Skip to main content
Log in

Research Progress of FeSe-based Superconductors Containing Ammonia/Organic Molecules Intercalation

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

As an important part of Fe-based superconductors, FeSe-based superconductors have become a hot field in condensed matter physics. The exploration and preparation of such superconducting materials form the basis of studying their physical properties. With the help of various alkali/alkaline-earth/rare-earth metals, different kinds of ammonia/organic molecules have been intercalated into the FeSe layer to form a large number of FeSe-based superconductors with diverse structures and different layer spacing. Metal cations can effectively provide carriers to the superconducting FeSe layer, thus significantly increasing the superconducting transition temperature. The orientation of organic molecules often plays an important role in structural modification and can be used to fine-tune superconductivity. This review introduces the crystal structures and superconducting properties of several typical FeSe-based superconductors containing ammonia/organic molecules intercalation discovered in recent years, and the effects of FeSe layer spacing and superconducting transition temperature are briefly summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1

Reproduced from Ref. [78]. Copyright 2013 Chinese Physical Society and IOP Publishing Ltd)

Fig. 2

Reproduced from Ref. [105]. Copyright 2020 American Chemical Society)

Fig. 3

Reproduced from Ref. [120]. Copyright 2015 Chinese Physical Society and IOP Publishing Ltd)

Fig. 4

Reproduced from Ref. [122]. Copyright 2015 American Physical Society)

Fig. 5

a Reproduced from Ref. [9]. Copyright 2008 National Academy of Science of the USA. bd Reproduced from Ref. [134]. Copyright 2008 Royal Society of Chemistry

Fig. 6

a Reproduced from Ref. [45]. Copyright 2013 Macmillan Publishers Ltd. b Reproduced from Ref. [80]. Copyright 2014 American Chemical Society

Fig. 7

a,b Reproduced from Ref. [136]. Copyright 2015 Royal Society of Chemistry. c Reproduced from Ref. [78]. Copyright 2013 Chinese Physical Society and IOP Publishing Ltd

Fig. 8

a Reproduced from Ref. [49]. Copyright 2012 IOP Publishing Ltd, Printed in the UK and the USA. b Reproduced from Ref. [137]. Copyright 2016 Elsevier B.V.)

Fig. 9

a Reproduced from Ref. [110]. Copyright 2017 Royal Society of Chemistry. b Reproduced from Ref. [98]. Copyright 2018 American Physical Society)

Fig. 10

Reproduced from Ref. [104]. Copyright 2018 Science China Press and Springer-Verlag GmbH Germany)

Fig. 11

a, b Reproduced from Ref. [89]. Copyright 2017 American Physical Society. c, d Reproduced from Ref. [20]. Copyright 2018 American Physical Society

Fig. 12

a, b Reproduced from Ref. [84]. Copyright 2018 AIP publishing. c, d Reproduced from Ref. [82]. Copyright 2013 American Physical Society

Fig. 13

All of these figures are reproduced from Ref. [85]. Copyright 2019 American Chemical Society

Fig. 14

a, b Reproduced from Ref. [109]. Copyright 2018 American Physical Society. c Reproduced from Ref. [161]. Copyright 2020 EPLA. d Reproduced from Ref. [111]. Copyright 2018 IOP Publishing. e, f Reproduced from Ref. [162]. Copyright 2020 American Physical Society

Fig. 15

a Reproduced from Ref. [107]. Copyright 2021 American Chemical Society. b, c Reproduced from Ref. [108]. Copyright 2021 Chinese Physical Society and IOP Publishing Ltd

Fig. 16

Similar content being viewed by others

References

  1. Kamihara Y, Watanabe T, Hirano M, Hosono H (2008) Iron-based layered superconductor LaO1-xFxFeAs (x=0.05–0.12) with Tc=26 K. J Am Chem Soc 130(11):3296–3297

    Article  CAS  PubMed  Google Scholar 

  2. Fujitsu S, Matsuishi S, Hosono H (2012) Iron based superconductors processing and properties. Int Mater Rev 57(6):311–327

    Article  CAS  Google Scholar 

  3. Dai PC (2015) Antiferromagnetic order and spin dynamics in iron-based superconductors. Rev Mod Phys 87(3):855–896

    Article  CAS  Google Scholar 

  4. Hosono H, Yamamoto A, Hiramatsu H, Ma YW (2018) Recent advances in iron-based superconductors toward applications. Mater Today 21(3):278–302

    Article  CAS  Google Scholar 

  5. Chen XH, Wu T, Wu G, Liu RH, Chen H, Fang DF (2008) Superconductivity at 43 K in SmFeAsO1-xFx. Nature 453(7196):761–762

    Article  CAS  PubMed  Google Scholar 

  6. Ren ZA, Lu W, Yang J, Yi W, Shen XL, Li ZC, Che GC, Dong XL, Sun LL, Zhou F, Zhao ZX (2008) Superconductivity at 55K in iron-based F-doped layered quaternary compound SmO1-xFxFeAs. Chin Phys Lett 25(6):2215–2216

    Article  CAS  Google Scholar 

  7. Wang C, Li LJ, Chi S, Zhu ZW, Ren Z, Li YK, Wang YT, Lin X, Luo YK, Jiang SA, Xu XF, Cao GH, Xu ZA (2008) Thorium-doping-induced superconductivity up to 56 K in Gd1-xThxFeAsO. Europhys Lett 83(6):67006

    Article  Google Scholar 

  8. Wen HH, Mu G, Fang L, Yang H, Zhu XY (2008) Superconductivity at 25K in hole-doped La1-xSrxOFeAs. Europhys Lett 82(1):17009

    Article  Google Scholar 

  9. Hsu FC, Luo JY, Yeh KW, Chen TK, Huang TW, Wu PM, Lee YC, Huang YL, Chu YY, Yan DC, Wu MK (2008) Superconductivity in the PbO-type structure α-FeSe. Proc Natl Acad Sci USA 105(38):14262–14264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang XC, Liu QQ, Lv YX, Gao WB, Yang LX, Yu RC, Li FY, Jin CQ (2008) The superconductivity at 18 K in LiFeAs system. Solid State Commun 148(11–12):538–540

    Article  CAS  Google Scholar 

  11. Parker DR, Pitcher MJ, Baker PJ, Franke I, Lancaster T, Blundell SJ, Clarke SJ (2009) Structure, antiferromagnetism and superconductivity of the layered iron arsenide NaFeAs. Chem Commun 16:2189–2191

    Article  Google Scholar 

  12. Zhu XY, Han F, Mu G, Zeng B, Cheng P, Shen B, Wen HH (2009) Sr3Sc2Fe2As2O5 as a possible parent compound for FeAs-based superconductors. Phys Rev B 79(2):024516

    Article  Google Scholar 

  13. Xie YL, Liu RH, Wu T, Wu G, Song YA, Tan D, Wang XF, Chen H, Ying JJ, Yan YJ, Li QJ, Chen XH (2009) Structure and physical properties of the new layered oxypnictides Sr4Sc2O6M2As2 (M=Fe and Co). Europhys Lett 86(5):57007

