Skip to main content
Log in

Influence of the shell effects on evaporation residue cross section of superheavy nuclei

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In order to study the influence of the shell effects on the formation and fission of superheavy elements, we applied multidimensional Langevin equations. The evaporation residue cross sections have been calculated for 3n, 4n, and 5n evaporation channels using three (\(K=0\))- and four (\(K \ne 0\))-dimensional Langevin equations. Calculations were done for 48Ca + 238U and 48Ca + 244Pu hot fusion reactions with 3n, 4n evaporation channels and 70Zn + 208Pb, and 54Cr + 209Bi cold fusion reactions with 1n and 2n evaporation channels. The calculations were performed for 4n and 5n evaporation channels of the 26Mg + 238U reaction, as well. Our results show that with increasing dimension of Langevin equations the residue cross section increases, whereas the fission cross section decreases. The obtained results with four-dimensional Langevin and considering shell effects are in better agreement with experimental data in comparison with three- and four-dimensional Langevin equations without shell effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Hofmann, G. Münzenberg, The discovery of the heaviest elements. Rev. Mod. Phys. 72, 733 (2000). https://doi.org/10.1103/RevModPhys.72.733

    Article  Google Scholar 

  2. Y.T. Oganessian, F.S. Abdullin, C. Alexander, Experimental studies of the \(^{249}\text{Bk }+{^{48}\text{Ca}}\) reaction including decay properties and excitation function for isotopes of element 117, and discovery of the new isotope \(^{277}\)Mt. Phys. Rev. C 87, 054621 (2013). https://doi.org/10.1103/PhysRevC.87.054621

    Article  Google Scholar 

  3. J.B. Roberto, C.W. Alexander, R.A. Boll et al., Actinide targets for the synthesis of super-heavy elements. Nucl. Phys. A 944, 99 (2015). https://doi.org/10.1016/j.nuclphysa.2015.06.009

    Article  Google Scholar 

  4. X.J. Bao, Y. Gao, J.Q. Li, H.F. Zhang, Influence of nuclear basic data on the calculation of production cross sections of superheavy nuclei. Phys. Rev. C 92, 014601 (2015). https://doi.org/10.1103/PhysRevC.92.014601

    Article  Google Scholar 

  5. X.J. Bao, Y. Gao, J.Q. Li, H.F. Zhang, Isotopic dependence of superheavy nuclear production in hot fusion reactions. Phys. Rev. C 92, 034612 (2015). https://doi.org/10.1103/PhysRevC.92.034612

    Article  Google Scholar 

  6. P. Fröbrich, I.I. Gontchar, Langevin description of fusion, deep-inelastic collisions and heavy-ion-induced fission. Phys. Rep. 292, 131 (1998). https://doi.org/10.1016/S0370-1573(97)00042-2

    Article  Google Scholar 

  7. Z.H. Liu, J.D. Bao, Optimal reaction for synthesis of superheavy element 117. Phys. Rev. C 80, 034601 (2009). https://doi.org/10.1103/PhysRevC.80.034601

    Article  Google Scholar 

  8. D. Naderi, S.A. Alavi, Formation of superheavy elements: study based on dynamical approach. Phys. At. Nucl. 81, 196 (2018). https://doi.org/10.1134/S1063778818020138

    Article  Google Scholar 

  9. N.V. Antonenko, E.A. Cherepanov, A.K. Nasirov et al., Competition between complete fusion and quasi-fission in reactions between massive nuclei. The fusion barrier. Phys. Lett. B 319, 425 (1993). https://doi.org/10.1016/0370-2693(93)91746-A

    Article  Google Scholar 

  10. G.G. Adamian, N.V. Antonenko, S.P. Ivanova et al., Analysis of survival probability of superheavy nuclei. Phys. Rev. C 62, 064303 (2000). https://doi.org/10.1103/PhysRevC.62.064303

    Article  Google Scholar 

  11. A.S. Zubov, G.G. Adamian, N.V. Antonenko, Application of statistical methods for analysis of heavy-ion reactions in the framework of a dinuclear system model. Phys. Part. Nucl. 40, 847 (2009). https://doi.org/10.1134/S1063779609060057

