Skip to main content
Log in

The Role of Ultrasound on Advanced Oxidation Processes

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

This chapter describes the use of ultrasound in remediation of wastewater contaminated with organic pollutants in the absence and presence of other advanced oxidation processes (AOPs) such as sonolysis, sono-ozone process, sonophotocatalysis, sonoFenton systems and sonophoto-Fenton methods in detail. All these methods are explained with the suitable literature illustrations. In most of the cases, hybrid AOPs (combination of ultrasound with one or more AOPs) resulted in superior efficacy to that of individual AOP. The advantageous effects such as additive and synergistic effects obtained by operating the hybrid AOPs are highlighted with appropriate examples. It is worth to mention here that the utilization of ultrasound is not only restricted in preparation of modern active catalysts but also extensively used for the wastewater treatment. Interestingly, ultrasound coupled AOPs are operationally simple, efficient, and environmentally benign, and can be readily applied for large scale industrial processes which make them economically viable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

(Reprinted with permission from Ref. [24]. Copyright 2010 Water Research Commission)

Fig. 2

(Reprinted with permission from Ref. [36]. Copyright 2008 Elsevier)

Fig. 3

(Reprinted with permission from Ref. [50]. Copyright 2009 American Chemical Society)

Fig. 4

(Reprinted with permission from Ref. [57]. Copyright 2004 Elsevier)

Fig. 5

(Reprinted with permission from Ref. [57]. Copyright 2004 Elsevier)

Fig. 6

(Reprinted with permission from Ref. [58]. Copyright 2015 Elsevier)

Fig. 7

(Reprinted with permission from Ref. [60]. Copyright 2015 Royal Society of Chemistry)

Fig. 8

(Reprinted with permission from Ref. [61]. Copyright 2006 Elsevier)

Fig. 9

(Reprinted with permission from Ref. [81]. Copyright 2003 Elsevier)

Fig. 10

(Reprinted with permission from Ref. [86]. Copyright 2009 Elsevier)

Fig. 11

(Reprinted with permission from Ref. [90]. Copyright 2011 American Chemical Society)

Fig. 12

(Reprinted with permission from Ref. [102]. Copyright 2015 Elsevier)

Fig. 13

(Reprinted with permission from Ref. [104]. Copyright 2001 Elsevier)

Fig. 14

(Reprinted with permission from Ref. [105]. Copyright 2007 Elsevier)

Fig. 15

(Reprinted with permission from Ref. [126]. Copyright 2012 Elsevier)

Fig. 16

(Reprinted with permission from Ref. [131]. Copyright 2008 American Chemical Society)

Fig. 17

(Reprinted with permission from Ref. [140]. Copyright 2011 Wiley online library)

Fig. 18

(Reprinted with permission from Ref. [144]. Copyright 2014 Elsevier)

Fig. 19

(Reprinted with permission from Ref. [146]. Copyright 2016 Elsevier)

Fig. 20

(Reprinted with permission from Ref. [148]. Copyright 2015 Royal Society of Chemistry)

Similar content being viewed by others

References

  1. Glaze WH (1994) An overview of advanced oxidation processes: current status and kinetic models. Chem Oxid 2:44–57

    Google Scholar 

  2. Karthik P, Vinoth R, Babu SG, Wen M, Kamegawa T, Yamashita H, Neppolian B (2015) Synthesis of highly visible light active TiO2-2-Naphthol surface complex and its application in photocatalytic chromium (VI) reduction. RSC Adv 5:39752–39759

    Article  CAS  Google Scholar 

  3. Babu SG, Vijayan AS, Neppolian B (2015) SnS2/rGO: an efficient photocatalyst for the complete degradation of organic contaminants. Mater Focus 4:272–276

    Article  CAS  Google Scholar 

  4. Kumar PS, Selvakumar M, Babu SG, Jaganathan S, Karuthapandian S (2015) Novel CuO/Chitosan nanocomposite thin film: facile hand picking recoverable, efficient and reusable heterogeneous photocatalyst. RSC Adv 5:57493–57501

    Article  CAS  Google Scholar 

  5. Kumar PS, Selvakumar M, Babu SG, Karuthapandian S, Chattopadhyay S (2015) CdO nanospheres: facile synthesis and bandgap modification for the superior photocatalytic activity. Mater Lett 151:45–48

    Article  CAS  Google Scholar 

  6. Suslick KS (1988) Ultrasound: its chemical, physical and biological effects. VCH, New York

    Google Scholar 

  7. Mason TJ, Lorimer JP (1988) Sonochemistry: theory, applications and uses of ultrasound in chemistry. Ellis Horwood, Chichester

    Google Scholar 

  8. Suslick KS (1989) The chemical effects of ultrasound. Sci Am 260:80–86

    Article  CAS  Google Scholar 

  9. Mason TJ, Tiem A (2001) Advances in sonochemistry. JAI, Oxford

    Google Scholar 

  10. Lifka J, Ondrushka B, Hofmann J (2003) The use of ultrasound for the degradation of pollutants in water: aquasonolysis—a review. Eng Life Sci 3:253–262

