Skip to main content
Log in

Theory of Sonochemistry

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Sonochemistry refers to ultrasound-initiated chemical processes in liquids. The interaction between bubbles and sound energy in liquids results in acoustic cavitation. This review presents the fundamental aspects of acoustic cavitation and theoretical aspects behind sonochemistry such as dynamics of bubble oscillation, the rectified diffusion process that is responsible for the growth of cavitation bubbles, near adiabatic collapse of cavitation bubbles resulting in extreme reaction conditions and several chemical species generated within collapsing bubbles that are responsible for various redox reactions. Specifically, a detailed discussion on single bubble sonochemistry is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ashokkumar M, Mason TJ (2007) Sonochemistry. In: Kirk-Othmer encyclopedia of chemical technology. Wiley, New York. doi:10.1002/0471238961.1915141519211912.a01.pub2

  2. Duckhouse H, Mason T, Phull S, Lorimer J (2004) The effect of sonication on microbial disinfection using hypochlorite. Ultrason Sonochem 11:173–176

    Article  CAS  Google Scholar 

  3. Ferrara K, Pollard R, Borden M (2007) Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Biomed Eng 9:415–447

    CAS  Google Scholar 

  4. Thornycroft JI, Barnaby SW (1895) Torpedo-boat destroyers. In: Minutes of the proceedings of the Institution of Civil Engineers, Thomas Telford-ICE Virtual Library, pp 51–69

  5. Rayleigh L (1917) VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. Lond Edinb Dubl Phil Mag 34:94–98

    Article  Google Scholar 

  6. Brohult S (1937) Splitting of the haemocyanin molecule by ultrasonic waves. Nature 140:805

    Article  CAS  Google Scholar 

  7. Frenzel H, Schultes HF (1935) Luminescenz im Ultraschallbeschickten Wasser. Z Phys Chem 27:421

    Google Scholar 

  8. Weiss J (1944) Radiochemistry of aqueous solutions. Nature 153:48–50

    Article  Google Scholar 

  9. Parke A, Taylor D (1956) The chemical action of ultrasonic waves. J Chem Phys (Resumed) 1956:4442–4450. doi:10.1039/JR9560004442

  10. Schulz R, Henglein A (1953) Notizen: Über den Nachweis von freien Radikalen, die unter dem Einfluß von Ultraschallwellen gebildet werden, mit Hilfe von Radikal-Kettenpolymerisation und Diphenyl-pikryl-hydrazyl. Zeitschrift für Naturforschung B 8:160–161

    Article  Google Scholar 

  11. Noltingk BE, Neppiras EA (1950) Cavitation produced by ultrasonics. Proc Phys Soc Sect B 63:674

    Article  Google Scholar 

  12. Makino K, Mossoba MM, Riesz P (1983) Chemical effects of ultrasound on aqueous solutions. Formation of hydroxyl radicals and hydrogen atoms. J Phys Chem 87:1369–1377

    Article  CAS  Google Scholar 

  13. Henglein A (1987) Sonochemistry: historical developments and modern aspects. Ultrasonics 25:6–16

    Article  CAS  Google Scholar 

  14. Leighton T (2012) The acoustic bubble. Academic, San Diego

    Google Scholar 

  15. Lorimer JP, Mason TJ (1987) Sonochemistry. Part 1—the physical aspects. Chem Soc Rev 16:239–274

    Article  CAS  Google Scholar 

  16. Mason T, Paniwnyk L, Lorimer J (1996) The uses of ultrasound in food technology. Ultrason Sonochem 3:S253–S256

    Article  CAS  Google Scholar 

  17. Mason TJ, Lorimer JP (1989) An introduction to sonochemistry. Endeavour 13:123–128

    Article  CAS  Google Scholar 

  18. Leong T, Wu S, Kentish S, Ashokkumar M (2010) Growth of bubbles by rectified diffusion in aqueous surfactant solutions. J Phys Chem C 114:20141–20145

    Article  CAS  Google Scholar 

  19. Ashokkumar M (2016) Ultrasonic synthesis of functional materials. In: SpringerBriefs in green chemistry for sustainability. Springer, Cham, pp 17–40

