Skip to main content

Advertisement

Log in

Quantum Dot Bioconjugates for Diagnostic Applications

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Quantum dots (QDs) are a special type of engineered nanomaterials with outstanding optoelectronic properties that make them as a very promising alternative to conventional luminescent dyes in biomedical applications, including biomolecule (BM) targeting, luminescence imaging and drug delivery. A key parameter to ensure successful biomedical applications of QDs is the appropriate surface modification, i.e. the surface of the nanomaterials should be modified with the appropriate functional groups to ensure stability in aqueous solutions and it should be conjugated with recognition elements capable of ensuring an efficient tagging of the BMs of interest. In this review we summarize the most relevant strategies used for surface modification of QDs and for their conjugation to BMs in preparation of their application in nanoplatforms for luminescent BM sensing and imaging-guided targeting. The applications of conjugations of photoluminescent QDs with different BMs in both in vitro and in vivo chemical sensing, immunoassays or luminescence imaging are reviewed. Recent progress in the application of functionalized QDs in ultrasensitive detection in bioanalysis, diagnostics and imaging strategies are reported. Finally, some key future research goals in the progress of bioconjugation of QDs for diagnosis are identified, including novel synthetic approaches, the need for exhaustive characterization of bioconjugates and the design of signal amplification schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted from Fernandez-Argüelles et al. [28], copyright 2010, with permission from Wiley

Fig. 2

Reprinted from [34], copyright 2012, with permission from Elsevier

Fig. 3

Reprinted with permission from Vasimalai et al. [39], copyright 2018 Beilstein-Institut

Fig. 4

Reprinted from Karakoti et al. [46], copyright 2015, with permission from Elsevier

Fig. 5

Reprinted from Kim et al. [55]

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Adapted from from Wen et al. [87], copyright 2017, with permission

Fig. 11

Reprinted from Han et al. [97], copyright 2001, with permission from Nature Springer

Fig. 12

Reprinted from Liu et al. [123], copyright 2018, with permission from Elsevier

Fig. 13

Reprinted with permission from Noor et al. [133], copyright 2015, with permission from Elsevier.

Fig. 14

Reprinted with permission from Kokkinos et al. [135], copyright 2018, with permission from the American Chemical Society

Fig. 15

Reprinted from Ming et al. [139], copyright 2015, with permission from the American Chemical Society

Fig. 16

Reprinted from Tang et al. [149], copyright 2017, with permission from Dove Medical Press Ltd

Fig. 17

Reprinted with permission from Allen et al. [152], copyright 2010, with permission from the American Chemical Society

Fig. 18

Reprinted from Yang et al. [159], copyright 2017, with permission from the American Chemical Society

Similar content being viewed by others

References

  1. Prado M, Espiña B, Fernández-Argüelles MT, Diéguez L, Fuciños P, Vial S, Oliveira JM, Reis RL, Boehme K (2016) Detection of foodborne pathogens using nanoparticles. Advantages and trends. In: Barros-Velázquez J (ed) Antimicrobial food packaging. Elsevier, Amsterdam, pp 183–201

    Google Scholar 

  2. Trapiella-Alfonso L, Llano-Suárez P, Sanz-Medel A, Costa-Fernández JM, Fernández-Argüelles MT (2017) Analytical nanoscience and nanotechnology. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Hoboken, pp 1–24

    Google Scholar 

  3. Lopez-Lorente A, Valcarcel M (2016) The third way in analytical nanoscience and nanotechnology: involvement of nanotools and nanoanalytes in the same analytical process. Trends Anal Chem 75:1–9

    CAS  Google Scholar 

  4. Blanco-López MC, Rivas M (2019) Nanoparticles for bioanalysis. Anal Bioanal Chem 411:1789–1790

    PubMed  Google Scholar 

  5. Ahsan MA, Jabbari V, Imam MA, Castro E, Kim H, Curry ML, Valles-Rosales DJ, Noveron JC (2020) Nanoscale nickel metal organic framework decorated over graphene oxide and carbon nanotubes for water remediation. Sci Total Environ 698:134214

    CAS  PubMed  Google Scholar 

  6. Cova CM, Zuliani A, Santiago ARP, Caballero A, Muñoz-Batista MJ, Luque R (2018) Microwave-assisted preparation of Ag/Ag2S carbon hybrid structures from pig bristles as efficient HER catalysts. J Mater Chem A 6:21516–21523

    CAS  Google Scholar 

  7. Ahsan MA, Deemer E, Fernandez-Delgado O, Wang H, Curry ML, El-Gendy AA, Noveron JC (2019) Fe nanoparticles encapsulated in MOF-derived carbon for the reduction of 4-nitrophenol and methyl orange in water. Catal Commun 130:105753

    CAS  Google Scholar 

  8. Ahsan MA, Jabbari V, El-Gendy AA, Curry ML, Noveron JC (2019) Ultrafast catalytic reduction of environmental pollutants in water via MOF-derived magnetic Ni and Cu nanoparticles encapsulated in porous carbon. App Surf Sci 497:143608

    Google Scholar 

  9. Ahsan MA, Fernandez-Delgado O, Deemer E, Wang H, El-Gendy AA, Curry ML, Noveron JC (2019) Carbonization of Co-BDC MOF results in magnetic C@Co nanoparticles that catalyze the reduction of methyl orange and 4-nitrophenol in water. J Mol Liq 290:111059

    CAS  Google Scholar 

  10. Sanad MF, Shalan AE, Bazid SM, Serea ESA, Hashem EM, Nabiha S, Ahsan MA (2019) A graphene gold nanocomposite-based 5-FU drug and the enhancement of the MCF-7 cell line treatment. RSC Advances 9:31021–31029