    Article  CAS  Google Scholar 

  11. Ince NH, Tezcanli G, Belen RK, Apikyan IG (2001) Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications. App Cat B Environ 29:167–176

    Article  CAS  Google Scholar 

  12. Chowdhury P, Viraraghavan T (2009) Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes—a review. Sci Tot Env 407:2474–2492

    Article  CAS  Google Scholar 

  13. Gopiraman M, Babu SG, Khatri Z, Kim BS, Wei K, Karvembu R, Kim IS (2015) Photodegradation of dyes by a novel TiO2/u-RuO2/GNS nanocatalyst derived from Ru/GNS after its use as catalyst in aerial oxidation of primary alcohols (GNS = graphene nanosheets). React Kinet Mech Catal 115:759–772

    Article  CAS  Google Scholar 

  14. Glaze WH, Kang JW, Chapin DH (1987) The chemistry of water treatment processes involving ozone, hydrogen peroxide, and ultraviolet radiation. Ozone Sci Eng 9:335–352

    Article  CAS  Google Scholar 

  15. Ince NH, Tezcanli G (1999) Treatability of textile dyebath effluents by advanced oxidation: preparation for reuse, water. Sci Technol 40:183–190

    CAS  Google Scholar 

  16. Babu SG, Vinoth R, Narayana PS, Bahnemann D, Neppolian B (2015) Reduced graphene oxide wrapped Cu2O supported on C3N4: an efficient visible light responsive semiconductor photocatalyst. APL Mater 3:104415–104418

    Article  CAS  Google Scholar 

  17. Naffrechoux E, Chanoux S, Petrier C, Suptil J (2000) Sonochemical and photochemical oxidation of organic matter. Ultrason Sonochem 7:255–259

    Article  CAS  Google Scholar 

  18. Suslick KS (1990) Sonochemistry. Science 247:1439–1445

    Article  CAS  Google Scholar 

  19. Yanagida H, Masubuchi Y, Minagawa K, Ogata T, Takimoto J, Koyama K (1999) A reaction kinetics model of water sonolysis in the presence of a spin-trap. Ultrason Sonochem 5:133–139

    Article  CAS  Google Scholar 

  20. Boffito DC, Crocella V, Pirola C, Neppolian B, Cerrato G, Ashokkumar M, Bianchi CL (2013) Ultrasonic enhancement of the acidity, surface area and free fatty acids esterification catalytic activity of sulphated ZrO2–TiO2 systems. J Catal 297:17–26

    Article  CAS  Google Scholar 

  21. Joseph JM, Destaillats H, Hung HM, Hoffmann MR (2000) The sonochemical degradation of azobenzene and related azo dyes: rate enhancements via Fenton’s reactions. J Phys Chem A 104:301–307

    Article  CAS  Google Scholar 

  22. Vajnhandl S, Le Marechal AM (2005) Ultrasound in textile dyeing and the decolouration/mineralization of textile dyes. Dyes Pigment 65:89–101

    Article  CAS  Google Scholar 

  23. Tezcanli-Guyer G, Ince NH (2003) Degradation and toxicity reduction of textile dyestuff by ultrasound. Ultrason Sonochem 10:235–240

    Article  CAS  Google Scholar 

  24. Guo W, Wang H, Shi Y, Zhang G (2010) Sonochemical degradation of the antibiotic cephalexin in aqueous solution. Water SA 36:651–654

    Article  CAS  Google Scholar 

  25. Koerner R, Soong T (2000) Leachate in landfills: the stability issues. Geotext Geomembr 18:293–309

    Article  Google Scholar 

  26. Kang K, Shin H, Park H (2002) Characterization of humic substances present in landfill leachates with different landfill ages and its implications. Water Res 36:4023–4032

    Article  CAS  Google Scholar 

  27. Mott H, Hartz K, Yonge D (1987) Landfill leachates. J Environ Eng 113:476–485

    Article  CAS  Google Scholar 

  28. Tatsi A, Zouboulis A (2002) A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a Mediterranean climate (Thessaloniki, Greece). Adv Environ Res 6:207–219

    Article  CAS  Google Scholar 

  29. Ehrig H (1984) Treatment of sanitary landfill leachate: biological treatment. Waste Manage Res 2:131–152

    CAS  Google Scholar 

  30. Trebouet D, Schlumpf J, Jaouen P, Quemeneur F (2001) Stabilized landfill leachate treatment by combined physicochemical-nanofiltration processes. Water Res 35:2935–2942

    Article  CAS  Google Scholar 

  31. Marttinen S, Kettunen R, Sormunen K, Soimasuo R, Rintala J (2002) Screening of physical–chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates. Chemosphere 46:851–858