  20. Crum LA (1982) Nucleation and stabilization of microbubbles in liquids. Appl Sci Res 38:101–115

    Article  CAS  Google Scholar 

  21. Ashokkumar M (2010) Theoretical and experimental sonochemistry involving inorganic systems. Springer, Dordrecht

  22. Yount DE (1979) Skins of varying permeability: a stabilization mechanism for gas cavitation nuclei. J Acoust Soc Am 65:1429–1439

    Article  Google Scholar 

  23. Lim M, Ashokkumar M, Son Y (2014) The effects of liquid height/volume, initial concentration of reactant and acoustic power on sonochemical oxidation. Ultrason Sonochem 21:1988–1993

    Article  CAS  Google Scholar 

  24. Crum L (1984) Acoustic cavitation series: part five rectified diffusion. Ultrasonics 22:215–223

    Article  CAS  Google Scholar 

  25. Yasui K, Tuziuti T, Kanematsu W, Kato K (2016) Dynamic equilibrium model for a bulk nanobubble and a microbubble partly covered with hydrophobic material. Langmuir. doi:10.1021/acs.langmuir.5b04703

  26. Yasui K (2002) Influence of ultrasonic frequency on multibubble sonoluminescence. J Acoust Soc Am 112:1405–1413

    Article  CAS  Google Scholar 

  27. Bremond N, Arora M, Dammer SM, Lohse D (2006) Interaction of cavitation bubbles on a wall. Phys Fluids 18:121505

    Article  CAS  Google Scholar 

  28. Yount D, Gillary E, Hoffman D (1984) A microscopic investigation of bubble formation nuclei. J Acoust Soc Am 76:1511–1521

    Article  Google Scholar 

  29. Calvisi ML, Lindau O, Blake JR, Szeri AJ (2007) Shape stability and violent collapse of microbubbles in acoustic traveling waves. Phys Fluids 19:047101

    Article  CAS  Google Scholar 

  30. Wang W, Chen W, Lu M, Wei R (2003) Bubble oscillations driven by aspherical ultrasound in liquid. J Acoust Soc Am 114:1898–1904

    Article  CAS  Google Scholar 

  31. Plesset M (1949) The dynamics of cavitation bubbles. J Appl Mech 16:277–282

    Google Scholar 

  32. Poritsky P (1952) The collapse or growth of a spherical bubble or cavity in a viscous fluid. In: Proceedings of the 1st US National Congress in Applied Mathematics, p 813

  33. Tomita Y, Shima A (1986) Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J Fluid Mech 169:535–564

    Article  CAS  Google Scholar 

  34. Yasui K (1998) Effect of non-equilibrium evaporation and condensation on bubble dynamics near the sonoluminescence threshold. Ultrasonics 36:575–580

    Article  CAS  Google Scholar 

  35. Grieser F, Ashokkumar M (2006) Sonochemical synthesis of inorganic and organic colloids. In: Caruso F (ed) Colloids and colloid assemblies: synthesis, modification, organization and utilization of colloid particles. Wiley-VCH, Weinheim, pp 120–149

  36. Hsieh DY, Plesset MS (1961) Theory of rectified diffusion of mass into gas bubbles. J Acoust Soc Am 33:206–215

    Article  Google Scholar 

  37. Eller A, Flynn H (1965) Rectified diffusion during nonlinear pulsations of cavitation bubbles. J Acoust Soc Am 37:493–503

    Article  Google Scholar 

  38. Fyrillas MM, Szeri AJ (1996) Surfactant dynamics and rectified diffusion of microbubbles. J Fluid Mech 311:361–378

    Article  CAS  Google Scholar 

  39. Lee J, Kentish S, Ashokkumar M (2005) Effect of surfactants on the rate of growth of an air bubble by rectified diffusion. J Phys Chem B 109:14595–14598

    Article  CAS  Google Scholar 

  40. Vinodgopal K, He Y, Ashokkumar M, Grieser F (2006) Sonochemically prepared platinum-ruthenium bimetallic nanoparticles. J Phys Chem B 110:3849–3852