    Article  Google Scholar 

  14. Sefat AS, Singh DJ, Garlea VO, Zuev YL, McGuire MA, Sales BC (2011) Variation of physical properties in the nominal Sr4V2O6Fe2As2. Phys C-Supercond Appl 471(5–6):143–149

    Article  CAS  Google Scholar 

  15. Zhu XY, Han F, Mu G, Cheng P, Shen B, Zeng B, Wen HH (2009) Transition of stoichiometric Sr2VO3FeAs to a superconducting state at 37.2 K. Phys Rev B 79(22):220512

    Article  Google Scholar 

  16. Shirage PM, Kihou K, Lee CH, Kito H, Eisaki H, Iyo A (2010) Superconductivity at 28.3 and 17.1 K in (Ca4Al2O6-y)(Fe2Pn2) (Pn=As and P). Appl Phys Lett 97(17):172506

    Article  Google Scholar 

  17. Sun YL, Jiang H, Zhai HF, Bao JK, Jiao WH, Tao Q, Shen CY, Zeng YW, Xu ZA, Cao GH (2012) Ba2Ti2Fe2As4O: a new superconductor containing Fe2As2 layers and Ti2O sheets. J Am Chem Soc 134(31):12893–12896

    Article  CAS  PubMed  Google Scholar 

  18. Lai XF, Zhang H, Wang YQ, Wang X, Zhang X, Lin JH, Huang FQ (2015) Observation of superconductivity in tetragonal FeS. J Am Chem Soc 137(32):10148–10151

    Article  CAS  PubMed  Google Scholar 

  19. Wang C, Wang ZC, Mei YX, Li YK, Li L, Tang ZT, Liu Y, Zhang P, Zhai HF, Xu ZA, Cao GH (2016) A new ZrCuSiAs-Type superconductor: ThFeAsN. J Am Chem Soc 138(7):2170–2173

    Article  CAS  PubMed  Google Scholar 

  20. Shahi P, Sun JP, Wang SH, Jiao YY, Chen KY, Sun SS, Lei HC, Uwatoko Y, Wang BS, Cheng JG (2018) High-Tc superconductivity up to 55 K under high pressure in a heavily electron doped Li0.36(NH3)yFe2Se2 single crystal. Phys Rev B 97(2):020508

    Article  CAS  Google Scholar 

  21. Lin D, Xu HS, Luo JJ, Huang HL, Lu YL, Tang KB (2019) A self-doped oxygen-free high-critical-temperature (High Tc) superconductor: SmFFeAs. Inorg Chem 58(22):15401–15409

    Article  CAS  PubMed  Google Scholar 

  22. Wen HH, Li SL (2011) Materials and novel superconductivity in iron Pnictide superconductors. Annu Rev Condens Matter Phys 2:121–140

    Article  CAS  Google Scholar 

  23. Kordyuk AA (2012) Iron-based superconductors: Magnetism, superconductivity, and electronic structure. Low Temp Phys 38(9):888–899

    Article  CAS  Google Scholar 

  24. Dong JK, Zhou SY, Guan TY, Zhang H, Dai YF, Qiu X, Wang XF, He Y, Chen XH, Li SY (2010) Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2. Phys Rev Lett 104(8):087005

    Article  CAS  PubMed  Google Scholar 

  25. Nakai Y, Iye T, Kitagawa S, Ishida K, Ikeda H, Kasahara S, Shishido H, Shibauchi T, Matsuda Y, Terashima T (2010) Unconventional superconductivity and antiferromagnetic quantum critical behavior in the isovalent-doped BaFe2(As1-xPx)2. Phys Rev Lett 105(10):107003

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Y, Ye ZR, Ge QQ, Chen F, Jiang J, Xu M, Xie BP, Feng DL (2012) Nodal superconducting-gap structure in ferropnictide superconductor BaFe2(As0.7P0.3)2. Nat Phys 8(5):371–375

    Article  CAS  Google Scholar 

  27. Hashimoto K, Kasahara S, Katsumata R, Mizukami Y, Yamashita M, Ikeda H, Terashima T, Carrington A, Matsuda Y, Shibauchi T (2012) Nodal versus nodeless behaviors of the order parameters of LiFeP and LiFeAs superconductors from magnetic penetration-depth measurements. Phys Rev Lett 108(4):047003

    Article  CAS  PubMed  Google Scholar 

  28. Qian T, Wang XP, Jin WC, Zhang P, Richard P, Xu G, Dai X, Fang Z, Guo JG, Chen XL, Ding H (2011) Absence of a holelike fermi surface for the iron-based K0.8Fe1.7Se2 superconductor revealed by angle-resolved photoemission spectroscopy. Phys Rev Lett 106(18):187001

    Article  CAS  PubMed  Google Scholar 

  29. Mou DX, Liu SY, Jia XW, He JF, Peng YY, Zhao L, Yu L, Liu GD, He SL, Dong XL, Zhang J, Wang HD, Dong CH, Fang MH, Wang XY, Peng QJ, Wang ZM, Zhang SJ, Yang F, Xu ZY, Chen CT, Zhou XJ (2011) Distinct fermi surface topology and nodeless superconducting gap in a (Tl0.58Rb0.42)Fe1.72Se2 superconductor. Phys Rev Lett 106(10):107001

    Article  PubMed  Google Scholar 

  30. Zhang Y, Yang LX, Xu M, Ye ZR, Chen F, He C, Xu HC, Jiang J, Xie BP, Ying JJ, Wang XF, Chen XH, Hu JP, Matsunami M, Kimura S, Feng DL (2011) Nodeless superconducting gap in AxFe2Se2 (A = K, Cs) revealed by angle-resolved photoemission spectroscopy. Nat Mater 10(4):273–277

    Article  CAS  PubMed  Google Scholar 

  31. Shein IR, Ivanovskii AL (2011) Electronic structure and fermi surface of new K intercalated iron selenide superconductor KxFe2Se2. Phys Lett A 375(6):1028–1031

    Article  CAS  Google Scholar 

  32. Sun Y, Park A, Pyon S, Tamegai T, Kitamura H (2017) Symmetry-unprotected nodes or gap minima in the s(++) state of monocrystalline FeSe. Phys Rev B 96(14):140505(R)

    Article  Google Scholar 

  33. Takeuchi L, Yamakawa Y, Kontani H (2018) Self-energy driven resonancelike inelastic neutron spectrum in the s(++)-wave state in Fe-based superconductors. Phys Rev B 98(16):165143

    Article  CAS  Google Scholar 

  34. Zhang TZ, Bao WC, Chen C, Li D, Lu ZYW, Hu YN, Yang WT, Zhao DM, Yan YJ, Dong XL, Wang QH, Zhang T, Feng DL (2021) Observation of distinct spatial distributions of the zero and nonzero energy vortex modes in (Li084Fe016)OHFeSe. Phys Rev Lett 126(12):127001

    Article  CAS  PubMed  Google Scholar 

  35. Mizuguchi Y, Tomioka F, Tsuda S, Yamaguchi T, Takano Y (2008) Superconductivity at 27 K in tetragonal FeSe under high pressure. Appl Phys Lett 93(15):152505

