Skip to main content
Log in

Flow field effect of delayed neutron precursors in liquid-fueled molten salt reactors

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In molten salt reactors (MSRs), the liquid fuel salt circulates through the primary loop and a part of the delayed neutron precursors (DNPs) decays outside the reactor core. To model and analyze the flow field effect of DNPs in channel-type liquid-fueled MSRs, a three-dimensional space-time dynamics code, named ThorCORE3D, that couples neutronics, core thermal-hydraulics, and a molten salt loop system was developed and validated with the Molten Salt Reactor Experiment (MSRE) benchmarks. The effects of external loop recirculation time, fuel flow rate, and core flow field distribution on the delayed neutron fraction loss of MSRE at steady-state were modeled and simulated using the ThorCORE3D code. Then, the flow field effect of the DNPs on the system responses of the MSRE in the reactivity insertion transient under different initial conditions was analyzed systematically for the channel-type liquid-fueled MSRs. The results indicate that the flow field condition has a significant effect on the steady-state delayed neutron fractions and will further affect the transient power and temperature responses of the reactor system. The analysis results for the effect of the DNP flow field can provide important references for the design optimization and safety analysis of liquid-fueled MSRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. D.L. Zhang, L.M. Liu, M.H. Liu et al., Review of conceptual design and fundamental research of molten salt reactors in China. Int. J. Energy Res. 42(5), 1834 (2018). https://doi.org/10.1002/er.3979

    Article  Google Scholar 

  2. G. Lapenta, F. Mattioda, P. Ravetto, Point kinetic model for fluid fuel systems. Ann. Nucl. Energy 28, 1759–1772 (2001). https://doi.org/10.1016/S0306-4549(01)00012-3

    Article  Google Scholar 

  3. C.B. Shi, M.S. Cheng, G.M. Liu, Extending and verification of RELAP5 code for liquid fueled molten salt reactor. Nucl. Power Eng. 37, 16–20 (2016). https://doi.org/10.13832/j.jnpe.2016.03.0016

    Article  Google Scholar 

  4. R. Li, M.S. Cheng, Z.M. Dai, Improvement and validation of the delayed neutron precursor transport model in RELAP5 code for liquid fuel molten salt reactor. Nucl. Tech. 44(6), 060603 (2021). https://doi.org/10.11889/j.0253-3219.2021.hjs.44.060603. (in Chinese)

    Article  Google Scholar 

  5. R.C. Diniz, F.S. da Rosa, A.C. da Gonçalves, Calculation of delayed neutron precursors’ transit time in the external loop during a flow velocity transient in a Molten Salt Reactors. Ann. Nucl. Energy 165, 108640 (2022). https://doi.org/10.1016/j.anucene.2021.108640

    Article  Google Scholar 

  6. G.F. Zhu, R. Yan, H.H. Pengu et al., Application of Monte Carlo method to calculate the effective delayed neutron fraction in molten salt reactor. Nucl. Sci. Tech. 30, 34 (2019). https://doi.org/10.1007/s41365-019-0557-7

    Article  Google Scholar 

  7. M. Aufiero, M. Brovchenko, A. Cammi et al., Calculating the effective delayed neutron fraction in the Molten Salt Fast Reactor: analytical, deterministic and Monte Carlo approaches. Ann. Nucl. Energy 65, 78–90 (2014). https://doi.org/10.1016/j.anucene.2013.10.015

    Article  Google Scholar 

  8. J. Křepel, U. Rohde, U. Grundmann et al., DYN3D-MSR spatial dynamics code for molten salt reactors. Ann. Nucl. Energy 34, 449–462 (2007). https://doi.org/10.1016/j.anucene.2006.12.011

    Article  Google Scholar 

  9. K. Zhuang, L.Z. Cao, Y.Q. Zheng et al., Studies on the molten salt reactor: code development and neutronics analysis of MSRE-type design. J. Nucl. Sci. Technol. 52, 251–263 (2015). https://doi.org/10.1080/00223131.2014.944240

    Article  Google Scholar 

  10. L. Z. Cao, K. Zhuang, Y. Q. Zheng et al., Transient analysis for liquid-fuel molten salt reactor based on MOREL2.0 code. Int. J Energy Res. 42, 261–275 (2018). https://doi.org/10.1002/er.3828

    Article  Google Scholar 

  11. D.L. Zhang, Z.G. Zhai, X.N. Chen et al., COUPLE, A coupled neutronics and thermal- hydraulics code for transient analyses of Molten Salt Reactors. Transactions 108(1), 921–922 (2013)