    Article  CAS  Google Scholar 

  41. Anandan S, Grieser F, Ashokkumar M (2008) Sonochemical synthesis of AuAg core shell bimetallic nanoparticles. J Phys Chem C 112:15102–15105

    Article  CAS  Google Scholar 

  42. Kumar PSS, Manivel A, Anandan S, Zhou M, Grieser F, Ashokkumar M (2010) Sonochemical synthesis and characterization of gold–ruthenium bimetallic nanoparticles. Colloids Surf A Physicochem Eng Asp 356:140–144

    Article  CAS  Google Scholar 

  43. Lee J, Ashokkumar M, Kentish S, Grieser F (2005) Determination of the size distribution of sonoluminescence bubbles in a pulsed acoustic field. J Am Chem Soc 127:16810–16811

    Article  CAS  Google Scholar 

  44. Brotchie A, Grieser F, Ashokkumar M (2009) Effect of power and frequency on bubble-size distributions in acoustic cavitation. Phys Rev Lett 102:084302

    Article  CAS  Google Scholar 

  45. Burdin F, Tsochatzidis N, Guiraud P, Wilhelm A, Delmas H (1999) Characterisation of the acoustic cavitation cloud by two laser techniques. Ultrason Sonochem 6:43–51

    Article  CAS  Google Scholar 

  46. Chen W-S, Matula TJ, Crum LA (2002) The disappearance of ultrasound contrast bubbles: observations of bubble dissolution and cavitation nucleation. Ultrasound Med Biol 28:793–803

    Article  Google Scholar 

  47. Tsochatzidis N, Guiraud P, Wilhelm A, Delmas H (2001) Determination of velocity, size and concentration of ultrasonic cavitation bubbles by the phase-Doppler technique. Chem Eng Sci 56:1831–1840

    Article  CAS  Google Scholar 

  48. Yasui K, Tuziuti T, Kozuka T, Towata A, Iida Y (2007) Relationship between the bubble temperature and main oxidant created inside an air bubble under ultrasound. J Chem Phys 127:154502

    Article  CAS  Google Scholar 

  49. Merouani S, Hamdaoui O, Rezgui Y, Guemini M (2014) Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles. Ultrason Sonochem 21:53–59

    Article  CAS  Google Scholar 

  50. Mišík V, Miyoshi N, Riesz P (1995) EPR spin-trapping study of the sonolysis of H2O/D2O mixtures: probing the temperatures of cavitation regions. J Phys Chem 99:3605–3611

    Article  Google Scholar 

  51. Suslick KS, Hammerton DA, Cline RE (1986) Sonochemical hot spot. J Am Chem Soc 108:5641–5642

    Article  CAS  Google Scholar 

  52. Hart EJ, Fischer C-H, Henglein A (1990) Sonolysis of hydrocarbons in aqueous solution. Int J Radiat Appl Instrum C Radiat Phys Chem 36:511–516

    CAS  Google Scholar 

  53. Tauber A, Mark G, Schuchmann H-P, Sonntag C (1999) Sonolysis of tert-butyl alcohol in aqueous solution. J Chem Soc Perkin Trans 2:1129–1136

    Article  Google Scholar 

  54. Rae J, Ashokkumar M, Eulaerts O, von Sonntag C, Reisse J, Grieser F (2005) Estimation of ultrasound induced cavitation bubble temperatures in aqueous solutions. Ultrason Sonochem 12:325–329

    Article  CAS  Google Scholar 

  55. Ciawi E, Rae J, Ashokkumar M, Grieser F (2006) Determination of temperatures within acoustically generated bubbles in aqueous solutions at different ultrasound frequencies. J Phys Chem B 110:13656–13660

    Article  CAS  Google Scholar 

  56. Crum L (1994) Sonoluminescence, sonochemistry, and sonophysics. J Acoust Soc Am 95:559–562

    Article  Google Scholar 

  57. Mason TJ, Peters D (2002) Practical sonochemistry: power ultrasound uses and applications. Woodhead, Cambridge

  58. Ashokkumar M, Lee J, Kentish S, Grieser F (2007) Bubbles in an acoustic field: an overview. Ultrason Sonochem 14:470–475