    Article  Google Scholar 

  36. Medvedev S, McQueen TM, Troyan IA, Palasyuk T, Eremets MI, Cava RJ, Naghavi S, Casper F, Ksenofontov V, Wortmann G, Felser C (2009) Electronic and magnetic phase diagram of beta-Fe1.01Se with superconductivity at 36.7 K under pressure. Nat Mater 8(8):630–633

    Article  CAS  PubMed  Google Scholar 

  37. Braithwaite D, Salce B, Lapertot G, Bourdarot F, Marin C, Aoki D, Hanfland M (2009) Superconducting and normal phases of FeSe single crystals at high pressure. J Phys Condens Matter 21(23):232202

    Article  CAS  PubMed  Google Scholar 

  38. Sun JP, Ye GZ, Shahi P, Yan JQ, Matsuura K, Kontani H, Zhang GM, Zhou Q, Sales BC, Shibauchi T, Uwatoko Y, Singh DJ, Cheng JG (2017) High-Tc superconductivity in FeSe at high pressure: dominant hole carriers and enhanced spin fluctuations. Phys Rev Lett 118(14):147004

    Article  CAS  PubMed  Google Scholar 

  39. Sun JP, Matsuura K, Ye GZ, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan JQ, Sales BC, Uwatoko Y, Cheng JG, Shibauchi T (2016) Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe. Nat Commun 7:12146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guo JG, Jin SF, Wang G, Wang SC, Zhu KX, Zhou TT, He M, Chen XL (2010) Superconductivity in the iron selenide KxFe2Se2 (0≤x≤1.0). Phys Rev B 82(18):180520

    Article  Google Scholar 

  41. Ye F, Chi S, Bao W, Wang XF, Ying JJ, Chen XH, Wang HD, Dong CH, Fang MH (2011) Common crystalline and magnetic structure of superconducting A2Fe4Se5 (A=K, Rb, Cs, Tl) single crystals measured using neutron diffraction. Phys Rev Lett 107(13):137003

    Article  CAS  PubMed  Google Scholar 

  42. Ying TP, Chen XL, Wang G, Jin SF, Zhou TT, Lai XF, Zhang H, Wang WY (2012) Observation of superconductivity at 30 similar to 46K in AxFe2Se2 (A=Li, Na, Ba, Sr, Ca, Yb, and Eu). Sci Rep 2:426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krzton-Maziopa A, Shermadini Z, Pomjakushina E, Pomjakushin V, Bendele M, Amato A, Khasanov R, Luetkens H, Conder K (2011) Synthesis and crystal growth of Cs0.8(FeSe0.98)2: a new iron-based superconductor with Tc=27 K. J Phys Condens Matter 23(5):052203

    Article  CAS  PubMed  Google Scholar 

  44. Wang AF, Ying JJ, Yan YJ, Liu RH, Luo XG, Li ZY, Wang XF, Zhang M, Ye GJ, Cheng P, Xiang ZJ, Chen XH (2011) Superconductivity at 32 K in single-crystalline RbxFe2-ySe2. Phys Rev B 83(6):060512

    Article  Google Scholar 

  45. Burrard-Lucas M, Free DG, Sedlmaier SJ, Wright JD, Cassidy SJ, Hara Y, Corkett AJ, Lancaster T, Baker PJ, Blundell SJ, Clarke SJ (2013) Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer. Nat Mater 12(1):15–19

    Article  CAS  PubMed  Google Scholar 

  46. Guo JG, Lei HC, Hayashi F, Hosono H (2014) Superconductivity and phase instability of NH3-free Na-intercalated FeSe1-zSz. Nat Commun 5:4756

    Article  CAS  PubMed  Google Scholar 

  47. Hayashi F, Lei HC, Guo JG, Hosono H (2015) Modulation effect of interlayer spacing on the superconductivity of electron-doped FeSe-based intercalates. Inorg Chem 54(7):3346–3351

    Article  CAS  PubMed  Google Scholar 

  48. Scheidt EW, Hathwar VR, Schmitz D, Dunbar A, Scherer W, Mayr F, Tsurkan V, Deisenhofer J, Loidl A (2012) Superconductivity at Tc=44 K in LixFe2Se2(NH3)y. Eur Phys J B 85(8):279

    Article  Google Scholar 

  49. Krzton-Maziopa A, Pomjakushina EV, Pomjakushin VY, von Rohr F, Schilling A, Conder K (2012) Synthesis of a new alkali metal-organic solvent intercalated iron selenide superconductor with Tc≈45 K. J Phys Condens Matter 24(38):382202

    Article  CAS  PubMed  Google Scholar 

  50. Ying TP, Chen XL, Wang G, Jin SF, Lai XF, Zhou TT, Zhang H, Shen SJ, Wang WY (2013) Superconducting phases in potassium-intercalated iron selenides. J Am Chem Soc 135(8):2951–2954

    Article  CAS  PubMed  Google Scholar 

  51. Noji T, Hatakeda T, Hosono S, Kawamata T, Kato M, Koike Y (2014) Synthesis and post-annealing effects of alkaline-metal-ethylenediamine-intercalated superconductors Ax(C2H8N2)yFe2-zSe2 (A=Li, Na) with Tc=45 K. Phys C Supercond Appl 504:8–11

    Article  CAS  Google Scholar 

  52. Hosono S, Noji T, Hatakeda T, Kawamata T, Kato M, Koike Y (2014) New intercalation superconductor Lix(C6H16N2)yFe2-zSe2 with a very large interlayer-spacing and Tc=38K. J Phys Soc Jpn 83(11):113704

    Article  Google Scholar 

  53. Hatakeda T, Noji T, Sato K, Kawamata T, Kato M, Koike Y (2016) New alkali-metal- and 2-phenethylamine-intercalated superconductors Ax(C8H11N)yFe1-zSe (A=Li, Na) with the largest interlayer spacings and Tc similar to 40K. J Phys Soc Jpn 85(10):103702

    Article  Google Scholar 

  54. Hatakeda T, Noji T, Kawamata T, Kato M, Koike Y (2013) New Li-Ethylenediamine-Intercalated Superconductor Lix(C2H8N2)yFe2-zSe2 with Tc=45 K. J Phys Soc Jpn 82(12):123705

    Article  Google Scholar 

  55. Hatakeda T, Noji T, Hosono S, Kawamata T, Kato M, Koike Y (2014) In Resistive superconducting transition and effects of atmospheric exposure in the intercalation superconductor Ax(C2H8N2)yFe2-zSe2 (A=Li, Na). J Phys Conf Ser 568:022032

    Article  Google Scholar 

  56. Kajita T, Kawamata T, Noji T, Hatakeda T, Kato M, Koike Y, Itoh T (2015) Electrochemical Na-intercalation-induced high-temperature superconductivity in FeSe. Phys C Supercond Appl 519:104–107

    Article  CAS  Google Scholar 

  57. Xu HS, Wang XX, Gao Z, Huang HL, Long YZ, Lu YL, Tang KB (2018) New alkali-metal and 1,2-Diaminopropane intercalated superconductor Lix(C3H10N2)yFe2Se2 with Tc=45 K. J Alloy Compd 735:2053–2057

    Article  CAS  Google Scholar 

  58. Xu HS, Wang XX, Tang LL, Yang KP, Yang D, Long YZ, Tang KB (2018) New synthetic route to synthesize Li and 1,2-diaminopropane-intercalated iron-based superconductor with Tc=37K. ChemistrySelect 3(27):7757–7762