    CAS  Google Scholar 

  11. Dominguez N, Torres B, Barrera LA, Rincon JE, Lin Y, Chianelli RR, Ahsan MA, Noveron JC (2018) Bimetallic CoMoS composite anchored to biocarbon fibers as a high-capacity anode for Li-ion batteries. ACS Omega 3:10243–10249

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1109

    Google Scholar 

  13. Snee PT (2020) Semiconductor quantum dot FRET: untangling energy transfer mechanisms in bioanalytical assays. Trends Anal Chem 123:115750

    Google Scholar 

  14. Llano Suarez P, García-Cortés M, Fernández-Argüelles MT, Ruiz Encinar J, Valledor M, Ferrero FJ, Campo JC, Costa-Fernandez JM (2019) Functionalized phosphorescent nanoparticles in (bio)chemical sensing and imaging—a review. Anal Chim Acta 1046:16–31

    Google Scholar 

  15. Granada-Ramírez DA, Arias-Cerón JS, Rodriguez-Fragoso P, Vázquez-Hernández F, Luna-Arias JP, Herrera-Perez JL, Mendoza-Álvarez JG (2017) Quantum dots for biomedical applications. In: Nanobiomaterials: nanostructured materials for biomedical applications. Unidad Profesional Interdisciplinaria de Ingeniería y Tecnologías Avanzadas (UPIITA), pp 411–436. https://doi.org/10.1016/B978-0-08-100716-7.00016-7

  16. Coto-García AM, Sotelo-González E, Fernández-Argüelles MT, Pereiro R, Costa-Fernández JM, Sanz-Medel A (2011) Nanoparticles as fluorescent labels for optical imaging and sensing in genomics and proteomics. Anal Bioanal Chem 399:29–42

    PubMed  Google Scholar 

  17. Geißler D, Charbonnière LJ, Ziessel RF, Butlin NG, Löhmannsröben H-G, Hildebrandt N (2010) Quantum dot biosensors for ultrasensitive multiplexed diagnostics. Angew Chem 49:1396–1401

    Google Scholar 

  18. Hildebrandt N (2011) Biofunctional quantum dots: controlled conjugation for multiplexed biosensors. ACS Nano 5:5286–5290

    CAS  PubMed  Google Scholar 

  19. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    CAS  PubMed  Google Scholar 

  20. Sukhanova A, Devy J, Venteo L, Kaplan H, Artemyev M, Oleinikov V, Klinov D, Pluot M, Cohen JH, Nabiev I (2004) Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Anal Biochem 324:60–67

    CAS  PubMed  Google Scholar 

  21. Gill R, Zayats M, Willner I (2008) Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed 47:7602–7625

    CAS  Google Scholar 

  22. Bear J, Charron G, Fernandez-Arguelles MT, Massadeh S, McNaughter P, Nann T (2011) In vivo applications of inorganic nanoparticles. In: Booss-Bavnbek B, Klosgen B, Larsen J, Pociot F, Renstrom E (eds) BetaSys. Systems biology, vol 2. Springer, New York, pp 185–220

    Google Scholar 

  23. Lu C, Chen G, Yu B, Cong H (2018) Recent advances of low biological toxicity Ag2S QDs for biomedical application. Adv Eng Mater 20:1700940

    Google Scholar 

  24. Rabani E (2001) Structure and electrostatic properties of passivated CdSe nanocrystals. J Chem Phys 115:1493

    CAS  Google Scholar 

  25. Jin Z, Hildebrandt N (2012) Semiconductor quantum dots for in vitro diagnostics and cellular imaging. Trends Biotechnol 30:394–403

    CAS  PubMed  Google Scholar 

  26. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239

    CAS  Google Scholar 

  27. Coto-Garcia AM, Fernandez-Arguelles MT, Costa-Fernandez JM, Sanz-Medel A, Valledor M, Campo JC, Ferrero FJ (2013) The influence of surface coating on the properties of water-soluble CdSe and CdSe/ZnS quantum dots. J Nanopart Res 15:1330

    Google Scholar 

  28. Fernandez-Arguelles MT, Costa-Fernandez JM, Pereiro R, Sanz-Medel A (2010) Organically modified quantum dots in chemical and biochemical analysis. In: Martinez-Manez R, Rurack K (eds) The supramolecular chemistry of organic–inorganic hybrid materials. Wiley, Hoboken, pp 377–403

    Google Scholar 

  29. Wagner MK, Li F, Li J, Li X, Le XC (2010) Use of quantum dots in the development of assays for cancer biomarkers. Anal Bioanal Chem 397:3213–3224

    CAS  PubMed  Google Scholar 

  30. Garcia-Cortes M, Sotelo E, Fernandez-Arguelles MT, Encinar JR, Costa-Fernandez JM, Sanz-Medel A (2017) Capping of Mn-doped ZnS quantum dots with DHLA for their stabilization in aqueous media: determination of the nanoparticle number concentration and surface ligand density. Langmuir 33:6333–6341

    CAS  PubMed  Google Scholar 

  31. Wu P, Yan XP (2013) Doped quantum dots for chemo/biosensing and bioimaging. Chem Soc Rev 42:5489–5521

    CAS  PubMed  Google Scholar 

  32. Panda SK, Hickey SG, Demir HV, Eychmüller A (2011) Bright white-light emitting manganese and copper co-doped ZnSe quantum dots. Angew Chem Int Ed 50:4432–4436

    CAS  Google Scholar 

  33. Ehlert O, Osvet A, Batentschuk M, Winnacker A, Nann T (2006) Synthesis and spectroscopic investigations of Cu- and Pb-doped colloidal ZnS nanocrystals. J Phys Chem B 110:23175–23178

