Skip to main content

Advertisement

Log in

Utilization of nano-sized waste lime sludge particles in harvesting marine microalgae for biodiesel feedstock production

  • Original Paper
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

In this research, waste lime sludge (LS) nanoparticles procured from integrated pulp and paper mill were used as the flocculent material to harvest the marine microalgae Tetraselmis indica (T. indica). LS contains 80–85% of calcium carbonate in the form of calcite with rhombohedral and scalenohedral structures along with other minerals such as Mg, K, Fe, and Na. XRD results showed that lime sludge particles have an averaged crystallite size of ~ 39 nm. The biomass harvesting efficiency of T. indica was observed at different doses of flocculent (0–160 mg L−1), temperature (30, 35, 40, 45, and 50 °C) and mixing rate (100–300 rpm), respectively. Maximum biomass harvesting of 86% was observed at 50 °C with 140 mg L−1 flocculent dose, pH 7, and 150 rpm in 90 min. It was also observed that LS has no effect on biodiesel profile of T. indica. Scanning electron microscopy (SEM) images revealed agglomeration of microalgal cells and deposition of calcium carbonate on its surface upon treatment with LS at 50 ºC. Experimental data were found to be in good agreement with pseudo-second-order kinetics model. This study indicated that waste lime sludge is a potential material for high harvesting efficiency in low settling time and low-cost harvesting of microalgae and it makes the production of biodiesel cost-effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chisti Y (2007) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131. https://doi.org/10.1016/j.tibtech.2007.12.002

    Article  Google Scholar 

  2. Ambaye TG, Hagos K (2020) Photocatalytic and biological oxidation treatment of real textile wastewater. Nanotechnol Environ Eng 5:1–11. https://doi.org/10.1007/s41204-020-00094-w

    Article  Google Scholar 

  3. Jawaharraj K, Karpagam R, Ashokkumar B, Kathiresan S, Varalakshmi P (2015) Green renewable energy production from Myxosarcina sp.: media optimization and assessment of biodiesel fuel properties. RSC Adv 63:51149–51157. https://doi.org/10.1039/C5RA09372D(Paper)RSCAdv5:51149-51157

    Article  Google Scholar 

  4. Sumprasit N, Wagle N, Glanpracha N, Annachhatre AP (2017) Biodiesel and biogas recovery from Spirulina platensis. Int Biodeterior Biodegrad 119:196–204. https://doi.org/10.1016/J.IBIOD.2016.11.006

    Article  Google Scholar 

  5. Li B, Li Y, Liu H, Liu F, Wang Z, Wang J (2017) Combustion and emission characteristics of diesel engine fueled with biodiesel/PODE blends. Appl Energy 206:425–431

    Article  Google Scholar 

  6. Singh G, Patidar SK (2018) Microalgae harvesting techniques: a review. J Environ Manage 217:499–508. https://doi.org/10.1016/j.jenvman.2018.04.010

    Article  Google Scholar 

  7. Kumar N, Srivastava VC (2019) Glycerol as a green solvent in organic reactions. Ind Appl Green Solv 54:202–223

    Google Scholar 

  8. Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 5:763–784

    Article  Google Scholar 

  9. Amit GUK (2018) An approach for phycoremediation of different wastewaters and biodiesel production using microalgae. Environ Sci Pollut Res 25:18673–18681. https://doi.org/10.1007/s11356-018-1967-5

    Article  Google Scholar 

  10. Borowitzka MA, Moheimani NR (2013) Sustainable biofuels from algae. Mitig Adapt Strateg Glob Chang 18:13–25. https://doi.org/10.1007/s11027-010-9271-9

    Article  Google Scholar 

  11. Reddy VM, Biswas P, Garg P, Kumar S (2014) Combustion characteristics of biodiesel fuel in high recirculation conditions. Fuel Process Technol 118:310–317

    Article  Google Scholar 

  12. Che CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81. https://doi.org/10.1016/j.biortech.2010.06.159

    Article  Google Scholar 

  13. Chen L, Wang C, Wang W, Wei J (2013) Optimal conditions of different flocculation methods for harvesting Scenedesmus sp. Cultivated in an open-pond system. Bioresour Technol 133:9–15. https://doi.org/10.1016/j.biortech.2013.01.071

    Article  Google Scholar 

  14. Choi HJ (2015) Effect of eggshells for the harvesting of microalgae species. Biotechnol Equip 2818:1–7. https://doi.org/10.1080/13102818.2015.1031177