    Article  Google Scholar 

  12. Y. Aritomo, T. Wada, M. Ohta, Y. Abe, Fluctuation-dissipation model for synthesis of superheavy elements. Phys. Rev. C. 59, 796 (1999). https://doi.org/10.1103/PhysRevC.59.2634

    Article  Google Scholar 

  13. K. Nishio, S. Mitsuoka, I. Nishinaka, Fusion probabilities in the reactions \(^{40,48}\text{Ca }+{^{238}\text{U}}\) at energies around the Coulomb barrier. Phys. Rev. C 86, 034608 (2012). https://doi.org/10.1103/PhysRevC.86.034608

    Article  Google Scholar 

  14. V.I. Zagrebaev, Synthesis of superheavy nuclei: nucleon collectivization as a mechanism for compound nucleus formation. Phys. Rev. C 64, 034606 (2001). https://doi.org/10.1103/PhysRevC.64.034606

    Article  Google Scholar 

  15. W.J. Swiatecki, The dynamics of nuclear coalescence or reseparation. Phys. Scr. 24, 113 (1981). https://doi.org/10.1088/0031-8949/24/1B/007

    Article  Google Scholar 

  16. V.L. Litnevsky, V.V. Pashkevich, G.I. Kosenko et al., Description of synthesis of super-heavy elements within the multidimensional stochastic model. Phys. Rev. C 89, 034626 (2014). https://doi.org/10.1103/PhysRevC.89.034626

    Article  Google Scholar 

  17. Z.H. Liu, J.D. Bao, Cold fusion reaction of 58Fe + 208Pb analyzed by a generalized model of fusion by diffusion. Phys. Rev. C 85, 057603 (2012). https://doi.org/10.1103/PhysRevC.85.057603

    Article  Google Scholar 

  18. Z.H. Liu, J.D. Bao, Neutron emission in the fusion process and its effect on the formation of superheavy nuclei. Phys. Rev. C 89, 024604 (2014). https://doi.org/10.1103/PhysRevC.89.024604

    Article  Google Scholar 

  19. Y.J. Liang, M. Zhu, Z.H. Liu et al., Nucleon flow in the process of evolution from dinucleus to mononucleus investigated with a dynamic model. Phys. Rev. C 87, 047602 (2013). https://doi.org/10.1103/PhysRevC.87.047602

    Article  Google Scholar 

  20. G.G. Adamian, N.V. Antonenko, W. Scheid et al., Fusion cross sections for superheavy nuclei in the dinuclear system concept. Nucl. Phys. A 633, 409 (1998). https://doi.org/10.1016/S0375-9474(98)00124-9

    Article  Google Scholar 

  21. J. Hong, G.G. Adamian, N.V. Antonenko, Influence of entrance channel on the production of hassium isotopes. Phys. Rev. C 92, 014617 (2015). https://doi.org/10.1103/PhysRevC.92.014617

    Article  Google Scholar 

  22. L. Zhu, Z.-Q. Feng, C. Li, F.-S. Zhang, Orientation effects on evaporation residue cross sections in \(^{48}\text{Ca }\)-induced hot fusion reactions. Phys. Rev. C 90, 014612 (2014). https://doi.org/10.1103/PhysRevC.90.014612

    Article  Google Scholar 

  23. L. Zhu, J. Su, F.S. Zhang, Influence of the neutron numbers of projectile and target on the evaporation residue cross sections in hot fusion reactions. Phys. Rev. C 93, 064610 (2016). https://doi.org/10.1103/PhysRevC.93.064610

    Article  Google Scholar 

  24. D. Naderi, M.R. Pahlavani, S.A. Alavi, Anisotropy of the angular distribution of fission fragments in heavy-ion fusion–fission reactions: the influence of the level-density parameter and the neck thickness. Phys. Rev. C 87, 054618 (2013). https://doi.org/10.1103/PhysRevC.87.054618

    Article  Google Scholar 

  25. Y. Jia, J.D. Bao, Calculations of the anisotropy of the fission fragment angular distribution and neutron emission multiplicities prescission from Langevin dynamics. Phys. Rev. C 75, 034601 (2007). https://doi.org/10.1103/PhysRevC.75.034601