    Article  CAS  Google Scholar 

  59. Marinesco M, Trillat JJ (1933) Action des ultrasons sur les plaques photographiques. CR Acad Sci Paris 196:858

    CAS  Google Scholar 

  60. Griffing V, Sette D (1955) Luminescence produced as a result of intense ultrasonic waves. J Phys Chem 23:503–509

    Article  CAS  Google Scholar 

  61. Suslick KS, Crum LA (1998) Sonochemistry and sonoluminescence. Wiley-Interscience, New York

    Google Scholar 

  62. Yasui K (1999) Mechanism of single-bubble sonoluminescence. Phys Rev E 60:1754

    Article  CAS  Google Scholar 

  63. An Y (2006) Mechanism of single-bubble sonoluminescence. Phys Rev E 74:026304

    Article  CAS  Google Scholar 

  64. Jarman P (1958) Sonoluminescence. Sci Prog 46:632–639

    Google Scholar 

  65. Crum L, Walton A, Mortimer A, Dyson M, Crawford D, Gaitan D (1987) Free radical production in amniotic fluid and blood plasma by medical ultrasound. J Utras Med 6:643–647

    CAS  Google Scholar 

  66. Finch R (1963) Sonoluminescence. Ultrasonics 1:87–98

    Article  Google Scholar 

  67. Weissler A (1953) Sonochemistry: the production of chemical changes with sound waves. J Acoust Soc Am 25:651–657

    Article  Google Scholar 

  68. Chendke P, Fogler H (1983) Sonoluminescence and sonochemical reactions of aqueous carbon tetrachloride solutions. J Phys Chem 87:1362–1369

    Article  CAS  Google Scholar 

  69. Chambers LA (1937) The emission of visible light from cavitated liquids. J Chem Phys 5:290–292

    Article  CAS  Google Scholar 

  70. Wu C, Roberts PH (1993) Shock-wave propagation in a sonoluminescing gas bubble. Phys Rev Lett 70:3424

    Article  Google Scholar 

  71. Moss WC, Clarke DB, White JW, Young DA (1994) Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence. Phys Fluids 6:2979–2985

    Article  Google Scholar 

  72. Kondić L, Gersten JI, Yuan C (1995) Theoretical studies of sonoluminescence radiation: radiative transfer and parametric dependence. Phys Rev E 52:4976

    Article  Google Scholar 

  73. Kwak H-Y, Na JH (1996) Hydrodynamic solutions for a sonoluminescing gas bubble. Phys Rev Lett 77:4454

    Article  CAS  Google Scholar 

  74. Yasui K (1997) Alternative model of single-bubble sonoluminescence. Phys Rev E 56:6750

    Article  CAS  Google Scholar 

  75. Yasui K (1999) Single-bubble and multibubble sonoluminescence. Phys Rev Lett 83:4297

    Article  CAS  Google Scholar 

  76. S-i Hatanaka, Mitome H, Yasui K, Hayashi S (2002) Single-bubble sonochemiluminescence in aqueous luminol solutions. J Am Chem Soc 124:10250–10251

    Article  CAS  Google Scholar 

  77. Ashokkumar M (2011) The characterization of acoustic cavitation bubbles—an overview. Ultrason Sonochem 18:864–872

    Article  CAS  Google Scholar 

  78. Ashokkumar M, Lee J, Iida Y, Yasui K, Kozuka T, Tuziuti T, Towata A (2010) Spatial distribution of acoustic cavitation bubbles at different ultrasound frequencies. ChemPhysChem 11:1680–1684

    Article  CAS  Google Scholar 

  79. Sunartio D, Yasui K, Tuziuti T, Kozuka T, Iida Y, Ashokkumar M, Grieser F (2007) Correlation between Na* emission and “chemically active” acoustic cavitation bubbles. ChemPhysChem 8:2331–2335

    Article  CAS  Google Scholar 

  80. Mišík V, Riesz P (1996) EPR study of free radicals induced by ultrasound in organic liquids II. Probing the temperatures of cavitation regions. Ultrason Sonochem 3:25–37