    Article  Google Scholar 

  15. Kadir WNA, Lam MK, Uemura Y, Lim JW, Lee KT (2018) Harvesting and pre-treatment of microalgae cultivated in wastewater for biodiesel production: a review. Energy Convers Manage 171:1416–1429

    Article  Google Scholar 

  16. Pandey A, Pathak VV, Kothari R, Black PN, Tyagi VV (2019) Experimental studies on zeta potential of flocculants for harvesting of algae. J Environ Manage 231:562–569. https://doi.org/10.1016/j.jenvman.2018.09.096

    Article  Google Scholar 

  17. Letelier-Gordo CO, Holdt SL, De Francisci D, Karakashev DB, Angelidaki I (2014) Effective harvesting of the microalgae Chlorella protothecoides via bioflocculation with cationic starch. Bioresour Technol 167:214–218. https://doi.org/10.1016/j.biortech.2014.06.014

    Article  Google Scholar 

  18. Wan C, Alam MA, Zhao XQ, Zhang XY, Guo SL, Ho SH, Chang JS, Bai FW (2015) Current progress and future prospect of microalgal biomass harvest using various flocculation technologies. Bioresour Technol 184:251–257. https://doi.org/10.1016/j.biortech.2014.11.081

    Article  Google Scholar 

  19. Granados MR, Acién FG, Gómez C, Fernández-Sevilla JM, Molina Grima E (2012) Evaluation of flocculants for the recovery of freshwater microalgae. Bioresour Technol 118:102–110. https://doi.org/10.1016/j.biortech.2012.05.018

    Article  Google Scholar 

  20. Udhaya R, Sandhya S (2014) Evaluation of chemical flocculation-electro flocculation for harvesting of halotolerant microalgae. Int J Environ Sci 4:899–905. https://doi.org/10.6088/ijes.2014040404528

    Article  Google Scholar 

  21. Vandamme D, Foubert I, Fraeye I, Meesschaert B, Muylaert K (2012) Flocculation of Chlorella vulgaris induced by high pH: Role of magnesium and calcium and practical implications. Bioresour Technol 105:114–119. https://doi.org/10.1016/j.biortech.2011.11.105

    Article  Google Scholar 

  22. Sher F, Malik A, Liu H (2013) Industrial polymer effluent treatment by chemical coagulation and flocculation. J Environ Chem Eng 1:684–689. https://doi.org/10.1016/j.jece.2013.07.003

    Article  Google Scholar 

  23. Podstawczyk D, Witek-Krowiak A, Chojnacka K, Sadowski Z (2014) Biosorption of malachite green by eggshells: mechanism identification and process optimization. Bioresour Technol 160:161–165. https://doi.org/10.1016/j.biortech.2014.01.015

    Article  Google Scholar 

  24. Choi HJ (2014) Effect of optical panel distance in a photobioreactor for nutrient removal and cultivation of microalgae. World J Microbiol Biotechnol 30:2015–2023. https://doi.org/10.1007/s11274-014-1626-z

    Article  Google Scholar 

  25. Xu Y, Purton S, Baganz F (2013) Chitosan flocculation to aid the harvesting of the microalga Chlorella sorokiniana. Bioresour Technol 129:296–301. https://doi.org/10.1016/j.biortech.2012.11.068

    Article  Google Scholar 

  26. Liu C, Shi W, Li H, Lei Z, He L, Zhang Z (2014) Improvement of methane production from waste activated sludge by on-site photocatalytic pretreatment in a photocatalytic anaerobic fermenter. Bioresour Technol 155:198–203. https://doi.org/10.1016/j.biortech.2012.01.101

    Article  Google Scholar 

  27. Kim G, Lee CH, Lee K (2016) Enhancement of lipid production in marine microalga Tetraselmis sp. through salinity variation. Korean J Chem Eng 33:230–237. https://doi.org/10.1007/s11814-015-0089-8

    Article  Google Scholar 

  28. Bligh EG, Dyer WJ (1959) Extraction of Lipids in Solution by the Method of Bligh & Dyer. Can J Biochem Physiol 2:911–917

    Article  Google Scholar 

  29. Nuhoglu Y, Malkoc E (2009) Thermodynamic and kinetic studies for environmentaly friendly Ni(II) biosorption using waste pomace of olive oil factory. Bioresour Technol 100:2375–2380. https://doi.org/10.1016/j.biortech.2008.11.016