    Article  CAS  Google Scholar 

  32. Amokrane A, Comel C, Veron J (1997) Landfill leachates pre-treatment by coagulation flocculation. Water Res 31:2775–2782

    Article  CAS  Google Scholar 

  33. Li X, Zhao Q, Hao X (1999) Ammonium removal from landfill leachate by chemical precipitation. Waste Manage 19:409–415

    Article  CAS  Google Scholar 

  34. Yusuf G (2001) Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res 40:4681–4715

    Article  CAS  Google Scholar 

  35. Parag R (2008) Treatment of wastewater streams containing phenolic compounds using hybrid techniques based on cavitation: a review of the current status and the way forward. Ultrason Sonochem 15:1–15

    Article  CAS  Google Scholar 

  36. Wang S, Wu X, Wang Y, Li Q, Tao M (2008) Removal of organic matter and ammonia nitrogen from landfill leachate by ultrasound. Ultrason Sonochem 15:933–937

    Article  CAS  Google Scholar 

  37. Entezari M, Kruus P (1996) Effect of frequency on sonochemical reactions II. Temperature and intensity effects. Ultrason Sonochem 3:19–24

    Article  CAS  Google Scholar 

  38. Goel M, Hongqiang H, Mujumdar A, Ray M (2004) Sonochemical decomposition of volatile and non-volatile organic compounds—a comparative study. Water Res 38:4247–4261

    Article  CAS  Google Scholar 

  39. Jiang Y, Petrier C, Waite T (2002) Kinetics and mechanisms of ultrasonic degradation of volatile chlorinated aromatics in aqueous solutions. Ultrason Sonochem 9:317–323

    Article  CAS  Google Scholar 

  40. Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35:402–417

    Article  CAS  Google Scholar 

  41. Arslan-Alaton I, Akmehmet BI (2002) Biodegradability assessment of ozonated raw and biotreated pharmaceutical wastewater. Arch Environ Con Toxicol 43:425–431

    Article  CAS  Google Scholar 

  42. Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944

    Article  CAS  Google Scholar 

  43. Iqbal J, Kim HJ, Yang JS, Baek K, Yang JW (2007) Removal of arsenic from groundwater by micellar-enhanced ultrafiltraion (MEUF). Chemosphere 66:970–976

    Article  CAS  Google Scholar 

  44. Karim MM (2000) Arsenic in groundwater and health problems in Bangladesh. Water Res 34:304–310

    Article  CAS  Google Scholar 

  45. Meharg AA, Rahman MM (2003) Arsenic contamination of Bangladesh paddy filed soils: implication for rice contribution to arsenic consumption. Environ Sci Technol 37:229–234

    Article  CAS  Google Scholar 

  46. Deschamps E, Ciminelli VST, Holl W (2005) Removal of As (III) and As (V) from water using a natural Fe and Mn enriched sample. Water Res 39:5212–5220

    Article  CAS  Google Scholar 

  47. Ryu J, Choi W (2004) Effects of TiO2 surface modifications on photocatalytic oxidation of arsenite: the role of superoxides. Environ Sci Technol 38:2928–2933

    Article  CAS  Google Scholar 

  48. Dutta PK, Pehkonen SO, Sharma VK, Ray AK (2005) Photocatalytic oxidation of arsenic (III): evidence of hydroxyl radicals. Environ Sci Technol 39:1827–1834

    Article  CAS  Google Scholar 

  49. Elless MP, Poynton CY, Willms CA, Doyle MP, Lopez AC, Sokkary DA, Ferguson BW, Blaylock MJ (2005) Pilot-scale demonstration of phytofiltration for treatment of arsenic in the New Mexico drinking water. Water Res 39:3863–3872

    Article  CAS  Google Scholar 

  50. Neppolian B, Oronila A, Grieser F, Ashokkumar M (2009) Simple and efficient sonochemical method for the oxidation of arsenic(III) to arsenic(V). Environ Sci Technol 43:6793–6798

    Article  CAS  Google Scholar 

  51. Neppolian B, Doronila A, Ashokkumar M (2010) Sonochemical oxidation of arsenic(III) to arsenic(V) using potassium peroxydisulfate as an oxidizing agent. Water Res 44:3687–3695

    Article  CAS  Google Scholar 

  52. Beckett MA, Hua I (2000) Elucidation of the 1,4-dioxine decomposition pathway at discrete ultrasonic frequencies. Environ Sci Technol 34:3944–3953

    Article  CAS  Google Scholar 

  53. Gould JP, Groff KA (1987) The kinetics of ozonolysis of synthetic dyes. Ozone Sci Eng 9:153–157

    Article  CAS  Google Scholar 

  54. Snider EH, Porter JJ (1974) Ozone treatment of dye waste. J Water Pollut Contr Fed 46:886–894

    CAS  Google Scholar 

  55. Peyton GR, Glaze WH (1985) The mechanism of photolytic ozonation. Photochemistry of Environmental Aquatic Systems ACS Symposium Series 327:76–88