    Article  Google Scholar 

  26. Z.H. Liu, J.D. Bao, Role of the coupling between neck and radial degrees of freedom in evolution from dinucleus to mononucleus. Phys. Rev. C 83, 044613 (2011). https://doi.org/10.1103/PhysRevC.83.044613

    Article  Google Scholar 

  27. J.R. Nix, Further studies in the liquid-drop theory on nuclear fission. Nucl. Phys. A 130, 241 (1969). https://doi.org/10.1016/0375-9474(69)90730-1

    Article  Google Scholar 

  28. K.T.R. Davies, A.J. Sierk, J.R. Nix, Effect of viscosity on the dynamics of fission. Phys. Rev. C 13, 2385 (1976). https://doi.org/10.1103/PhysRevC.13.2385

    Article  Google Scholar 

  29. Y. Aritomo, S. Chiba, Fission process of nuclei at low excitation energies with a Langevin approach. Phys. Rev. C 88, 044614 (2013). https://doi.org/10.1103/PhysRevC.88.044614

    Article  Google Scholar 

  30. S.G. Nilsson, C.F. Tsang, A. Sobiczewski et al., On the nuclear structure and stability of heavy and superheavy elements. Nucl. Phys. A 131, 1 (1969). https://doi.org/10.1016/0375-9474(69)90809-4

    Article  Google Scholar 

  31. F.A. Ivanyuk, S. Chiba, Y. Aritomo, Scission-point configuration within the two-center shell model shape parameterization. Phys. Rev. C 90, 054607 (2014). https://doi.org/10.1103/PhysRevC.90.054607

    Article  Google Scholar 

  32. V.M. Strutinsky, Shell effects in nuclear masses and deformation energies. Nucl. Phys. A 95, 420 (1967). https://doi.org/10.1016/0375-9474(67)90510-6

    Article  Google Scholar 

  33. M.A. Preston, R.K. Bahaduri, Structure of the Nucleus (Addison-Wesley publishing Company, Boston, 1975), p. 413

    Google Scholar 

  34. T. Asano, T. Wada, M. Ohta et al., Dynamical calculation of multi-modal nuclear fission of fermium nuclei. J. Nucl. Radiochem. Sci. 5, 1 (2004). https://doi.org/10.14494/jnrs2000.5.1

    Article  Google Scholar 

  35. J. Töke, W.J. Światecki, Surface-layer corrections to the level-density formula for a diffuse Fermi gas. Nucl. Phys. A 372, 141 (1981). https://doi.org/10.1016/0375-9474(81)90092-0

    Article  Google Scholar 

  36. A.V. Ignatyuk, Contribution of collective motions to density of excited-states of a nucleus. Yad. Fiz. 21, 1185 (1975). [Sov. J. Nucl. Phys. 21, 612 (1975)]

    Google Scholar 

  37. M. Brack, J. Damgaard, A.S. Jensen, Funny hills: the shell-correction approach to nuclear shell effects and its applications to the fission process. Rev. Mod. Phys. 44, 320 (1972). https://doi.org/10.1103/RevModPhys.44.320

    Article  Google Scholar 

  38. P.N. Nadtochy, E.G. Ryabov, A.E. Gegechkori et al., Four-dimensional Langevin dynamics of heavy-ion-induced fission. Phys. Rev. C 85, 064619 (2012). https://doi.org/10.1103/PhysRevC.85.064619

    Article  Google Scholar 

  39. D. Naderi, A dynamical interpretation of fusion fission reactions using four-dimensional Langevin equations. J. Phys. G Nucl. Part. Phys. 40, 125103 (2013). https://doi.org/10.1088/0954-3899/40/12/125103

    Article  Google Scholar 

  40. V.I. Zagrebaev, W. Greiner, Cross sections for the production of superheavy nuclei. Nucl. Phys. A 944, 257 (2015). https://doi.org/10.1016/j.nuclphysa.2015.02.010