    CAS  PubMed  Google Scholar 

  34. Sotelo-Gonzalez E, Fernandez-Arguelles MT, Costa-Fernandez JM, Sanz-Medel A (2012) Mn-doped ZnS quantum dots for the determination of acetone by phosphorescence attenuation. Anal Chim Acta 712:120–126

    CAS  PubMed  Google Scholar 

  35. Mohapatra S, Rout SR, Das RK, Nayak S, Ghosh SK (2016) Highly hydrophilic luminescent magnetic mesoporous carbon nanospheres for controlled release of anticancer drug and multimodal imaging. Langmuir 32:1611–1620

    CAS  PubMed  Google Scholar 

  36. Wang J, Zhang Z, Zha S, Zhu Y, Wu P, Ehrenberg B, Chen JY (2014) Carbon nanodots featuring efficient FRET for two-photon photodynamic cancer therapy with a low fs laser power density. Biomaterials 35:9372–9381

    CAS  PubMed  Google Scholar 

  37. Chong Y, Ma Y, Shen H, Tu X, Zhou X, Xu J, Dai J, Fan S, Zhang Z (2014) The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials 35:5041–5048

    CAS  PubMed  Google Scholar 

  38. Wang J, Zhang P, Huang C, Liu G, Leung KCF, Wáng YXJ (2015) High performance photoluminescent carbon dots for in vitro and in vivo bioimaging: effect of nitrogen doping ratios. Langmuir 31:8063–8073

    CAS  PubMed  Google Scholar 

  39. Vasimalai N, Vilas-Boas V, Gallo J, Cerqueira MF, Menéndez-Miranda M, Costa-Fernández JM, Diéguez L, Espiña B, Fernández-Argüelles MT (2018) Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition. Beilstein J Nanotechnol 9:530–544

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Righetto M, Privitera A, Fortunati I, Mosconi D, Zerbetto M, Curri ML, Corricelli M, Moretto A, Agnoli S, Franco L, Bozio R, Ferrante C (2017) Spectroscopic insights into carbon dot systems. J Phys Chem Lett 8:2236–2242

    CAS  PubMed  Google Scholar 

  41. Dong Y, Wang R, Li G, Chen C, Chi Y, Chen G (2012) Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal Chem 84:6220–6224

    CAS  PubMed  Google Scholar 

  42. Bouzas-Ramos D, Cigales-Canga J, Mayo JC, Sainz RM, Ruiz Encinar J, Costa-Fernandez JM (2019) Carbon quantum dots codoped with nitrogen and lanthanides for multimodal imaging. Adv Funct Mater 29:1903884

    Google Scholar 

  43. Manna L, Scher EC, Li LS, Alivisatos AP (2002) Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods. J Am Chem Soc 124:7136–7145

    CAS  PubMed  Google Scholar 

  44. Coto-Garcia AM, Valledor M, Campo JC, Ferrero FJ, Fernandez-Argüelles MT, Costa-Fernandez JM, Sanz-Medel A (2011) Dynamic analysis of the photoenhancement process of colloidal quantum dots with different surface modifications. Nanotechnology 22:9

    Google Scholar 

  45. Wu ZY, Zhao YL, Qiu FP, Li YP, Wang SW, Yang BH, Chen L, Sun JH, Wang JY (2009) Forming water-soluble CdSe/ZnS QDs using amphiphilic polymers, stearyl methacrylate/methylacrylate copolymers with different hydrophobic moiety ratios and their optical properties and stability. Colloid Surface A 350:121–129

    CAS  Google Scholar 

  46. Karakoti AS, Shukla R, Shanker R, Singh S (2015) Surface functionalization of quantum dots for biological applications. Adv Colloid Interface Sci 215:28–45

    CAS  PubMed  Google Scholar 

  47. Aubert T, Soenen SJ, Wassmuth D, Cirillo M, Van Deun R, Braeckmans K, Hens Z (2014) Bright and stable CdSe/CdS@SiO(2) nanoparticles suitable for long-term cell labelling. ACS Appl Mater Interfaces 6:11714–11723

    CAS  PubMed  Google Scholar 

  48. Palui G, Aldeek F, Wang WT, Mattoussi H (2015) Strategies for interfacing inorganic nanocrystals with biological systems based on polymer-coating. Chem Soc Rev 44:193–227

    CAS  PubMed  Google Scholar 

  49. Fernandez-Arguelles MT, Costa-Fernandez JM, Pereiro R, Sanz-Medel A (2008) Simple bio-conjugation of polymer-coated quantum dots with antibodies for fluorescence-based immunoassays. Analyst 133:444–447

    CAS  PubMed  Google Scholar 

  50. Potapova I, Mruk R, Prehl S, Zentel R, Basche T, Mews A (2003) Semiconductor nanocrystals with multifunctional polymer ligands. J Am Chem Soc 125:320–321

    CAS  PubMed  Google Scholar 

  51. Mattoussi H, Mauro JM, Goldman ER, Green TM, Anderson GP, Sundar VC, Bawendi MG (2001) Bioconjugation of highly luminescent colloidal CdSe-ZnS quantum dots with an engineered two-domain recombinant protein. Phys Status Solidi B 224:277–283

    CAS  Google Scholar 

  52. Du Y, Zhong Y, Donga J, Qiana C, Sunc S, Gaod L, Yang D (2019) The effect of PEG functionalization on the in vivo behavior and toxicity of CdTe quantum dots. RSC Advances 9:12218–12225