    Article  CAS  Google Scholar 

  59. Wang QY, Li Z, Zhang WH, Zhang ZC, Zhang JS, Li W, Ding H, Ou YB, Deng P, Chang K, Wen J, Song CL, He K, Jia JF, Ji SH, Wang YY, Wang LL, Chen X, Ma XC, Xue QK (2012) Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3. Chin Phys Lett 29(3):037402

    Article  Google Scholar 

  60. Chen C, Liu Q, Bao WC, Yan YJ, Wang QH, Zhang T, Feng DL (2020) Observation of discrete conventional caroli-de gennes-matricon states in the vortex core of single-layer FeSe/SrTiO3. Phys Rev Lett 124(9):097001

    Article  CAS  PubMed  Google Scholar 

  61. Yuan YH, Fan XM, Wang XT, He K, Zhang Y, Xue QK, Li W (2021) Incommensurate smectic phase in close proximity to the high-Tc superconductor FeSe/SrTiO3. Nat Commun 12(1):2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. He SL, He JF, Zhang WH, Zhao L, Liu DF, Liu X, Mou DX, Ou YB, Wang QY, Li Z, Wang LL, Peng YY, Liu Y, Chen CY, Yu L, Liu GD, Dong XL, Zhang J, Chen CT, Xu ZY, Chen X, Ma X, Xue QK, Zhou XJ (2013) Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nat Mater 12(7):605–610

    Article  CAS  PubMed  Google Scholar 

  63. Lee JJ, Schmitt FT, Moore RG, Johnston S, Cui YT, Li W, Yi M, Liu ZK, Hashimoto M, Zhang Y, Lu DH, Devereaux TP, Lee DH, Shen ZX (2014) Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3. Nature 515(7526):245–207

    Article  CAS  PubMed  Google Scholar 

  64. Song Q, Yu TL, Lou X, Xie BP, Xu HC, Wen CHP, Yao Q, Zhang SY, Zhu XT, Guo JD, Peng R, Feng DL (2019) Evidence of cooperative effect on the enhanced superconducting transition temperature at the FeSe/SrTiO3 interface. Nat Commun 10:758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xu Y, Rong HT, Wang QY, Wu DS, Hu Y, Cai YQ, Gao Q, Yan HT, Li C, Yin CH, Chen H, Huang JW, Zhu ZH, Huang Y, Liu GD, Xu ZY, Zhao L, Zhou XJ (2021) Spectroscopic evidence of superconductivity pairing at 83K in single-layer FeSe/SrTiO3 films. Nat Commun 12(1):2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee DH (2017) Hunting down unconventional superconductors. Science 357(6346):32–33

    Article  CAS  PubMed  Google Scholar 

  67. Du ZY, Yang X, Altenfeld D, Gu QQ, Yang H, Eremin I, Hirschfeld PJ, Mazin II, Lin H, Zhu XY, Wen HH (2018) Sign reversal of the order parameter in (Li1-xFex)OHFe1-yZnySe. Nat Phys 14(2):134–139

    Article  CAS  Google Scholar 

  68. Si J, Chen GY, Li Q, Zhu XY, Yang H, Wen HH (2020) Unconventional Superconductivity Induced by Suppressing an Iron-Selenium-Based Mott Insulator CsFe4-xSe4. Phys Rev X 10(4):041008

    CAS  Google Scholar 

  69. Feng XJ, Guo ZN, Yan XX, Deng J, Wu D, Zhang ZJ, Sun F, Yuan WX (2021) A(NH3)xFePS3 (A=Li, K): intercalated Fe thiophosphate via the liquid ammonia method. Mater Chem Front 5(6):2715–2723

    Article  CAS  Google Scholar 

  70. Zhao YC, Su YQ, Guo YQ, Peng J, Zhao JY, Wang CY, Wang LJ, Wu CZ, Xie Y (2021) Quantum Griffiths singularity in a layered superconducting organic-inorganic hybrid superlattice. ACS Mater Lett 3(2):210–216

    Article  CAS  Google Scholar 

  71. Guo MH, Lai XF, Tan X, Xiao ML, Wu RW, Jian JK (2021) Hydrazine intercalated iron sulfide (N2H4)1-xFe2+δS2: synthesis and characterization. J Solid State Chem 303:122507

    Article  CAS  Google Scholar 

  72. Hu GB, Shi MZ, Wang WX, Zhu CS, Sun ZL, Cui JH, Zhuo WZ, Yu FH, Luo XG, Chen XH (2021) Superconductivity at 40 K in Lithiation-processed [(Fe, Al)(OH)2][FeSe]12 with a layered structure. Inorg Chem 60(6):3902–3908

    Article  CAS  PubMed  Google Scholar 

  73. Zheng H, Ding CH, Xu HS, Tang LL, Liu HM, Wei LW, Tang KB (2021) Semiconducting and magnetic properties of FeS-derived compounds (C2H8N2)xFeS and Ax(C2H8N2)yFeS (A=Li, Na). Dalton Trans 50(37):13052–13058

    Article  CAS  PubMed  Google Scholar 

  74. Wang Y, Li JC, Wang XS, Wang C, Chen JT (2020) Facile approach to thin polypyrrole encapsulation of lamellar iron (II) selenide with much improved performance for lithium-ion storage. Funct Mater Lett 13(8):2050041

    Article  CAS  Google Scholar 

  75. Guo MH, Lai XF, Deng J, He LH, Hao JZ, Tan X, Ren YR, Jian JK (2021) NaOH-intercalated iron chalcogenides (Na1-xOH)Fe1-yX (X=Se, S): ion-exchange synthesis and physical properties. Inorg Chem 60(12):8742–8753

    Article  CAS  PubMed  Google Scholar 

  76. Lai XF, Lin ZP, Bu KJ, Wang X, Zhang H, Li DD, Wang YQ, Gu YH, Lin JH, Huang FQ (2016) Ammonia and iron cointercalated iron sulfide (NH3)Fe0.25Fe2S2: hydrothermal synthesis, crystal structure, weak ferromagnetism and crossover from a negative to positive magnetoresistance. RSC Adv 6(85):81886–81893

    Article  CAS  Google Scholar 

  77. Wu MK, Hsu FC, Yeh KW, Huang TW, Luo JY, Wang MJ, Chang HH, Chen TK, Rao SM, Mok BH, Chen CL, Huang YL, Ke CT, Wu PM, Chang AM, Wu CT, Perng TP (2009) The development of the superconducting PbO-type β-FeSe and related compounds. Phys C Supercond Appl 469(9–12):340–349

    Article  CAS  Google Scholar 

  78. Ying TP, Wang G, Jin SF, Shen SJ, Zhang H, Zhou TT, Lai XF, Wang WY, Chen XL (2013) Exploring FeSe-based superconductors by liquid ammonia method. Chin Phys B 22(8):087412

    Article  Google Scholar 

  79. Thompson JC (1976) Electrons in liquid ammonia (Monographs on the Physics & Chemistry of Materials). Clarendon, Oxford