    Article  Google Scholar 

  81. Mišík V, Riesz P (1996) Recent applications of EPR and spin trapping to sonochemical studies of organic liquids and aqueous solutions. Ultrason Sonochem 3:S173–S186

    Article  Google Scholar 

  82. Mason T, Lorimer J, Bates D, Zhao Y (1994) Dosimetry in sonochemistry: the use of aqueous terephthalate ion as a fluorescence monitor. Ultrason Sonochem 1:S91–S95

    Article  CAS  Google Scholar 

  83. Ashokkumar M, Niblett T, Tantiongco L, Grieser F (2003) Sonochemical degradation of sodium dodecylbenzene sulfonate in aqueous solutions. Aust J hem 56:1045–1049

    Article  CAS  Google Scholar 

  84. Ashokkumar M, Grieser F (2005) A comparison between multibubble sonoluminescence intensity and the temperature within cavitation bubbles. J Am Chem Soc 127:5326–5327

    Article  CAS  Google Scholar 

  85. S-i Hatanaka, Yasui K, Kozuka T, Tuziuti T, Mitome H (2002) Influence of bubble clustering on multibubble sonoluminescence. Ultrasonics 40:655–660

    Article  Google Scholar 

  86. Kanthale P, Ashokkumar M, Grieser F (2008) Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: frequency and power effects. Ultrason Sonochem 15:143–150

    Article  CAS  Google Scholar 

  87. Yasui K (2001) Temperature in multibubble sonoluminescence. J Chem Phys 115:2893–2896

    Article  CAS  Google Scholar 

  88. Weninger K, Camara C, Putterman S (2000) Observation of bubble dynamics within luminescent cavitation clouds: sonoluminescence at the nano-scale. Phys Rev E 63:016310

    Article  CAS  Google Scholar 

  89. Yasui K, Tuziuti T, Sivakumar M, Iida Y (2005) Theoretical study of single-bubble sonochemistry. J Chem Phys 122:224706

    Article  CAS  Google Scholar 

  90. Didenko YT, Suslick KS (2002) The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation. Nature 418(6896):394–397

    Article  CAS  Google Scholar 

  91. Matula TJ, Crum LA (1998) Evidence for gas exchange in single-bubble sonoluminescence. Phys Rev Lett 80:865

    Article  CAS  Google Scholar 

  92. Kruus P (2000) Sonochemical formation of nitrate and nitrite in water. Ultrason Sono 7:109–113

    Article  Google Scholar 

  93. Koda S, Tanaka K, Sakamoto H, Matsuoka T, Nomura H (2004) Sonochemical efficiency during single-bubble cavitation in water. J Phys Chem A 108:11609–11612

    Article  CAS  Google Scholar 

  94. Yasui K, Tuziuti T, Iida Y, Mitome H (2003) Theoretical study of the ambient-pressure dependence of sonochemical reactions. J Chem Phys 119:346–356

    Article  CAS  Google Scholar 

  95. Vazquez G, Camara C, Putterman S, Weninger K (2001) Sonoluminescence: nature’s smallest blackbody. Opt Lett 26:575–577

    Article  CAS  Google Scholar 

  96. Tuziuti T, Yasui K, Sivakumar M, Iida Y, Miyoshi N (2005) Correlation between acoustic cavitation noise and yield enhancement of sonochemical reaction by particle addition. J Phys Chem A 109:4869–4872

    Article  CAS  Google Scholar 

  97. Matula TJ, Roy RA, Mourad PD, McNamara WB III, Suslick KS (1995) Comparison of multibubble and single-bubble sonoluminescence spectra. Phys Rev Lett 75:2602

    Article  CAS  Google Scholar 

  98. Mettin R, Akhatov I, Parlitz U, Ohl C, Lauterborn W (1997) Bjerknes forces between small cavitation bubbles in a strong acoustic field. Phys Rev E 56:2924

    Article  CAS  Google Scholar 

  99. Lucien E, Greer A (2001) Electrophilic oxidant produced in the photodeoxygenation of 1,2-benzodiphenylene sulfoxide. J Org Chem 66:4576–4579

