. The International Journal of Advanced Manufacturing Technology 102(9):2907–2918. https://doi.org/10.1007/s00170-019-03401-1

    Article  Google Scholar 

  47. Moharami, A., Razaghian, A., Babaei, B., Ojo, O. O., & Šlapáková, M. Role of Mg2Si particles on mechanical, wear, and corrosion behaviors of friction stir welding of AA6061-T6 and Al-Mg2Si composite. Journal of Composite Materials, 2020; 54(26), 4035–4057. https://doi.org/10.1177/2F0021998320925528

  48. Maji P, Nath RK, Karmakar R, Paul P, Meitei RB, Ghosh SK (2021) Effect of post processing heat treatment on friction stir welded/processed aluminum based alloys and composites. CIRP J Manuf Sci Technol 35:96–105. https://doi.org/10.1016/j.cirpj.2021.05.014

    Article  Google Scholar 

  49. Maisonnette D, Suery M, Nelias D, Chaudet P, Epicier T (2011) Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminium alloy. Mater Sci Eng, A 528(6):2718–2724. https://doi.org/10.1016/j.msea.2010.12.011

    Article  Google Scholar 

  50. Sato YS, Park SHC, Kokawa H (2001) Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys. Metall and Mater Trans A 32(12):3033–3042. https://doi.org/10.1007/s11661-001-0178-7

    Article  Google Scholar 

  51. Rajakumar S, Muralidharan C, Balasubramanian V (2011) Predicting tensile strength, hardness and corrosion rate of friction stir welded AA6061-T6 aluminium alloy joints. Mater Des 32(5):2878–2890. https://doi.org/10.1016/j.matdes.2010.12.025

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Technology Innovation Hub (TIH), IIT Guwahati to provide experimental facilities. We also acknowledge Department of Science and Technology (DST), New Delhi, India, for financial support for project No. SR/FST/ET-II/2017/111 (C) under Fund for Improvement of S&T Infrastructure in Universities and Higher Educational Institutions (FIST) Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajan Kapil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Medhi, T., Kapil, S. et al. Multi-track multi-layer friction stir additive manufacturing of AA6061-T6 alloy. Prog Addit Manuf (2023). https://doi.org/10.1007/s40964-023-00485-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40964-023-00485-w

Keywords

Navigation