    CAS  Google Scholar 

  53. Beloglazova NV, Shmelin PS, Speranskaya ES, Lucas B, Helmbrecht C, Knopp D, Niessner R, De Saeger S, Goryacheva IY (2013) Quantum dot loaded liposomes as fluorescent labels for immunoassay. Anal Chem 85:7197–7204

    CAS  PubMed  Google Scholar 

  54. Zavari-Nematabad A, Alizadeh-Ghodsi M, Hamishehkar H, Alipour E, Pilehvar-Soltanahmadi Y, Zarghami N (2017) Development of quantum-dot-encapsulated liposome-based optical nanobiosensor for detection of telomerase activity without target amplification. Anal Bioanal Chem 409:1301–1310

    CAS  PubMed  Google Scholar 

  55. Kim MW, Jeong HY, Kang SJ, Choi MJ, You YM, Im CS, Lee TS, Song IH, Lee CG, Rhee KJ, Lee YK, Park YS (2017) Cancer-targeted nucleic acid delivery and quantum dot imaging using EGF receptor aptamer-conjugated lipid nanoparticles. Sci Rep 7: 9474. https://doi.org/10.1038/s41598-017-09555-w

  56. Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113:1904–2074

    CAS  PubMed  Google Scholar 

  57. Boles MA, Ling D, Hyeon T, Talapin DV (2016) The surface science of nanocrystals. Nat Mater 15:141–153

    CAS  PubMed  Google Scholar 

  58. Howes PD, Chandrawati R, Stevens MM (2014) Colloidal nanoparticles as advanced biological sensors. Science 346:1247390

    PubMed  Google Scholar 

  59. Hildebrandt N, Spillmann CM, Algar WR, Pons T, Stewart MH, Oh E, Susumu K, Díaz SA, Delehanty JB, Medintz IL (2017) Energy transfer with semiconductor quantum dot bioconjugates: a versatile platform for biosensing, energy harvesting, and other developing applications. Chem Rev 117:536–711

    CAS  PubMed  Google Scholar 

  60. Xia X-R, Monteiro-Riviere NA, Riviere JE (2010) An index for characterization of nanomaterials in biological systems. Nat Nanotechnol 5:671–675

    CAS  PubMed  Google Scholar 

  61. Zhang F, Lees E, Amin F, Rivera-Gil P, Yang F (2011) Polymer-coated nanoparticles: a universal tool for biolabelling experiments. Small 7:3113–3127

    CAS  PubMed  Google Scholar 

  62. Foubert A, Beloglazova NV, Rajkovic A, Sas B, Madder A, Goryacheva IY, De Saeger S (2016) Bioconjugation of quantum dots: review and impact on future application”. Trends Anal Chem 83:31–48

    CAS  Google Scholar 

  63. Karakoti AS, Shukla R, Shanker R, Singh S (2015) Surface functionalization of quantum dots for biological applications. Adv Colloid Interface 215:28–45

    CAS  Google Scholar 

  64. Pedrero M, Campuzano S, Pingarrón JM (2017) Electrochemical (bio)sensing of clinical markers using quantum dots. Electroanalysis 29:24–37

    CAS  Google Scholar 

  65. Liu W, Li Ch, Ren Y, Sun X, Pan W, Li Y, Wang J, Wang W (2016) Carbon dots: surface engineering and applications. J Mater Chem B 4:5772–5788

    CAS  Google Scholar 

  66. Zhou D, Lin M, Chen Z, Sun H, Zhang H, Sun H, Yang B (2011) Simple synthesis of highly luminescent water-soluble CdTe quantum dots with controllable surface functionality. Chem Mater 23:4857–4862

    CAS  Google Scholar 

  67. Heuer-Jungemann A, Feliu N, Bakaimi I, Hamaly M, Alkilany A, Chakraborty I, Masood A, Casula MF, Kostopoulou A, Oh E, Susumu K, Stewart MH, Medintz IL, Stratakis E, Parak WJ, Kanaras AG (2019) The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem Rev 119:4819–4880

    CAS  PubMed  Google Scholar 

  68. Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans R Soc A 368:1333–1383

    CAS  Google Scholar 

  69. Susumu K, Uyeda HT, Medintz IL, Pons T, Delehanty JB, Mattoussi H (2007) Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. J Am Chem Soc 129:13987–13996

    CAS  PubMed  Google Scholar 

  70. Zhou J, Liu Y, Tang J, Tang W (2017) Surface ligands engineering of semiconductor quantum dots for chemosensory and biological applications. Mater Today 20:360–376

    CAS  Google Scholar 

  71. Erathodiyil N, Ying JY (2011) Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res 44:925–935

    CAS  PubMed  Google Scholar 

  72. Yu WW, Chang E, Falkner JC, Zhang J, Al-Somali AM, Sayes CM, Johns J, Drezek R, Colvin VL (2007) Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J Am Chem Soc 129:2871–2879

    CAS  PubMed  Google Scholar 

  73. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46

    CAS  PubMed  Google Scholar 

  74. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    CAS  PubMed  Google Scholar 

  75. Park J, Lee J, Kwag J, Baek Y, Kim B, Yoon CJ, Bok S, Cho S-H, Kim KH, Ahn GO, Kim S (2015) Quantum dots in an amphiphilic polyethyleneimine derivative platform for cellular labeling, targeting, gene delivery, and ratiometric oxygen sensing. ACS Nano 9:6511–6521

    CAS  PubMed  Google Scholar 

  76. Zhou J, Yang Y, Zhang C-Y (2015) Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem Rev 115:11669–11717

    CAS  PubMed  Google Scholar 

  77. Qu W, Zuo W, Li N, Hou Y, Song Z, Gou G, Yang J (2017) Design of multifunctional liposome-quantum dot hybrid nanocarriers and their biomedical application. J Drug Target 25:661–672