    Article  CAS  Google Scholar 

  100. Brown WG, Hart EJ (1972) The oxygen atom: a primary species in irradiated water. Radiat Res 51:249–253

    Article  CAS  Google Scholar 

  101. Sauer MC Jr, Brown WG, Hart EJ (1984) Oxygen (3P) atom formation by the photolysis of hydrogen peroxide in alkaline aqueous solutions. J Phys Chem 88:1398–1400

    Article  CAS  Google Scholar 

  102. Hart EJ, Henglein A (1985) Free radical and free atom reactions in the sonolysis of aqueous iodide and formate solutions. J Phys Chem 89:4342–4347

    Article  CAS  Google Scholar 

  103. Thomas KB, Greer A (2003) Gauging the significance of atomic oxygen [O(3P)] in sulfoxide photochemistry. A method for hydrocarbon oxidation. J Org Chem 68:1886–1891

    Article  CAS  Google Scholar 

  104. Yasui K (2001) Effect of liquid temperature on sonoluminescence. Phys Rev E 64:016310

    Article  CAS  Google Scholar 

  105. Toegel R, Gompf B, Pecha R, Lohse D (2000) Does water vapor prevent upscaling sonoluminescence? Phys Rev Lett 85:3165

    Article  CAS  Google Scholar 

  106. Yasui K, Tuziuti T, Iida Y (2004) Optimum bubble temperature for the sonochemical production of oxidants. Ultrasonics 42:579–584

    Article  CAS  Google Scholar 

  107. Beckett MA, Hua I (2001) Impact of ultrasonic frequency on aqueous sonoluminescence and sonochemistry. J Phys Chem A 105:3796–3802

    Article  CAS  Google Scholar 

  108. Capocelli M, Joyce E, Lancia A, Mason TJ, Musmarra D, Prisciandaro M (2012) Sonochemical degradation of estradiols: incidence of ultrasonic frequency. Chem Eng J 210:9–17

    Article  CAS  Google Scholar 

  109. Petrier C, Jeunet A, Luche JL, Reverdy G (1992) Unexpected frequency effects on the rate of oxidative processes induced by ultrasound. J Am Chem Soc 114:3148–3150

    Article  CAS  Google Scholar 

  110. Ashokkumar M, Sunartio D, Kentish S, Mawson R, Simons L, Vilkhu K, Versteeg CK (2008) Modification of food ingredients by ultrasound to improve functionality: a preliminary study on a model system. Innov Food Sci Emerg 9:155–160

    Article  CAS  Google Scholar 

  111. Shanmugam A, Chandrapala J, Ashokkumar M (2012) The effect of ultrasound on the physical and functional properties of skim milk. Innov Food Sci Emer 16:251–258

    Article  CAS  Google Scholar 

  112. Ashokkumar M, Lee J, Zisu B, Bhaskarcharya R, Palmer M, Kentish S (2009) Hot topic: sonication increases the heat stability of whey proteins. J Dairy Sci 92:5353–5356

    Article  CAS  Google Scholar 

  113. Chandrapala J, Zisu B, Palmer M, Kentish S, Ashokkumar M (2011) Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. Ultrason Sonochem 18:951–957

    Article  CAS  Google Scholar 

  114. Price GJ (1996) Ultrasonically enhanced polymer synthesis. Ultrason Sonochem 3:S229–S238

    Article  CAS  Google Scholar 

  115. Bhangu SK, Ashokkumar M, Lee J (2016) Ultrasound assisted crystallization of paracetamol: crystal size distribution and polymorph control. Crys Growth Des 16:1934–1941

    Article  CAS  Google Scholar 

  116. Mason TJ (2003) Sonochemistry and sonoprocessing: the link, the trends and (probably) the future. Ultrason Sonochem 10:175–179

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthupandian Ashokkumar.

Additional information

This article is part of the Topical Collection “Sonochemistry: From basic principles to innovative applications”; edited by Juan Carlos Colmenares Q., Gregory Chatel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhangu, S.K., Ashokkumar, M. Theory of Sonochemistry. Top Curr Chem (Z) 374, 56 (2016). https://doi.org/10.1007/s41061-016-0054-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-016-0054-y

Keywords

Navigation