  80. Sedlmaier SJ, Cassidy SJ, Morris RG, Drakopoulos M, Reinhard C, Moorhouse SJ, O’Hare D, Manuel P, Khalyavin D, Clarke SJ (2014) Ammonia-rich high-temperature superconducting intercalates of iron selenide revealed through time-resolved in situ X-ray and neutron diffraction. J Am Chem Soc 136(2):630–633

    Article  CAS  PubMed  Google Scholar 

  81. Lei HC, Guo JG, Hayashi F, Hosono H (2014) Emergence of magnetism and controlling factors of superconductivity in Li/Na-ammonia cointercalated FeSe1-zTez. Phys Rev B 90(21):214508

    Article  Google Scholar 

  82. Zheng L, Izumi M, Sakai Y, Eguchi R, Goto H, Takabayashi Y, Kambe T, Onji T, Araki S, Kobayashi TC, Kim J, Fujiwara A, Kubozono Y (2013) Superconductivity in (NH3)yCs04FeSe. Phys Rev B 88(9):094521

    Article  Google Scholar 

  83. Sakai Y, Zheng L, Izumi M, Teranishi K, Eguchi R, Goto H, Onji T, Araki S, Kobayashi TC, Kubozono Y (2014) Superconducting phases in (NH3)yMxFeSe1-zTez (M=Li, Na, and Ca). Phys Rev B 89(14):144509

    Article  Google Scholar 

  84. Lee JH, Kakuto T, Ashida K, Shibasaki S, Kambe T (2018) Intercalant dependence of superconductivity in Ax(NH3)yFe2-δSe2 single crystals. AIP Adv 8(6):065213

    Article  Google Scholar 

  85. Sun RJ, Jin SF, Gu L, Zhang QH, Huang QZ, Ying TP, Peng YR, Deng J, Yin ZP, Chen XL (2019) Intercalating anions between terminated anion layers: unusual ionic S-Se bonds and hole-doping induced superconductivity in S0.24(NH3)0.26Fe2Se2. J Am Chem Soc 141(35):13849–13857

    Article  CAS  PubMed  Google Scholar 

  86. Zheng L, Sakai Y, Miao X, Nishiyama S, Terao T, Eguchi R, Goto H, Kubozono Y (2016) Superconductivity in (NH3)yNaxFeSe0.5Te0.5. Phys Rev B 94(17):174505

    Article  Google Scholar 

  87. Zheng L, Miao X, Sakai Y, Izumi M, Goto H, Nishiyama S, Uesugi E, Kasahara Y, Iwasa Y, Kubozono Y (2015) Emergence of multiple superconducting phases in (NH3)yMxFeSe (M: Na and Li). Sci Rep 5:12774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gao Z, Zhu BC, Xu HS, Xu WT, Luo QX, Tang KB (2019) Preparation of the orthorhombic Lix(C2H8N2)yFe2Se2 superconductor by amine exchange method. ChemistrySelect 4(28):8201–8206

    Article  CAS  Google Scholar 

  89. Sun SS, Wang SH, Yu R, Lei HC (2017) Extreme anisotropy and anomalous transport properties of heavily electron doped Lix(NH3)yFe2Se2 single crystals. Phys Rev B 96(6):064512

    Article  Google Scholar 

  90. Lyell SC (1858) A manual of elementary geology or: The ancient changes of the Earth and its inhabitants as illustrated by geological monuments. Appleton, New York, pp 685

  91. Tang KB, Qian YT, Zeng JH, Yang XG (2003) Solvothermal route to semicouductor nanowires. Adv Mater 15(5):448–450

    Article  CAS  Google Scholar 

  92. Xie Y, Qian YT, Wang WZ, Zhang SY, Zhang YH (1996) A benzene-thermal synthetic route to nanocrystalline GaN. Science 272(5270):1926–1927

    Article  CAS  PubMed  Google Scholar 

  93. Tang KB, Hu JQ, Lu QY, Xie Y, Zhu JS, Qian YT (1999) A novel low-temperature synthetic route to crystalline Si3N4. Adv Mater 11(8):653–655

    Article  CAS  Google Scholar 

  94. Wang BG, Callahan MJ (2006) Ammonothermal synthesis of III-nitride crystals. Cryst Growth Des 6(6):1227–1246

    Article  CAS  Google Scholar 

  95. Lu XF, Wang NZ, Wu H, Wu YP, Zhao D, Zeng XZ, Luo XG, Wu T, Bao W, Zhang GH, Huang FQ, Huang QZ, Chen XH (2015) Coexistence of superconductivity and antiferromagnetism in (Li0.8Fe0.2)OHFeSe. Nat Mater 14(3):325–329

    Article  CAS  PubMed  Google Scholar 

  96. Pachmayr U, Nitsche F, Luetkens H, Kamusella S, Bruckner F, Sarkar R, Klauss HH, Johrendt D (2015) Coexistence of 3d-ferromagnetism and superconductivity in (Li1-xFex)OH(Fe1-yLiy)Se. Angew Chem Int Ed 54(1):293–297

    Article  CAS  Google Scholar 

  97. Pachmayr U, Johrendt D (2015) (Li0.8Fe0.2)OH FeS and the ferromagnetic superconductors (Li0.8Fe0.2)OHFe(S1-xSex) (0<x≤1). Chem Commun 51(22):4689–4692.

  98. Fan X, Deng J, Chen HX, Zhao LL, Sun RJ, Jin SF, Chen XL (2018) Nematicity and superconductivity in orthorhombic superconductor Na0.35(C3N2H10)0.426Fe2Se2. Phys Rev Mater 2(11):114802

  99. Hosono S, Noji T, Hatakeda T, Kawamata T, Kato M, Koike Y (2016) New superconducting phase of Lix(C6H16N2)yFe2-zSe2 with Tc=41 K obtained through the post-annealing. J Phys Soc Jpn 85(1):013702

    Article  Google Scholar 

  100. Hosono S, Noji T, Hatakeda T, Kawamata T, Kato M, Koike Y (2016) Superconductivity and intercalation state in the lithium-hexamethylenediamine-intercalated superconductor Lix(C6H16N2)yFe2-zSe2: dependence on the intercalation temperature and lithium content. J Phys Soc Jpn 85(10):104701

    Article  Google Scholar 

  101. Sun RJ, Jin SF, Deng J, Hao MN, Zhao LL, Fan X, Sun XN, Guo JG, Gu L (2019) Crystal structures and sign reversal Hall resistivities in iron-based superconductors Lix(C3H10N2)0.32FeSe (0.15<x<0.4). Chin Phys B 28(6):067401.