    CAS  PubMed  Google Scholar 

  78. Green NM (1963) The use of [14C]biotin for kinetic studies and for assay. Biochem J 89:585–591

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43:737–962

    Google Scholar 

  80. Russ Algar W (2017) A brief introduction to traditional bioconjugate chemistry, Chap. 1. In: Algar WR, Dawson PE, Medintz IL (eds) Chemoselective and bioorthogonal ligation reactions: concepts and applications, vol 1. Wiley‐VCH Verlag GmbH. & Co. KGaA. In the other chapters of volume 1 the reactions mentioned in chapter 1 are dealt in detail

  81. Bioconjugation technical handbook. Reagents for crosslinking, immobilization, modification, biotinylation, and fluorescent labeling of proteins and peptides. Thermo Fisher Scientific. https://www.thermofisher.com/es/es/home/global/forms/life-science/bioconjugation-technical-handbook-download.html. Accessed 11 Mar 2020.

  82. Wagner AM, Knipe JM, Orive G, Peppas NA (2019) Quantum dots in biomedical applications. Acta Biomater 94:44–63

    CAS  PubMed  Google Scholar 

  83. Lišková M, Voráčová I, Klepárník K, Hezinová V, Přikryl J, Foret F (2011) Conjugation reactions in the preparations of quantum dot-based immunoluminescent probes for analysis of proteins by capillary electrophoresis. Anal Bioanal Chem 400:369–379

    PubMed  Google Scholar 

  84. Algar WR, Prasuhn DE, Stewart MH, Jennings TL, Blanco-Canosa JB, Dawson PE, Medintz IL (2011) The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjugate Chem 22:825–858

    CAS  Google Scholar 

  85. Massey M, Algar WR (2017) Nanoparticle bioconjugates: materials that benefit from chemoselective and bioorthogonal ligation chemistries. In: Algar WR, Dawson PE, Medintz IL (eds) Chemoselective and bioorthogonal ligation reactions: concepts and applications, vol 1. Wiley-VCH Verlag GmbH & Co. KGaA, Wienheim, pp 568–586

    Google Scholar 

  86. Row RD, Prescher JA (2018) Constructing new bioorthogonal reagents and reactions. Acc Chem Res 51:1073–1081

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Wen L, Qiu L, Wu Y, Hu X, Zhang X (2017) Aptamer-modified semiconductor quantum dots for biosensing applications. Sensors 17:1736

    Google Scholar 

  88. Zhang C, Ding C, Zhou G, Xue Q, Xian Y (2017) One-step synthesis of DNA functionalized cadmium-free quantum dots and its application in FRET-based protein sensing. Anal Chim Acta 957:63–69

    CAS  PubMed  Google Scholar 

  89. Long Y, Zhang LF, Zhang Y, Zhang CY (2012) Single quantum dot based nanosensor for renin assay. Anal Chem 84:8846–8852

    CAS  PubMed  Google Scholar 

  90. Sanvicens N, Pascual N, Fernández-Argüelles MT, Adrián J, Costa-Fernández JM, Sánchez-Baeza F, Sanz-Medel A, Marco MP (2011) Quantum dot-based array for sensitive detection of Escherichia coli. Anal Bioanal Chem 399:2755–2762

    CAS  PubMed  Google Scholar 

  91. Wang Y, Gao D, Zhang P, Gong P, Chen C, Gao G, Cai L (2014) A near infrared fluorescence resonance energy transfer based aptamer biosensor for insulin detection in human plasma. Chem Commun 50:811–813

    CAS  Google Scholar 

  92. Chen L, Tse WH, Chen Y, McDonald MW, Melling J, Zhang J (2017) Nanostructured biosensor for detecting glucose in tear by applying fluorescence resonance energy transfer quenching mechanism. Biosens Bioelectron 91:393–399

    CAS  PubMed  Google Scholar 

  93. Cayuela A, Soriano ML, Carrillo-Carrión C, Valcárcel M (2016) Semiconductor and carbon-based fluorescent nanodots: the need for consistency. Chem Commun 52:1311–1326

    CAS  Google Scholar 

  94. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775

    CAS  PubMed  Google Scholar 

  95. Wu S, Liu L, Li G, Jing F, Mao H, Jin Q, Zhai W, Zhang H, Zhao J, Jia C (2016) Multiplexed detection of lung cancer biomarkers based on quantum dots and microbeads. Talanta 156–157:48–54

    PubMed  Google Scholar 

  96. Zhang W, Hubbard A, Brunhoeber P, Wang Y, Tang L (2013) Automated multiplexing quantum dots in situ hybridization assay for simultaneous detection of ERG and PTEN gene status in prostate cancer. J Mol Diagn 15:754–764

    CAS  PubMed  Google Scholar 

  97. Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635

    CAS  PubMed  Google Scholar 

  98. Kim J, Biondi MJ, Feld JJ, Chan WCW (2016) Clinical validation of quantum dot barcode diagnostic technology. ACS Nano 10:4742–4753

    CAS  PubMed  Google Scholar 

  99. Zhao WW, Wang J, Zhu YC, Xu JJ, Chen HY (2015) Quantum dots: electrochemiluminescent and photoelectrochemical bioanalysis. Anal Chem 87:9520–9531

    CAS  PubMed  Google Scholar 

  100. Campuzano S, Yáñez-Sedeño P, Pingarrón JM (2019) Nanoparticles for nucleic-acid-based biosensing: opportunities, challenges, and prospects. Anal Bioanal Chem 411:1791–1806