    Article  Google Scholar 

  30. Farooq W, Lee YC, Han JI, Darpito CH, Choi M, Yang JW (2013) Efficient microalgae harvesting by organo-building blocks of nanoclays. Green Chem 15:749–755. https://doi.org/10.1039/c3gc36767c

    Article  Google Scholar 

  31. Kumar N, Srivastava VC (2021) Dimethyl carbonate production via transesterification reaction using nitrogen functionalized graphene oxide nanosheets. Renew Energy 175:1–13. https://doi.org/10.1016/j.renene.2021.04.111

    Article  Google Scholar 

  32. Kumar N, Srivastava VC (2020) Dimethyl carbonate synthesis via transesterification of propylene carbonate using an efficient reduced graphene oxide-supported ZnO nanocatalyst. Energy Fuels 34(6):7455–7464. https://doi.org/10.1021/acs.energyfuels.0c01091

    Article  Google Scholar 

  33. Kumar M, Elayaraja S, Kumar TT, Kumaresan S, Balasubramanian T (2012) Biodiesel production from marine microalgae Chlorella marina and Nannochloropsis salina. Pet Technol Altern Fuels 3:58–62. https://doi.org/10.5897/JPTAF12.010

    Article  Google Scholar 

  34. Doan TTY, Sivaloganathan B, Obbard JP (2011) Screening of marine microalgae for biodiesel feedstock. Biomass Bioenerg 35:2534–2544. https://doi.org/10.1016/j.biombioe.2011.02.021

    Article  Google Scholar 

  35. Reyimu Z, Ozçimen D (2017) Batch cultivation of marine microalgae Nannochloropsis oculata and Tetraselmis suecica in treated municipal wastewater toward bioethanol production. J Clean Prod 150:40–46. https://doi.org/10.1016/j.jclepro.2017.02.189

    Article  Google Scholar 

  36. Cheng YS, Zheng Y, Labavitch JM, Vandergheynst JS (2011) The impact of cell wall carbohydrate composition on the chitosan flocculation of Chlorella. Process Biochem 46:1927–1933. https://doi.org/10.1016/j.procbio.2011.06.021

    Article  Google Scholar 

  37. Papazi A, Makridis P, Divanach P (2010) Harvesting Chlorella minutissima using cell coagulants. J Appl Phycol 22:349–355. https://doi.org/10.1007/s10811-009-9465-2

    Article  Google Scholar 

  38. Rashid N, Rehman SU, Han JI (2013) Rapid harvesting of freshwater microalgae using chitosan. Process Biochem 48:1107–1110. https://doi.org/10.1016/j.procbio.2013.04.018

    Article  Google Scholar 

  39. Salim S, Bosma R, Vermuë MH, Wijffels RH (2011) Harvesting of microalgae by bio-flocculation. J Appl Phycol 23:849–855. https://doi.org/10.1007/s10811-010-9591-x

    Article  Google Scholar 

  40. Kumar J, Bansal A (2010) Photocatalytic degradation of amaranth dye in aqueous solution using sol-gel coated cotton fabric. Lect Notes Eng Comput Sci 2148:788–790

    Google Scholar 

  41. Kumar J, Bansal A (2015) CFD simulations of immobilized-titanium dioxide based annular photocatalytic reactor: model development and experimental validation. Indian J Chem Technol 22:95–104. http://nopr.niscair.res.in/handle/123456789/32362

    Google Scholar 

  42. Baruah M, Supong A, Bhomick PC, Karmaker R, Pongener C, Sinha D (2020) Batch sorption–photodegradation of Alizarin Red S using synthesized TiO 2/activated carbon nanocomposite: an experimental study and computer modelling. Nanotechnol Environ Eng 5:1–13. https://doi.org/10.1007/s41204-020-00071-3

    Article  Google Scholar 

Download references

Acknowledgements

First author is thankful to the Ministry of Human Resource development, Government of India for providing the funding support as research fellowship. Corresponding author is thankful to the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A4A10520850).

Funding

National research foundation of korea,No-2021R1A4A10520850, Jinsub Park

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsub Park.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amit, Kumar, N., Verma, S. et al. Utilization of nano-sized waste lime sludge particles in harvesting marine microalgae for biodiesel feedstock production. Nanotechnol. Environ. Eng. 7, 99–107 (2022). https://doi.org/10.1007/s41204-021-00195-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41204-021-00195-0

Keywords

Navigation