  102. Xu WT, Xu H-S, Zeng SY, Luo JJ, Tang KB (2019) Alkali-metal Li and 1,3-diaminopropane intercalated superconductor Lix(C3H10N2)yFe2Se2 with Tc~39 K. J Univ Sci Technol Chin 049(006):439–444

    Google Scholar 

  103. Sakamoto C, Noji T, Sato K, Kawamata T, Kato M (2020) Synthesis of new lithium- and monoamine-intercalated superconductors Lix(CnH2n+3N)yFe1-zSe (n=6, 8, 18) with the dramatically expanded interlayer spacing. J Phys Soc Jpn 89(11):115002

    Article  Google Scholar 

  104. Gao Z, Zeng SY, Zhu BC, Li BA, Hao QY, Hu YW, Wang DK, Tang KB (2018) A FeSe-based superconductor (C2H8N2)xFeSe with only ethylenediamine intercalated. Sci Chin Mater 61(7):977–984

    Article  CAS  Google Scholar 

  105. Thomas MP, Ullah A, Pham RH, Djieutedjeu H, Selegue JP, Guiton BS (2020) Morphology control in the hydrothermal synthesis of FeS nanoplatelets. Cryst Growth Des 20(9):5728–5735

    Article  CAS  Google Scholar 

  106. Miao X, Terao T, Yang XF, Nishiyama S, Miyazaki T, Goto H, Iwasa Y, Kubozono Y (2017) Preparation of new superconductors by metal doping of two-dimensional layered materials using ethylenediamine. Phys Rev B 96(1):014502

    Article  Google Scholar 

  107. Rendenbach B, Hohl T, Harm S, Hoch C, Johrendt D (2021) Electrochemical synthesis and crystal structure of the organic ion intercalated superconductor (TMA)05Fe2Se2 with Tc=43 K. J Am Chem Soc 143(8):3043–3048

    Article  CAS  PubMed  Google Scholar 

  108. Wang JH, Li Q, Xie W, Chen GY, Zhu XY, Wen HH (2021) Superconductivity at 444 K achieved by intercalating EMIM+ into FeSe. Chin Phys B 30(10):107402

    Article  CAS  Google Scholar 

  109. Shi MZ, Wang NZ, Lei B, Shang C, Meng FB, Ma LK, Zhang FX, Kuang DZ, Chen XH (2018) Organic-ion-intercalated FeSe-based superconductors. Phys Rev Mater 2(7):074801

    Article  Google Scholar 

  110. Jin SF, Fan X, Wu XZ, Sun RJ, Wu H, Huang QZ, Shi CL, Xi XK, Li ZL, Chen XL (2017) High Tc superconducting phases in organic molecular intercalated iron selenides: synthesis and crystal structures. Chem Commun 53(70):9729–9732

    Article  CAS  Google Scholar 

  111. Shi MZ, Wang NZ, Lei B, Ying JJ, Zhu CS, Sun ZL, Cui JH, Meng FB, Hang CS, Ma LK, Chen XH (2018) FeSe-based superconductors with a superconducting transition temperature of 50 K. New J Phys 20:123007

    Article  CAS  Google Scholar 

  112. Mason TJ, Peters D (2002) Practical sonochemistry: power ultrasound uses and applications, 2nd edn. Woodhead, Cambridge (UK)

  113. Lee SH, Park C, Park JW, Kim SJ, Im SS, Ahn H (2019) Synthesis of conducting polymer-intercalated vanadate nanofiber composites using a sonochemical method for high performance pseudocapacitor applications. J Power Sour 414:460–469

    Article  CAS  Google Scholar 

  114. Widenkvist E, Boukhvalov DW, Rubino S, Akhtar S, Lu J, Quinlan RA, Katsnelson MI, Leifer K, Grennberg H, Jansson U (2009) Mild sonochemical exfoliation of bromine-intercalated graphite: a new route towards graphene. J Phys D Appl Phys 42(11):112003

    Article  Google Scholar 

  115. Yang ZH, He JB, Zang XL, Wang XS, Ren ZA, Xue MQ, Chen GF (2018) Rapid sonochemical synthesis of an intercalated superconductor. ChemistrySelect 3(20):5652–5659

    Article  CAS  Google Scholar 

  116. Chen D, Wang XS, Chen JT, Ren ZA, Xue MQ, Chen GF (2015) Rewriting the superconductivity in iron-based superconductors by lithium-ion insertion and extraction. Adv Mater 27(28):4224–4228

    Article  CAS  PubMed  Google Scholar 

  117. Morales J, Santos J, Tirado JL (1996) Electrochemical studies of lithium and sodium intercalation in MoSe2. Solid State Ionics 83(1–2):57–64

    Article  CAS  Google Scholar 

  118. Lavela P, Conrad M, Mrotzek A, Harbrecht B, Tirado JL (1999) Electrochemical lithium and sodium intercalation into the tantalum-rich layered chalcogenides Ta2Se and Ta2Te3. J Alloy Compd 282(1–2):93–100

    Article  CAS  Google Scholar 

  119. Alekseeva AM, Drozhzhin OA, Dosaev KA, Antipov EV, Zakharov KV, Volkova OS, Chareev DA, Vasiliev AN, Koz C, Schwarz U, Rosner H, Grin Y (2016) New superconductor LixFe1+δSe (x ≤ 0.07, Tc up to 44 K) by an electrochemical route. Sci Rep 6:25624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Shen S-J, Ying T-P, Wang G, Jin S-F, Zhang H, Lin Z-P, Chen X-L (2015) Electrochemical synthesis of alkali-intercalated iron selenide superconductors. Chin Phys B 24(11):117406

    Article  Google Scholar 

  121. Abe H, Noji T, Kato M, Koike Y (2010) Electrochemical Li-intercalation into the Fe-based superconductor FeSe1-xTex. Phys C Supercond Appl 470:487–488

    Article  Google Scholar 

  122. Dong XL, Jin K, Yuan DN, Zhou HX, Yuan J, Huang YL, Hua W, Sun JL, Zheng P, Hu W, Mao YY, Ma MW, Zhang GM, Zhou F, Zhao ZX (2015) (Li0.84Fe0.16)OHFe0.98Se superconductor: ion-exchange synthesis of large single-crystal and highly two-dimensional electron properties. Phys Rev B 92(6):064515

    Article  Google Scholar 

  123. Zhao L, Liang AJ, Yuan DN, Hu Y, Liu DF, Huang JW, He SL, Shen B, Xu Y, Liu X, Yu L, Liu GD, Zhou HX, Huang YL, Dong XL, Zhou F, Liu K, Lu ZY, Zhao ZX, Chen CT, Xu ZY, Zhou XJ (2016) Common electronic origin of superconductivity in (Li, Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films. Nat Commun 7:10608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Khasanov R, Zhou HX, Amato A, Guguchia Z, Morenzoni E, Dong XL, Zhang GM, Zhao ZX (2016) Proximity-induced superconductivity within the insulating (Li0.84Fe0.16)OH layers in (Li0.84Fe0.16)OHFe0.98Se. Phys Rev B 93(22):224512

    Article  Google Scholar 

  125. Ma MW, Wang LC, Bourges P, Sidis Y, Danilkin S, Li Y (2017) Low-energy spin excitations in (Li0.8Fe0.2)ODFeSe superconductor studied with inelastic neutron scattering. Phys Rev B 95(10):100504

    Article  Google Scholar 

  126. Xiao H, Hu T, Zhou HX, Li XJ, Ni SL, Zhou F, Dong XL (2020) Probing the anisotropy of (Li0.84Fe0.16)OHFe0.98Se by angular-dependent torque measurements. Phys Rev B 101(18):184520

    Article  CAS  Google Scholar 

  127. Rubel MHK, Takei T, Kumada N, Ali MM, Miura A, Tadanaga K, Oka K, Azuma M, Magome E, Moriyoshi C, Kuroiwa Y (2017) Hydrothermal synthesis, structure, and superconductivity of simple cubic perovskite (Ba0.62K0.38)(Bi0.92Mg0.08)O3 with Tc similar to 30 K. Inorg Chem 56(6):3174–3181