  56. Destaillats H, Colussi AJ, Joseph JM, Hoffmann MR (2000) Synergistic effects of sonolysis combined with ozonolysis for the oxidation of azobenzene and methyl orange. J Phys Chem 104:8930–8935

    Article  CAS  Google Scholar 

  57. Tezcanli-Guyer G, Ince NH (2004) Individual and combined effects of ultrasound, ozone and UV irradiation: a case study with textile dyes. Ultrasonics 42:603–609

    Article  CAS  Google Scholar 

  58. Wan-Qian G, Ren-Li Y, Xian-Jiao Z, Juan-Shan D, Hai-Ou C, Shan-Shan Y, Nan-Qi R (2015) Sulfamethoxazole degradation by ultrasound/ozone oxidation process in water: kinetics, mechanisms, and pathways. Ultrason Sonochem 22:182–187

    Article  CAS  Google Scholar 

  59. Koda S, Kimura T, Kondo T, Mitome H (2003) A standard method to calibrate sonochemical efficiency of an individual reaction system. Ultrason Sonochem 10:149–156

    Article  CAS  Google Scholar 

  60. Xiao-Dan F, Wen-Li Z, Hai-Yan X, Tai-Qiu Q, Jian-Guo J (2015) Effects of ultrasound combined with ozone on the degradation of organophosphorus pesticide residues on lettuce. RSC Adv 5:45622–45630

    Article  CAS  Google Scholar 

  61. Gultekin I, Ince NH (2006) Degradation of aryl-azo-naphthol dyes by ultrasound, ozone and their combination: effect of α-substituents. Ultrason Sonochem 13:208–214

    Article  CAS  Google Scholar 

  62. Martins AO, Canalli VM, Azevedo CMN, Pires M (2006) Degradation of pararosaniline (C.I. Basic Red 9monohydrochloride) dye by ozonation and sonolysis. Dyes Pigm 68:227–234

    Article  CAS  Google Scholar 

  63. Zhao W, Shi H, Wang D (2004) Ozonation of cationic Red X-GRL in aqueous solution: degradation and mechanism. Chemosphere 57:1189–1199

    Article  CAS  Google Scholar 

  64. Zhang F, Yediler A, Liang X, Kettrup A (2004) Effects of dye additives on the ozonation process and oxidation by-products: a comparative study using hydrolyzed C.I. Reactive Red 120. Dyes Pigm 60:1–7

    Article  CAS  Google Scholar 

  65. Ince NH, Tezcanlı G (2001) Reactive dyestuff degradation by combined sonolysis and ozonation. Dyes Pigm 49:145–153

    Article  CAS  Google Scholar 

  66. Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advance oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59

    Article  CAS  Google Scholar 

  67. Toma S, Gaplovsky A, Luche J-L (2001) The effect of ultrasound on photochemical reaction. Ultrason Sonochem 8:201–207

    Article  CAS  Google Scholar 

  68. Ruppert G, Bauer R, Heisler G (1994) UV–O3, UV–H2O2, UV–TiO2 and photo-Fenton reaction-comparison of advanced oxidation processes for wastewater treatment. Chemosphere 28:1447–1454

    Article  CAS  Google Scholar 

  69. Benitez FJ, Beltran-Heredia J, Acero JL, Rubio FJ (2000) Contribution of free radicals to chlorophenols decomposition by several advanced oxidation processes. Chemosphere 41:1271–1277

    Article  CAS  Google Scholar 

  70. Xie Y, Chen F, He J, Zhao J, Wang H (2000) Photoassisted degradation of dyes in the presence of Fe3+ and H2O2 under visible irradiation. J Photochem Photobiol A Chem 136:235–240

    Article  CAS  Google Scholar 

  71. Esplugas S, Gimenez J, Contreras S, Pascual E, Rodriguez M (2002) Comparison of different advanced oxidation processes for phenol degradation. Water Res 36:1034–1042

    Article  CAS  Google Scholar 

  72. Weavers LK, Ling FH, Hoffmann MR (1998) Aromatic compounds degradation in water using a combination of sonolysis and ozonolysis. Environ Sci Technol 32:2727–2733

    Article  CAS  Google Scholar 

  73. Kopf P, Gilbert E, Eberle SH (2000) TiO2 photocatalytic oxidation of monochloroacetic acid and pyridine: influence of ozone. J Photochem Photobiol A Chem 136:163–168

    Article  CAS  Google Scholar 

  74. Colmenares JC (2014) Sonication-induced pathways in the synthesis of light-active catalysts for photocatalytic oxidation of organic contaminants. ChemSusChem 7:1512–1527

    Article  CAS  Google Scholar 

  75. Theron P, Pichat P, Guillard C, Petrier C, Chopin T (1999) Degradation of phenyltrifluoromethylketone in water by separate or simultaneous use of TiO2 photocatalysis and 30 or 515 kHz. Phys Chem Chem Phys 1:4663–4668