    CAS  PubMed  Google Scholar 

  101. Zheng Y, Wang X, He S, Gao Z, Di Y, Lu K, Li K, Wang J (2019) Aptamer-DNA concatamer-quantum dots based electrochemical biosensing strategy for green and ultrasensitive detection of tumor cells via mercury free anodic stripping voltammetry. Biosens Bioelectron 126:261–268

    CAS  PubMed  Google Scholar 

  102. Li CC, Hu J, Lu M, Zhang CY (2018) Quantum dot-based electrochemical biosensor for stripping voltammetric detection of telomerase at the single-cell level. Biosens Bioelectron 122:51–57

    CAS  PubMed  Google Scholar 

  103. Liu Y, Zhu L, Kong J, Yang P, Liu B (2013) A quantum dots-based electrochemical assay towards the sensitive detection of tumor cells. Electrochem Comm 33:59–62

    Google Scholar 

  104. Martín-Yerga D, González-García MB, Costa-García A (2014) Electrochemical immunosensor for anti-tissue transglutaminase antibodies based on the in situ detection of quantum dots. Talanta 130:598–602

    PubMed  Google Scholar 

  105. Kong FY, Xu BY, Xu JJ, Chen HY (2013) Simultaneous electrochemical immunoassay using CdS/DNA and PbS/DNA nanochains as labels. Biosens Bioelectron 39:177–182

    CAS  PubMed  Google Scholar 

  106. Christodouleas DC, Kaur B, Chorti P (2018) From point-of-care testing to eHealth diagnostic devices (eDiagnostics). ACS Cent Sci 4:1600–1616

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Tavares AJ, Noor MO, Vannoy CH, Algar WR, Krull UJ (2012) On-chip transduction of nucleic acid hybridization using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer. Anal Chem 84:312–319

    CAS  PubMed  Google Scholar 

  108. Noor MO, Tavares AJ, Krull UJ (2013) On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer. Anal Chim Acta 788:148–157

    CAS  PubMed  Google Scholar 

  109. Kim C, Hoffmann G, Searson PC (2017) Integrated magnetic bead–quantum dot immunoassay for malaria detection. ACS Sens 2:766–772

    CAS  PubMed  Google Scholar 

  110. Medina-Sánchez M, Miserere S, Morales-Narváez E, Merkoçi A (2014) On-chip magneto-immunoassay for Alzheimer’s biomarker electrochemical detection by using quantum dots as labels. Biosens Bioelectron 54:279–284

    PubMed  Google Scholar 

  111. Krejcova L, Nejdl L, Merlos-Rodrigo MA, Zurek M, Matousek M, Hynek D, Zitka O, Kopel P, Adam V, Kizek R (2014) 3D printed chip for electrochemical detection of influenza virus labeled with CdS quantum dots. Biosens Bioelectron 54:421–427

    CAS  PubMed  Google Scholar 

  112. Zhou F, Lu M, Wang W, Bian ZP, Zhang JR, Zhu JJ (2010) Electrochemical immunosensor for simultaneous detection of dual cardiac markers based on a poly(dimethylsiloxane)-gold nanoparticles composite microfluidic chip: a proof of principle. Clin Chem 56:1701–1707

    CAS  PubMed  Google Scholar 

  113. Gong MM, Sinton D (2017) Turning the page: advancing paper-based microfluidics for broad diagnostic application. Chem Rev 117:8447–8480

    CAS  PubMed  Google Scholar 

  114. Roda A, Michelini E, Zangheri M, Di Fusco M, Calabria D, Simoni P (2016) Smartphone-based biosensors: a critical review and perspectives. Trends Anal Chem 79:317–325

    CAS  Google Scholar 

  115. Bahadır EB, Sezgintürk MK (2016) Lateral flow assays: principles, designs and labels. Trends Anal Chem 82:286–306

    Google Scholar 

  116. Martinez AW, Phillips ST, Butte M, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem 119:1340–1342

    Google Scholar 

  117. Urusov AE, Zherdev AV, Dzantiev BB (2019) Towards lateral flow quantitative assays: detection approaches. Biosensors 9:89

    PubMed Central  Google Scholar 

  118. Fu LM, Wang YN (2018) Detection methods and applications of microfluidic paper-based analytical devices. Trends Anal Chem 107:196–211

    CAS  Google Scholar 

  119. Sapountzi EA, Tragoulias SS, Kalogianni DP, Ioannou PC, Christopoulos TK (2015) Lateral flow devices for nucleic acid analysis exploiting quantum dots as reporters. Anal Chim Acta 864:48–54

    CAS  PubMed  Google Scholar 

  120. Savin M, Mihailescu C-M, Matei I, Stan D, Moldovan CA, Ion M, Baciu I (2018) A quantum dot-based lateral flow immunoassay for the sensitive detection of human heart fatty acid binding protein (hFABP) in human serum. Talanta 178:910–915

    CAS  PubMed  Google Scholar 

  121. Borse V, Srivastava R (2019) Fluorescence lateral flow immunoassay based point-of-care nanodiagnostics for orthopedic implant-associated infection. Sens Actuators B Chem 280:24–33

    CAS  Google Scholar 

  122. Qina W, Wang K, Xiao K, Hou Y, Lu W, Xu H, Wo Y, Feng S, Cui D (2017) Carcinoembryonic antigen detection with “Handing”-controlled fluorescence spectroscopy using a color matrix for point-of-care applications. Biosens Bioelectron 90:508–515

    Google Scholar 

  123. Liu J, Ji D, Meng H, Zhang L, Wang J, Huang Z, Chen J, Li J, Li Z (2018) A portable fluorescence biosensor for rapid and sensitive glutathione detection by using quantum dots-based lateral flow test strip. Sens Actuators B Chem 262:486–492