    Article  CAS  PubMed  Google Scholar 

  128. Pachmayr U, Fehn N, Johrendt D (2016) Structural transition and superconductivity in hydrothermally synthesized FeX (X = S, Se). Chem Commun 52(1):194–197

    Article  CAS  Google Scholar 

  129. Greenfield JT, Kamali S, Lee K, Kovnir K (2015) A Solution for solution-produced β-FeSe: elucidating and overcoming factors that prevent superconductivity. Chem Mater 27(2):588–596

    Article  CAS  Google Scholar 

  130. Zhou HX, Ni SL, Yuan J, Li J, Feng ZP, Jiang XY, Huang YL, Liu SB, Mao YY, Zhou F, Jin K, Dong XL, Zhao ZX (2017) Doping Mn into (Li1-xFex)OHFe1-ySe superconducting crystals via ion-exchange and ion-release/introduction syntheses. Chin Phys B 26(5):057402

    Article  Google Scholar 

  131. Xue MQ, Chen D, Long YJ, Wang PP, Zhao LX, Chen GF (2015) Direct pen writing of high-Tc, flexible magnesium diboride superconducting arrays. Adv Mater 27(24):3614–3619

    Article  CAS  PubMed  Google Scholar 

  132. Pillai V, Kumar P, Hou MJ, Ayyub P, Shah DO (1995) Preparation of nanoparticles of silver halides, superconductors and magnetic materials using water-in-oil microemulsions as nano-reactors. Adv Coll Interface Sci 55:241–269

    Article  CAS  Google Scholar 

  133. Li KK, Huang QZ, Zhang QH, Xiao ZW, Kamiya T, Hosono H, Yuan DD, Guo JG, Chen XL (2018) CsFe4-δSe4: a compound closely related to alkali-intercalated FeSe superconductors. Inorg Chem 57(8):4502–4509

    Article  CAS  PubMed  Google Scholar 

  134. Margadonna S, Takabayashi Y, McDonald MT, Kasperkiewicz K, Mizuguchi Y, Takano Y, Fitch AN, Suard E, Prassides K (2008) Crystal structure of the new FeSe1-x superconductor. Chem Commun 43:5607–5609

    Article  Google Scholar 

  135. McQueen TM, Huang Q, Ksenofontov V, Felser C, Xu Q, Zandbergen H, Hor YS, Allred J, Williams AJ, Qu D, Checkelsky J, Ong NP, Cava RJ (2009) Extreme sensitivity of superconductivity to stoichiometry in Fe1+δSe. Phys Rev B 79(1):014522

    Article  Google Scholar 

  136. Yusenko KV, Sottmann J, Emerich H, Crichton WA, Malavasi L, Margadonna S (2015) Hyper-expanded interlayer separations in superconducting barium intercalates of FeSe. Chem Commun 51(33):7112–7115

    Article  CAS  Google Scholar 

  137. Komedera K, Jasek AK, Blachowski A, Ruebenbauer K, Zukrowski J, Krzton-Maziopa A, Conder K (2016) Structural disorder in Lix(C5H5N)yFe2-zSe2 and CsxFe2-zSe2 superconductors studied by Mossbauer spectroscopy. J Magn Magn Mater 406:244–250

    Article  CAS  Google Scholar 

  138. Stahl J, Shlaen E, Singer H, Johrendt D (2018) Systematic dimensional reduction of the layered β-FeSe structure by solvothermal synthesis. Dalton Trans 47(10):3264–3271

    Article  CAS  PubMed  Google Scholar 

  139. Xie XC (2014) PHYSICS The thinnest high-temperature superconductor. Natl Sci Rev 1(3):324–325

    Article  Google Scholar 

  140. Mydosh JA, Oppeneer PM (2011) Colloquium: Hidden order, superconductivity, and magnetism: the unsolved case of URu2Si2. Rev Mod Phys 83(4):1301

    Article  CAS  Google Scholar 

  141. Coldea AI, Watson MD (2018) The key ingredients of the electronic structure of FeSe. Annu Rev Condens Matter Phys 9:125–146

    Article  CAS  Google Scholar 

  142. Zhou KY, Wang JJ, Song YP, Guo LW, Guo JG (2019) Highly-tunable crystal structure and physical properties in FeSe-based superconductors. Curr Comput Aided Drug Des 9(11):560

    CAS  Google Scholar 

  143. Zhao L, Mou DX, Liu SY, Jia XW, He JF, Peng YY, Yu L, Liu X, Liu GD, He SL, Dong XL, Zhang J, He JB, Wang DM, Chen GF, Guo JG, Chen XL, Wang XY, Peng QJ, Wang ZM, Zhang SJ, Yang F, Xu ZY, Chen CT, Zhou XJ (2011) Common Fermi-surface topology and nodeless superconducting gap of K0.68Fe1.79Se2 and (Tl0.45K0.34)Fe1.84Se2 superconductors revealed via angle-resolved photoemission. Phys Rev B 83(14):140508

  144. Peng F, Liu WP, Lin CT (2013) Study of thermal behavior and single crystal growth of A0.8Fe1.81Se2 (A=K, Rb, and Cs). J Supercond Novel Magnet 26(4):1205–1211

    Article  CAS  Google Scholar 

  145. Smidman M, Pang GM, Zhou HX, Wang NZ, Xie W, Weng ZF, Chen Y, Dong XL, Chen XH, Zhao ZX, Yuan HQ (2017) Probing the superconducting gap structure of (Li1-xFex)OHFeSe. Phys Rev B 96(1):014504

    Article  Google Scholar 

  146. Krzton-Maziopa A, Pesko E, Puzniak R (2018) Superconducting selenides intercalated with organic molecules: synthesis, crystal structure, electric and magnetic properties, superconducting properties, and phase separation in iron based-chalcogenides and hybrid organic-inorganic superconductors. J Phys Condens Matter 30(24):243001

    Article  PubMed  Google Scholar 

  147. Guo ZN, Sun F, Yuan WX (2017) Chemical intercalations in layered transition metal chalcogenides: syntheses, structures, and related properties. Cryst Growth Des 17(4):2238–2253

    Article  CAS  Google Scholar 

  148. Li CH, Sun SS, Wang SH, Lei HC (2017) Enhanced superconductivity and anisotropy of FeTe0.6Se0.4 single crystals with Li-NH3 intercalation. Phys Rev B 96(13):134503

    Article  Google Scholar 

  149. Ren MQ, Yan YJ, Niu XH, Tao R, Hu D, Peng R, Xie BP, Zhao J, Zhang T, Feng DL (2017) Superconductivity across Lifshitz transition and anomalous insulating state in surface K-dosed (Li08Fe02OH)FeSe. Sci Adv 3(7):1603238

    Article  Google Scholar 

  150. Lei B, Wang NZ, Shang C, Meng FB, Ma LK, Luo XG, Wu T, Sun Z, Wang Y, Jiang Z, Mao BH, Liu Z, Yu YJ, Zhang YB, Chen XH (2017) Tuning phase transitions in FeSe thin flakes by field-effect transistor with solid ion conductor as the gate dielectric. Phys Rev B 95(2):020503