    Article  CAS  Google Scholar 

  76. Stock NL, Peller J, Vinodgopal K, Kamat PV (2000) Combinative sonolysis and photocatalysis for textile dye degradation. Environ Sci Technol 34:1747–1750

    Article  CAS  Google Scholar 

  77. Vaishnave P, Kumar A, Ameta R, Punjabi PB, Ameta SC (2014) Photo oxidative degradation of azure-Bby sono-photo-Fenton and photo-Fenton reagents. Arab J Chem 7:981–985

    Article  CAS  Google Scholar 

  78. Theron P, Pichat P, Petrier C, Guillard C (2001) Water treatment by TiO2 photocatalysis and/or ultrasound: degradations of phenyltrifluoromethylketone, a trifluoroacetic-acid-forming pollutant, and octan-1-ol, a very hydrophobic pollutant. Water Sci Technol 44:263–270

    CAS  Google Scholar 

  79. Ragaini V, Selli E, Bianchi CL, Pirola C (2001) Sono-photocatalytic degradation of 2-chlorophenol in water: kinetic and energetic comparison. Ultrason Sonochem 8:251–258

    Article  CAS  Google Scholar 

  80. Petrier C, Lamy M-F, Francony A, Benahcene A, David B, Renaudin V, Gondrexon N (1994) Sonochemical degradation of phenol in dilute aqueous solutions: comparison of the reaction rates at 20 and 487 kHz. J Phys Chem 98:10514–10520

    Article  Google Scholar 

  81. Mrowetz M, Pirola C, Selli E (2003) Degradation of organic water pollutants through sonophotocatalysis in the presence of TiO2. Ultrason Sonochem 10:247–254

    Article  CAS  Google Scholar 

  82. Davydov L, Reddy EP, France P, Smirniotis PG (2001) Sonophotocatalytic destruction of organic contaminants in aqueous systems on TiO2 powders. App Catal B Environ 32:95–105

    Article  CAS  Google Scholar 

  83. Harada H (2001) Sonophotocatalytic decomposition of water using TiO2 photocatalyst. Ultrason Sonochem 8:55–58

    Article  CAS  Google Scholar 

  84. Selli E, Bianchi CL, Pirola C, Bertelli M (2005) Degradation of methyl tert-butyl ether in water: effects of the combined use of sonolysis and photocatalysis. Ultrason Sonochem 12:395–400

    Article  CAS  Google Scholar 

  85. Shirgaonkar IZ, Pandit AB (1998) Sonophotochemical destruction of aqueous solution of 2,4,6-trichlorophenol. Ultrason Sonochem 5:53–61

    Article  CAS  Google Scholar 

  86. Anandan S, Ashokkumar M (2009) Sonochemical synthesis of Au–TiO2 nanoparticles for the sonophotocatalytic degradation of organic pollutants in aqueous environment. Ultrason Sonochem 16:316–320

    Article  CAS  Google Scholar 

  87. Vinodgopal K, Ashokkumar M, Grieser F (2001) Sonochemical degradation of a polydisperse nonylphenol ethoxylate in aqueous solution. J Phys Chem B 105:3338–3342

    Article  CAS  Google Scholar 

  88. Babu SG, Vinoth R, Kumar DP, Shankar MV, Chou HL, Vinodgopal K, Neppolian B (2015) Influence of electron storing, transferring and shuttling assets of reduced graphene oxide at the interfacial copper doped TiO2 pn hetero-junction for the increased hydrogen production. Nanoscale 7:7849–7857

    Article  CAS  Google Scholar 

  89. Brand N, Mailhot G, Bolte M (1998) Degradation photoinduced by Fe(III):method of alkylphenol ethoxylates remove in water. Environ Sci Technol 32:2715–2720

    Article  CAS  Google Scholar 

  90. Yuanhua HE, Grieser F, Ashokkumar M (2011) Kinetics and mechanism for the sonophotocatalytic degradation of p-chlorobenzoic Acid. J Phys Chem A 115:6582–6588

    Article  CAS  Google Scholar 

  91. Adewuyi YG (2005) Sonochemistry in environment remediation. 2. Heterogeneous sonophotocatalytic oxidation processes for the treatment of pollutants in water. Environ Sci Technol 39:8557–8570

    Article  CAS  Google Scholar 

  92. Peller J, Wiest O, Kamat PV (2003) Synergy of combining sonolysis and photocatalysis in the degradation and mineralization of chlorinated aromatics compounds. Environ Sci Technol 37:1926–1932

    Article  CAS  Google Scholar 

  93. Singla R, Ashokkumar M, Grieser F (2004) The mechanism of the sonochemical degradation of the benzoic acid in aqueous solution. Res Chem Intermed 30:723–733