    CAS  Google Scholar 

  124. Yan X, Wang K, Lu W, Qin W, Cui D, He J (2016) CdSe/ZnS quantum dot-labeled lateral flow strips for rapid and quantitative detection of gastric cancer carbohydrate antigen 72-4. Nanoscale Res Lett 11:138

    PubMed  PubMed Central  Google Scholar 

  125. Deng X, Wang C, Gao Y, Li J, Wen W, Zhang X, Wang S (2018) Applying strand displacement amplification to quantum dots-based fluorescent lateral flow assay strips for HIV-DNA detection. Biosens Bioelectron 105:211–217

    PubMed  Google Scholar 

  126. Shah KG, Singh V, Kauffman P, Abe K, Yager P (2018) Mobile phone ratiometric imaging enables highly sensitive fluorescence lateral flow immunoassays without external optical filters. Anal Chem 90:6967–6974

    CAS  PubMed  Google Scholar 

  127. Wang C, Hou F, Man Y (2015) Simultaneous quantitative detection of multiple tumor markers with a rapid and sensitive multicolor quantum dots based immunochromatographic test strip. Biosens Bioelectron 68:156–162

    CAS  PubMed  Google Scholar 

  128. Wu F, Yuan H, Zhou C, Mao M, Liu Q, Shen H, Cen Y, Qin Z, Ma L, Li LS (2016) Multiplexed detection of influenza A virus subtype H5 and H9 via quantum dot-based immunoassay. Biosens Bioelectron 77:464–470

    CAS  PubMed  Google Scholar 

  129. Rong Z, Wang Q, Sun N, Jia X, Wang K, Xiao R, Wang S (2019) Smartphone-based fluorescent lateral flow immunoassay platform for highly sensitive point-of-care detection of Zika virus nonstructural protein 1. Anal Chim Acta 1055:140–147

    CAS  PubMed  Google Scholar 

  130. Li X, Li W, Yang Q, Gong X, Guo W, Dong C, Liu J, Xuan L, Chang J (2014) Rapid and quantitative detection of prostate specific antigen with a quantum dot nanobeads-based immunochromatography test strip. Appl Mater Interfaces 6:6406–6414

    CAS  Google Scholar 

  131. Petryayeva E, Algar WR (2015) Single-step bioassays in serum and whole blood with a smartphone, quantum dots and paper in-PDMS chip. Analyst 140:4037–4045

    CAS  PubMed  Google Scholar 

  132. Das P, Krull UJ (2017) Detection of a cancer biomarker protein on modified cellulose paper by fluorescence using aptamer-linked quantum dots. Analyst 142:3132–3135

    CAS  PubMed  Google Scholar 

  133. Noor MO, Hrovat D, Moazami-Goudarzi M, Espie GS, Krull UJ (2015) Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection. Anal Chim Acta 885:156–165

    CAS  PubMed  Google Scholar 

  134. Lin YY, Wang J, Liu G, Wu H, Wai CM, Lin Y (2008) A nanoparticle label/immunochromatographic electrochemical biosensor for rapid and sensitive detection of prostate-specific antigen. Biosens Bioelectron 23(11):1659–1665

    CAS  PubMed  Google Scholar 

  135. Kokkinos CT, Giokas DL, Economou AS, Petrou PS, Kakabakos SE (2018) Paper-based microfluidic device with integrated sputtered electrodes for stripping voltammetric determination of DNA via quantum dot labeling. Anal Chem 90:1092–1097

    CAS  PubMed  Google Scholar 

  136. Cincotto FH, Fava EL, Moraes FC, Fatibello-Filho O, Faria RC (2019) A new disposable microfluidic electrochemical paper-based device for the simultaneous determination of clinical biomarkers. Talanta 195:62–68

    CAS  PubMed  Google Scholar 

  137. Yang M, Liu Y, Jiang X (2019) Barcoded point-of-care bioassays. Chem Soc Rev 48:850–884

    CAS  PubMed  Google Scholar 

  138. Gao Y, Lam AWY, Chan WCW (2013) Automating quantum dot barcode assays using microfluidics and magnetism for the development of a point-of-care device. ACS Appl Mater Interfaces 5:2853–2860

    CAS  PubMed  Google Scholar 

  139. Ming K, Kim J, Biondi MJ, Syed A, Chen K, Lam A, Ostrowski M, Rebbapragada A, Feld JJ, Chan WCW (2015) Integrated quantum dot barcode smartphone optical device for wireless multiplexed diagnosis of infected patients. ACS Nano 9:3060–3074

    CAS  PubMed  Google Scholar 

  140. Wegner KD, Hildebrandt N (2015) Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 44:4792–4834

    CAS  PubMed  Google Scholar 

  141. Zhao M-X, Zeng E-Z (2015) Application of functional quantum dot nanoparticles as fluorescence probes in cell labeling and tumor diagnostic imaging. Nanoscale Res Lett 10:171

    PubMed  PubMed Central  Google Scholar 

  142. Liu YS, Sun Y, Vernier PT, Liang CH, Chong SYC, Gundersen MA (2007) pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells. J Phys Chem C 111:2872–2878

    CAS  Google Scholar 

  143. Ding H, Yong K-T, Law W-C, Roy I, Hu R, Wu F, Zhao W, Huang K, Erogbogbo F, Bergeya EJ, Prasad PN (2011) Non-invasive tumor detection in small animals using novel functional Pluronic nanomicelles conjugated with anti-mesothelin antibody. Nanoscale 3:1813–1822

    CAS  PubMed  Google Scholar 

  144. Zhang LW, Bäumer W, Monteiro-Riviere NA (2011) Cellular uptake mechanisms and toxicity of quantum dots in dendritic cells. Nanomedicine 6:777–791