    Article  Google Scholar 

  151. Ying TP, Wang MX, Wu XX, Zhao ZY, Zhang ZZ, Song BQ, Li YC, Lei B, Li Q, Yu Y, Cheng EJ, An ZH, Zhang Y, Jia XY, Yang W, Chen XH, Li SY (2018) Discrete Superconducting Phases in FeSe-Derived Superconductors. Phys Rev Lett 121(20):207003

    Article  CAS  PubMed  Google Scholar 

  152. Gor’kov LP, Kresin VZ (2018) Colloquium: high pressure and road to room temperature superconductivity. Rev Mod Phys 90(1):011001

    Article  CAS  Google Scholar 

  153. Wittig J (1970) Pressure-induced superconductivity in cesium and yttrium. Phys Rev Lett 24(15):812–815

    Article  CAS  Google Scholar 

  154. Sun LL, Chen XJ, Guo J, Gao PW, Huang QZ, Wang HD, Fang MH, Chen XL, Chen GF, Wu Q, Zhang C, Gu DC, Dong XL, Wang L, Yang K, Li AG, Dai X, Mao HK, Zhao ZX (2012) Re-emerging superconductivity at 48 Kelvin in iron chalcogenides. Nature 483(7387):67–69

    Article  CAS  PubMed  Google Scholar 

  155. Mukasa K, Matsuura K, Qiu M, Saito M, Sugimura Y, Ishida K, Otani M, Onishi Y, Mizukami Y, Hashimoto K, Gouchi J, Kumai R, Uwatoko Y, Shibauchi T (2021) High-pressure phase diagrams of FeSe1-xTex: correlation between suppressed nematicity and enhanced superconductivity. Nat Commun 12(1):381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Izumi M, Zheng L, Sakai Y, Goto H, Sakata M, Nakamoto Y, Nguyen HLT, Kagayama T, Shimizu K, Araki S, Kobayashi TC, Kambe T, Gu DC, Guo J, Liu J, Li YC, Sun LL, Prassides K, Kubozono Y (2015) Emergence of double-dome superconductivity in ammoniated metal-doped FeSe. Sci Rep 5:9477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sun JP, Shahi P, Zhou HX, Huang YL, Chen KY, Wang BS, Ni SL, Li NN, Zhang K, Yang WG, Uwatoko Y, Xing G, Sun J, Singh DJ, Jin K, Zhou F, Zhang GM, Dong XL, Zhao ZX, Cheng JG (2018) Reemergence of high-Tc superconductivity in the (Li1-xFex)OHFe1-ySe under high pressure. Nat Commun 9:380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ding H, Richard P, Nakayama K, Sugawara K, Arakane T, Sekiba Y, Takayama A, Souma S, Sato T, Takahashi T, Wang Z, Dai X, Fang Z, Chen GF, Luo JL, Wang NL (2008) Observation of Fermi-surface-dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2. Europhys Lett 83(4):47001

    Article  Google Scholar 

  159. Lu XF, Wang NZ, Zhang GH, Luo XG, Ma ZM, Lei B, Huang FQ, Chen XH (2014) Superconductivity in LiFeO2Fe2Se2 with anti-PbO-type spacer layers. Phys Rev B 89(2):020507

    Article  Google Scholar 

  160. Wu MK, Wu PM, Wen YC, Wang MJ, Lin PH, Lee WC, Chen TK, Chang CC (2015) An overview of the Fe-chalcogenide superconductors. J Phys D Appl Phys 48(32):323001

    Article  Google Scholar 

  161. Sun JP, Shi MZ, Lei B, Xu SX, Uwatoko Y, Chen XH, Cheng JG (2020) Pressure-induced second high-Tc superconducting phase in the organic-ion-intercalated (CTA)0.3FeSe single crystal. Europhys Lett 130(6):67004

    Article  CAS  Google Scholar 

  162. Kang BL, Shi MZ, Li SJ, Wang HH, Zhang Q, Zhao D, Li J, Song DW, Zheng LX, Nie LP, Wu T, Chen XH (2020) Preformed cooper pairs in layered FeSe-based superconductors. Phys Rev Lett 125(9):097003

    Article  CAS  PubMed  Google Scholar 

  163. Qiu D, Gong CH, Wang SS, Zhang M, Yang C, Wang XF, Xiong J (2021) Recent advances in 2D superconductors. Adv Mater 33(18):2006124

    Article  CAS  Google Scholar 

  164. Alloul H, Bobroff J, Gabay M, Hirschfeld PJ (2009) Defects in correlated metals and superconductors. Rev Mod Phys 81(1):45–108

    Article  CAS  Google Scholar 

  165. Guterding D, Jeschke HO, Hirschfeld PJ, Valenti R (2015) Unified picture of the doping dependence of superconducting transition temperatures in alkali metal/ammonia intercalated FeSe. Phys Rev B 91(4):041112

    Article  Google Scholar 

  166. Sun Y, Zhang WH, Xing Y, Li FS, Zhao YF, Xia ZC, Wang LL, Ma XC, Xue QK, Wang J (2014) High temperature superconducting FeSe films on SrTiO3 substrates. Sci Rep 4:6040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Shiogai J, Ito Y, Mitsuhashi T, Nojima T, Tsukazaki A (2016) Electric-field-induced superconductivity in electrochemically etched ultrathin FeSe films on SrTiO3 and MgO. Nat Phys 12(1):42–71

    Article  CAS  Google Scholar 

  168. Yang M, Yan CH, Ma YJ, Li L, Cen C (2019) Light induced non-volatile switching of superconductivity in single layer FeSe on SrTiO3 substrate. Nat Commun 10:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Faeth BD, Yang SL, Kawasaki JK, Nelson JN, Mishra P, Parzyck CT, Li C, Schlom DG, Shen KM (2021) Incoherent Cooper pairing and pseudogap behavior in single-layer FeSe/SrTiO3. Phys Rev X 11(2):021054

    CAS  Google Scholar 

  170. Xu H-S, Yan Y-J, Yin R, Xia W, Fang S, Chen Z, Li Y, Yang W, Guo Y, Feng D-L (2021) Multiband superconductivity with sign-preserving order parameter in kagome superconductor CsV3Sb5. Phys Rev Lett 127(18):187004

    Article  CAS  PubMed  Google Scholar 

  171. Nishioka S, Kouchi T, Suzuki K, Yashima M, Mukuda H, Kodani M, Mita K, Kakuto T, Lee J-H, Fujii T, Kambe T (2021) Unconventional superconductivity and moderate spin fluctuations with gap at low energies in intercalated iron selenide superconductor Lix(NH3)yFe2−δSe2 probed by 77Se NMR. J Phys Soc Jpn 90(12):124709

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21671182, No. 12104249).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han-Shu Xu, Xiaoxiong Wang or Kaibin Tang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, HS., Wu, S., Zheng, H. et al. Research Progress of FeSe-based Superconductors Containing Ammonia/Organic Molecules Intercalation. Top Curr Chem (Z) 380, 11 (2022). https://doi.org/10.1007/s41061-022-00368-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-022-00368-8

Keywords

Navigation