    Article  CAS  Google Scholar 

  94. Fujishima A, Hashimoto K, Watanabe T (1999) Photocatalysis: fundamentals and applications, 1st edn. BKC Inc., Tokyo

    Google Scholar 

  95. Okitsu K, Iwasaki K, Yobiko Y, Bandow H, Nishimura R, Maeda Y (2005) Sonochemical degradation of azo dyes in aqueous solution: a new heterogeneous kinetics model taking into account the local concentration of OH radicals and azo dyes. Ultrason Sonochem 12:255–262

    Article  CAS  Google Scholar 

  96. Talebiana N, Nilforoushanb MR, Mogaddas FJ (2013) Comparative study on the sonophotocatalytic degradation of hazardous waste. Ceram Int 39:4913–4921

    Article  CAS  Google Scholar 

  97. Taghizadeh MT, Abdollahi R (2011) Sonolytic, sonocatalytic and sonophotocatalytic degradation of chitosan in the presence of TiO2 nanoparticles. Ultrason Sonochem 18:149–157

    Article  CAS  Google Scholar 

  98. Berberidou C, Poulios I, Xekoukoulotakis NP, Mantzavinos D (2007) Sonolytic, photocatalytic and sonophotocatalytic degradation of malachite green in aqueous solutions. Appl Cat B Environ 74:63–72

    Article  CAS  Google Scholar 

  99. Kavitha SK, Palanisamy PN (2011) Photocatalytic and sonophotocatalytic degradation of reactive red 120 using dye sensitized TiO2 under visible light. Inter J Civil Environ Eng 5:1–6

    Google Scholar 

  100. Son Y, Cho E, Lim M, Khim J (2010) Effects of salt and pH on sonophotocatalytic degradation of azo dye reactive black 5. Japanese J Appl Phy 49:7

    Google Scholar 

  101. Neppolian B, Ciceri L, Bianchi CL (2011) Franz Grieser a, Muthupandian Ashokkumar. Sonophotocatalytic degradation of 4-chlorophenol using Bi2O3/TiZrO4 as a visible light responsive photocatalyst. Ultrason Sonochem 18:135–139

    Article  CAS  Google Scholar 

  102. Babu SG, Vinoth R, Neppolian B, Dionysiou DD, Ashokkumar M (2015) Diffused sunlight driven highly synergistic pathway for complete mineralization of organic contaminants using reduced graphene oxide supported photocatalyst. J Hazard Mater 291:83–92

    Article  CAS  Google Scholar 

  103. Zhang J, Xionga Z, Zhao XS (2011) Graphene–metal–oxide composites for the degradation of dyes under visible light irradiation. J Mater Chem 21:3634–3640

    Article  CAS  Google Scholar 

  104. Neppolian B, Ciceri L, Bianchi CL, Grieser F, Ashokkumar M (2001) Sonophotocatalytic degradation of 4-chlorophenol using Bi2O3/TiZrO4 as a visible light responsive photocatalyst. Ultrason Sonochem 18:135–139

    Article  CAS  Google Scholar 

  105. Kritikos DE, Xekoukoulotakis NP, Psillakis E, Mantzavinos D (2007) Photocatalytic degradation of reactive black 5 in aqueous solutions: effect of operating conditions and coupling with ultrasound irradiation. Water Res 41:2236–2246

    Article  CAS  Google Scholar 

  106. Shimizu N, Ogino C, Dadjour MF, Murata T (2007) Sonocatalytic degradation of methylene blue with TiO2 pellets in water. Ultrason Sonochem 14:184–190

    Article  CAS  Google Scholar 

  107. Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment II: hybrid methods. Adv Environ Res 8:553–597

    Article  CAS  Google Scholar 

  108. Uchida T, Hamano A, Kawashima N, Takeuchi S (2007) Disaggregation and surface modification of nano-size diamond by ultrasound exposure: relationships among acoustic intensity, disaggregation, and surface modification. Electron Comm Jpn Pt III 90:10–18

    Article  Google Scholar 

  109. Lirong M, Jianjun S, Ming Z, Jie H (2014) Synthesis of magnetic sonophotocatalyst and its enhanced biodegradability of organophosphate pesticide. Bull Korean Chem Soc 35:3521–3526

    Article  CAS  Google Scholar 

  110. Ai ZH, Yang P, Lu XH (2005) Degradation of 4-chlorophenol by microwave irradiation enhanced advanced oxidation processes. Chemosphere 60:824–827

    Article  CAS  Google Scholar 

  111. Voelker B, Sulzberger B (1996) Effects of fulvic acid on Fe(II) oxidation by hydrogen peroxide. Environ Sci Technol 30:1106–1114

    Article  CAS  Google Scholar 

  112. Zepp RG, Faust BC, Hoigne J (1992) Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron (II) with hydrogen peroxide: the photo-Fenton reaction. Environ Sci Technol 26:313–319