    Article  Google Scholar 

  41. W.J. Swiatecki, K. Siwek-Wilczynska, J. Wilczynski, Fusion by diffusion. Acta Phys. Pol. B 34, 2049 (2003)

    Google Scholar 

  42. Z. Min, F. Jun-Li, Q. Zhen, The Role of neck evolution in the synthesis of superheavy element 112. Chin. Phys. Lett. 30, 082401 (2013). https://doi.org/10.1088/0256-307X/30/8/082401

    Article  Google Scholar 

  43. A.J. Sierk, Macroscopic model of rotating nuclei. Phys. Rev. C 33, 2039 (1986). https://doi.org/10.1103/PhysRevC.33.2039

    Article  Google Scholar 

  44. P. Möller, J.R. Nix, W.D. Myers et al., Nuclear ground-state masses and deformations. At. Data Nucl. Data Tables 59, 185 (1995). https://doi.org/10.1006/adnd.1995.1002

    Article  Google Scholar 

  45. K. Siwek-Wilczyńska, I. Skwira, J. Wilczyński, Tests of the fission-evaporation competition in the deexcitation of heavy nuclei. Phys. Rev. C 72, 034605 (2005). https://doi.org/10.1103/PhysRevC.72.034605

    Article  Google Scholar 

  46. Z. Liu, J.D. Bao, Systematical calculations of the \(^{136}{\text{Xe}}(^{136}{\text{Xe}},\,{\text{xn}})^{272-x}{\text{Hs}}\) reaction: Effects of quasifission in the early stage of the fusion process. Phys. Rev. C 81, 044606 (2010). https://doi.org/10.1103/PhysRevC.81.044606

    Article  Google Scholar 

  47. Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov, Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions \({^{233,238}{\text{U}}},\) \({^{242}{\text{Pu}}},\) and \({^{248}{\text{Cm}}}+{^{48}{\text{Ca}}}\). Phys. Rev. C 70, 064609 (2004). https://doi.org/10.1103/PhysRevC.70.064609

    Article  Google Scholar 

  48. G.G. Adamian, N.V. Antonenko, W. Scheid, Isotopic dependence of fusion cross sections in reactions with heavy nuclei. Nucl. Phys. A 678, 24 (2000). https://doi.org/10.1016/S0375-9474(00)00317-1

    Article  Google Scholar 

  49. J.M. Gates, M.A. Garcia, K.E. Gregorich, Synthesis of rutherfordium isotopes in the \(^{238}{\text{U}}(^{26}{\text{Mg}},\,{\text{xn}})^{264-x}{\text{Rf}}\), reaction and study of their decay properties. Phys. Rev. C 77, 034603 (2008). https://doi.org/10.1103/PhysRevC.77.034603

    Article  Google Scholar 

  50. W. Loveland, An experimentalist’s view of the uncertainties in understanding heavy element synthesis. Eur. Phys. J. A 51, 120 (2015). https://doi.org/10.1140/epja/i2015-15120-2

    Article  Google Scholar 

  51. X.J. Bao, S.Q. Guo, H.F. Zhang, Influence of proton shell closure on the evaporation residue cross sections of superheavy nuclei. J. Phys. G Nucl. Part. Phys. 44, 045105 (2017). https://doi.org/10.1088/1361-6471/aa53e8

    Article  Google Scholar 

  52. G. Giardina, G. Mandaglio, A.K. Nasirov et al., Uncertainties and understanding of experimental and theoretical results regarding reactions forming heavy and superheavy nuclei. Nucl. Phys. A 970, 169 (2018). https://doi.org/10.1016/j.nuclphysa.2017.11.010

    Article  Google Scholar 

  53. X.J. Bao, S.Q. Guo, H.F. Zhang et al., Dynamics of complete and incomplete fusion in heavy ion collisions. Phys. Rev. C 97, 024617 (2018). https://doi.org/10.1103/PhysRevC.97.024617

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Alavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi, D., Alavi, S.A. Influence of the shell effects on evaporation residue cross section of superheavy nuclei. NUCL SCI TECH 29, 161 (2018). https://doi.org/10.1007/s41365-018-0498-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0498-6

Keywords

Navigation