    CAS  PubMed  Google Scholar 

  145. Xiao Y, Forry SP, Gao X, Holbrook RD, Telford WG, Tona A (2010) Dynamics and mechanisms of quantum dot nanoparticle cellular uptake. J Nanobiotechnol 8:13

    Google Scholar 

  146. Igor L, Medintz HTU, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Google Scholar 

  147. Rosenthal SJ, Chang JC, Kovtun O, McBride JR, Tomlinson ID (2011) Biocompatible quantum dots for biological applications. Chem Biol 18:10–24

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Ni X, Castanares M, Mukherjee A, Lupold SE (2011) Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem 18:4206–4214

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Tang J, Huang N, Zhang X, Zhou T, Tan Y, Pi J, Pi L, Cheng S, Zheng H, Cheng Y (2017) Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma. Int J Nanomed 12:3899–3911

    CAS  Google Scholar 

  150. McHugh KJ, Jing L, Behrens AM, Jayawardena S, Tang W, Gao M, Langer R, Jaklenec A (2018) Biocompatible semiconductor quantum dots as cancer imaging agents. Adv Mater 30:e1706356

    PubMed  Google Scholar 

  151. Aswathy RG, Yoshida Y, Maekawa T, Kumar DS (2010) Near-infrared quantum dots for deep tissue imaging. Anal Bioanal Chem 397:1417–1435

    CAS  PubMed  Google Scholar 

  152. Allen PM, Liu W, Chauhan VP, Lee J, Ting AY, Fukumura D, Jain RK, Bawendi MG (2010) InAs(ZnCdS) quantum dots optimized for biological imaging in the near-infrared. J Am Chem Soc 132:470–471

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Liu XY, Braun GB, Zhong HZ, Hall DJ, Han WL, Qin MD, Zhao CZ, Wang MN, She ZG, Cao CB, Sailor MJ, Stallcup WB, Ruoslahti E, Sugahara KN (2016) Tumor-targeted multimodal optical imaging with versatile cadmium-free quantum dots. Adv Funct Mater 26:267–276

    CAS  PubMed  Google Scholar 

  154. Shen Y, Lifante J, Ximendes E, Santos HDA, Ruiz D, Juárez BH, Gutiérrez IZ, Vera VT, Retama JR, Rodríguez EM, Ortgies DH (2019) Perspectives for Ag2S NIR-II nanoparticles in biomedicine: from imaging to multifunctionality Nanoscale. Jaque D, Benayas A, del Rosal B 11:19251–19264. https://doi.org/10.1039/C9NR05733A

    Article  CAS  Google Scholar 

  155. Wang Z, Ma Y, Yu X, Niu Q, Han Z, Wang H, Li T, Fu D, Achilefu S, Qian Z, Gu Y (2018) Targeting CXCR4–CXCL12 axis for visualizing, predicting, and inhibiting breast cancer metastasis with theranostic AMD3100–Ag2S quantum dot probe. Adv Funct Mater 28:1800732

    Google Scholar 

  156. Hu J, Xie M, Wen C-Y, Zhang Z-L, Xie H-Y, Liu A-A, Chen Y-Y, Zhou S-M, Pang DW (2011) A multicomponent recognition and separation system established via fluorescent, magnetic, dualencoded multifunctional bioprobes. Biomaterials 32:1177–1184

    CAS  PubMed  Google Scholar 

  157. Xu H-L, Yang JJ, ZhuGe DL, Lin MT, Zhu QY, Jin BH, Tong MQ, Shen B-X, Xiao J, Zhao Y-Z (2018) Glioma-targeted delivery of a theranostic liposome integrated with quantum dots, superparamagnetic iron oxide, and cilengitide for dual-imaging guiding cancer surgery. Adv Healthc Mater 7:1701130

    Google Scholar 

  158. Deng Y, Xu A, Yu Y, Fu C, Liang G (2018) Biomedical applications of fluorescent and magnetic resonance imaging dual-modality probe. ChemBioChem 20:499

    PubMed  Google Scholar 

  159. Yang Y, Lin L, Jing L, Yue X, Dai Z (2017) CuInS2/ZnS quantum dots conjugating Gd(III) chelates for near-infrared fluorescence and magnetic resonance bimodal imaging. ACS Appl Mater Interfaces 9:23450–23457

    CAS  PubMed  Google Scholar 

  160. Estelrich J, Sánchez-Martín MJ, Busquets MA (2015) Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomed 10:1727–1741

    CAS  Google Scholar 

  161. Garcia-Cortes M, Ruiz Encinar J, Costa-Fernandez JM, Sanz-Medel A (2016) Highly sensitive nanoparticle-based immunoassays with elemental detection: application to prostate-specific antigen quantification. Biosens Bioelectron 85:128–134

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from the FC-GRUPIN-ID/2018/000166 project (Asturias Regional Government, Spain) and the CTQ2017–86994-R and CTQ2016–79412-P projects (MINECO, Spain) is gratefully acknowledged. A. de la Escosura-Muñiz acknowledges the MICINN (Spain) for the “Ramón y Cajal” Research Fellow (RyC-2016-20299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Manuel Costa-Fernandez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Surface-modified Nanobiomaterials for Electrochemical and Biomedicine Applications”; edited by “Alain R. Puente-Santiago, Daily Rodríguez-Padrón”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-González, M., de la Escosura-Muñiz, A., Fernandez-Argüelles, M.T. et al. Quantum Dot Bioconjugates for Diagnostic Applications. Top Curr Chem (Z) 378, 35 (2020). https://doi.org/10.1007/s41061-020-0296-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-020-0296-6

Keywords

Navigation