    Article  CAS  Google Scholar 

  113. De Laat J, Gallard H (1999) Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous solution: mechanism and kinetic modelling. Environ Sci Technol 33:2726–2732

    Article  CAS  Google Scholar 

  114. Kwan WP, Voelker BM (2002) Decomposition of hydron peroxide and organic compounds in the presence of dissolved iron and ferrihydrite. Environ Sci Technol 36:1467–1476

    Article  CAS  Google Scholar 

  115. Chou S, Huang C (1999) Application of a supported iron oxyhydroxide catalyst in oxidation of benzoic acid by hydrogen peroxide. Chemosphere 38:2719–2731

    Article  CAS  Google Scholar 

  116. Fernandez J, Bandara J, Lopez A, Kiwi J (1999) Photoassisted Fenton degradation of nonbiodegradable azo dye (Orange II) in Fe-free solution mediated by cation transfer membranes. Langmuir 15:185–192

    Article  CAS  Google Scholar 

  117. Parra S, Henao L, Mielczarski E, Mielczarski J, Albers P, Suvorova E, Guindet J, Kiwi J (2004) Synthesis, testing, and characterization of a novel Nafion membrane with superior performance in photoassisted immobilized Fenton catalysis. Langmuir 20:5621–5629

    Article  CAS  Google Scholar 

  118. Bozzi A, Yuranova T, Mielczarski J, Kiwi J (2002) Abatement of oxalates catalysed by Fe-silica structured surface via cyclic carboxylate intermediates in photo-Fenton reaction. Chem Commun 19:2202–2203

    Article  CAS  Google Scholar 

  119. Cheng MM, Ma WH, Li J, Huang YP, Zhao JC (2004) Visible-light-assisted degradation of dye pollutants over Fe(III)-loaded resin in the presence of H2O2 at neutral pH values. Environ Sci Technol 38:1569–1575

    Article  CAS  Google Scholar 

  120. Dhananjeyan M, Mielczarski E, Thampi K, Bensimon M, Kiwi J (2001) Photodynamics and surface characterization of TiO2 and Fe2O3 photocatalysts immobilized on modified polyethylene films. J Phys Chem B 105:12046–12055

    Article  CAS  Google Scholar 

  121. Fernandez J, Dhananjeyan M, Kiwi J, Senuma Y, Hilborn J (2000) Evidence for Fenton photoassisted processes mediated by encapsulated Fe ions at Biocompatible pH values. J Phys Chem B 104:5298–5301

    Article  CAS  Google Scholar 

  122. Parra S, Guasaquillo I, Enea O, Mielczarski E, Mielczarki J, Albers P, Kiwi-Minsker L, Kiwi J (2003) Abatement of an azo dye on structured C-Nanfion/Fe-ion surfaces by photo-Fenton reactions leading to carboxylate intermediates with a remarkable biodegradability increase of the treated solution. J Phys Chem B 107:7026–7035

    Article  CAS  Google Scholar 

  123. Parra S, Nadtotechenko V, Albers P, Kiwi J (2004) Discoloration of azo-dyes at biocompatible pH-values through an Fe-histidine complex immobilized on Nafion via Fenton-like processes. J Phys Chem B 108:4439–4448

    Article  CAS  Google Scholar 

  124. Beckett MA, Hua I (2003) Enhanced sonochemical decomposition of 1,4-dioxane by ferrous iron. Water Res 37:2372–2376

    Article  CAS  Google Scholar 

  125. Iordache I, Wilson S, Lundanes E, Iordache M, Pave VL, Aelenei N (2010) The Fenton and sono-Fenton processes applied for pesticide degradation. Environ Eng Manag J 9:519–525

    CAS  Google Scholar 

  126. Huang R, Fang Z, Yan X, Cheng W (2012) Heterogeneous sono-Fenton catalytic degradation of bisphenol A by Fe3O4 magnetic nanoparticles under neutral condition. Chem Eng J 197:242–249

    Article  CAS  Google Scholar 

  127. Zhang H, Zhang JH, Zhang CY, Liu F, Zhang DB (2009) Degradation of CI acid orange 7 by the advanced Fenton process in combination with ultrasonic irradiation. Ultrason Sonochem 16:325–330

    Article  CAS  Google Scholar 

  128. Drijvers D, van Langenhove H, Beckers M (1999) Decomposition of phenol and trichloroethylene by the ultrasound/H2O2/CuO process. Water Res 33:1187–1194

    Article  CAS  Google Scholar 

  129. Nie M, Wang Q, Qiu G (2008) Enhancement of ultrasonically initiated emulsion polymerization rate using aliphatic alcohols as hydroxyl radical scavengers. Ultrason Sonochem 15:222–226

    Article  CAS  Google Scholar 

  130. Guo X, Chen S, Hu Y, Li G, Liao N, Ye X, Liu D, Xue C (2014) Preparation of water-soluble melanin from squid ink using ultrasound-assisted degradation and its anti-oxidant activity. J Food Sci Technol 51:3680–3690

    Article  CAS  Google Scholar 

  131. Luo T, Ai Z, Zhang L (2008) Fe@Fe2O3 core-shell nanowires as iron reagent. 4. Sono-Fenton degradation of pentachlorophenol and the mechanism analysis. J Phys Chem C 112:8675–8681

    Article  CAS  Google Scholar 

  132. Hwang A, Na S, Ha J, Khim J (2011) Degradation of diethyl phthalate by sono-Fenton process and its dependence on the power density. Japan J Appl Phy 50:7–9

    Article  Google Scholar 

  133. Ranjit PJD, Palanivelu K, Lee CS (2008) Degradation of 2,4-dichlorophenol in aqueous solution by sono-Fenton method. Korean J Chem Eng 25:112–117

    Article  CAS  Google Scholar 

  134. Ai Z, Lu L, Li J, Zhang L, Qiu J, Wu M (2007) Fe@Fe2O3 core-shell nanowires as iron reagent efficient degradation of rhodamine b by a novel sono-Fenton process. J Phys Chem C 111:4087–4093

    Article  CAS  Google Scholar 

  135. Makino K, Mossoba MM, Riesz P (1983) Chemical effects of ultrasound on aqueous solutions. Formation of hydroxyl radicals and hydrogen atoms. J Phys Chem 87:1369–1377

    Article  CAS  Google Scholar 

  136. Weissler A (1959) Formation of hydrogen peroxide by ultrasonic waves: free radicals. J Am Chem Soc 81:1077–1081

    Article  CAS  Google Scholar 

  137. Tay KS, Rahman NA, Abas MRB (2011) Fenton degradation of dialkylphthalates: products and mechanism. Environ Chem Lett 9:539–546

    Article  CAS  Google Scholar 

  138. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177

    Article  CAS  Google Scholar 

  139. Madhavana J, Kumara PSS, Anandanb S, Griesera F, Ashokkumar M (2010) Sonophotocatalytic degradation of monocrotophos using TiO2 and Fe3+. J Hazard Mater 177:944–949

    Article  CAS  Google Scholar 

  140. Babuponnusami A, Muthukumar K (2011) Degradation of phenol in aqueous solution by fenton, sono-Fenton and sono-photo-Fenton methods. CLEAN Soil Air Water 39:142–147

    Article  CAS  Google Scholar 

  141. Wu C, Liu X, Wei D, Fan J, Wang L (2001) Photosonochemical degradation of phenol in water. Water Res 35:3927–3933

    Article  CAS  Google Scholar 

  142. Chitra S, Paramasivan P, Sinha PK (2013) Sono-photo Fenton treatment of liquid waste containing ethylenediaminetetraacetic acid (EDTA). Int J Nonferrous Metall 2:89–94

    Article  CAS  Google Scholar 

  143. Ricardo A, Palma T, Nieto JI, Combet E, Pe´trier C, Pulgarin C (2010) An innovative ultrasound, Fe2D and TiO2 photoassisted process for bisphenol a mineralization. Water Res 44:2245–2252

    Article  CAS  Google Scholar 

  144. Xu LJ, Chu W, Graham N (2014) Degradation of di-n-butyl phthalate by a homogeneous sono–photo–Fenton process with in situ generated hydrogen peroxide. Chem Eng J 240:541–547

    Article  CAS  Google Scholar 

  145. Xu LJ, Chu W, Graham N (2013) Sonophotolytic degradation of dimethyl phthalate without catalyst: analysis of the synergistic effect and modeling. Water Res 47:1996–2004

    Article  CAS  Google Scholar 

  146. Duran A, Monteagudo JM, Exposito AJ, Monsalve V (2016) Modeling the sonophoto-degradation/mineralization of carbamazepine in aqueous solution. Chem Eng J 284:503–512

    Article  CAS  Google Scholar 

  147. Joseph CG, Li Puma G, Bono A, Taufiq-Yap YH, Krishnaiah D (2011) Operating parameters and synergistic effects of combining ultrasound and ultraviolet irradiation in the degradation of 2,4,6-trichlorophenol. Desalination 276:303–309

    Article  CAS  Google Scholar 

  148. Chakma S, Moholkar VS (2015) Sonochemical synthesis of mesoporous ZrFe2O5 and its application for degradation of recalcitrant pollutants. RSC Adv 5:53529–53542

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernaurdshaw Neppolian.

Additional information

This article is part of the Topical Collection “Sonochemistry: From basic principles to innovative applications”; edited by Juan Carlos Colmenares Q., Gregory Chatel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, S.G., Ashokkumar, M. & Neppolian, B. The Role of Ultrasound on Advanced Oxidation Processes. Top Curr Chem (Z) 374, 75 (2016). https://doi.org/10.1007/s41061-016-0072-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-016-0072-9

Keywords

Navigation