    Google Scholar 

  12. D.L. Zhang, Z.G. Zhai, A. Rineiski et al, COUPLE, A time-dependent coupled neutronics and thermal-hydraulics code, and its application to MSFR, in Proceedings of the 2014 22nd International Conference on Nuclear Engineering. https://doi.org/10.1115/ICONE22-30609

  13. D.L. Zhang, L.M. Liu, M.H. Liu et al., Neutronics/thermal-hydraulics coupling analysis for the liquid-fuel MOSART concept. Energy Procedia 127, 343–351 (2017). https://doi.org/10.1016/j.egypro.2017.08.075

    Article  Google Scholar 

  14. A. Cammi, V. Di Marcello, L. Luzzi et al., A multi-physics modelling approach to the dynamics of Molten Salt Reactors. Ann. Nucl. Energy 38, 1356 (2011). https://doi.org/10.1016/j.anucene.2011.01.037

    Article  Google Scholar 

  15. M. Zanetti, A. Cammi, C. Fiorina et al., A geometric multiscale modelling approach to the analysis of MSR plant dynamics. Prog. Nucl. Energy 83, 82 (2015). https://doi.org/10.1016/j.pnucene.2015.02.014

    Article  Google Scholar 

  16. C. Fiorina, D. Lathouwers, M. Aufiero et al., Modelling and analysis of the MSFR transient behaviour. Ann. Nucl. Energy 64, 485 (2014). https://doi.org/10.1016/j.anucene.2013.08.003

    Article  Google Scholar 

  17. E. Cervi, S. Lorenzi, L. Luzzi et al., Multiphysics analysis of the MSFR helium bubbling system: a comparison between neutron diffusion, SP3 neutron transport and Monte Carlo approaches. Ann. Nucl. Energy 132, 227 (2019). https://doi.org/10.1016/j.anucene.2019.04.029

    Article  Google Scholar 

  18. P. German, M. Tano, C. Fiorina et al., GeN-ROM-An OpenFOAM-based multiphysics reduced-order modeling framework for the analysis of Molten Salt Reactors. Prog. Nucl. Energy 146, 104148 (2022). https://doi.org/10.1016/j.pnucene.2022.104148

    Article  Google Scholar 

  19. M. Tiberga, D. Lathouwers, J.L. Kloosterman, A multi-physics solver for liquid-fueled fast systems based on the discontinuous Galerkin FEM discretization. Prog. Nucl. Energy 127, 103427 (2020). https://doi.org/10.1016/j.pnucene.2020.103427

    Article  Google Scholar 

  20. S.M. Park, M. Munk, Verification of moltres for multiphysics simulations of fast-spectrum molten salt reactors. Ann. Nucl. Energy 173, 109111 (2022). https://doi.org/10.1016/j.anucene.2022.109111

    Article  Google Scholar 

  21. G. Yang, M.K. Jaradat, W.S. Yang et al., Development of coupled PROTEUS-NODAL and SAM code system for multiphysics analysis of molten salt reactors. Ann. Nucl. Energy 165, 108889 (2022). https://doi.org/10.1016/j.anucene.2021.108889

    Article  Google Scholar 

  22. D.L. Zhang, S.Z. Qiu, G.H. Su et al., Development of a steady state analysis code for a molten salt reactor. Ann. Nucl. Energy 36, 590–603 (2009). https://doi.org/10.1016/j.anucene.2009.01.004

    Article  Google Scholar 

  23. X.D. Zuo, M.S. Cheng, Z.M. Dai, Development and validation of a three-dimensional dynamics code for liquid-fueled molten salt reactors. Nucl. Tech. 45(3), 030603 (2022). https://doi.org/10.11889/j.0253-3219.2022.hjs.45.030603. (in Chinese)

    Article  Google Scholar 

  24. M.S. Cheng, M. Lin, X.D. Zuo et al., Development and validation of a three-dimensional hexagonal nodal time-spatial kinetics code based on exponential transform. Nucl. Tech. 41(6), 060604 (2018). https://doi.org/10.11889/j.0253-3219.2018.hjs.41.060604. (in Chinese)

    Article  Google Scholar 

  25. D.L. Zhang, S.Z. Qiu, C.L. Liu et al., Nuclear calculation and program development for Molten Salt Reactor. At. Energy Sci. Technol. 42(12), 1103–1108 (2008). https://doi.org/10.7538/yzk.2008.42.12.1103. (in Chinese)

    Article  Google Scholar 

  26. G. Marleau, A. Hébert, R. Roy, A user guide for dragon version 4. Institute of Genius Nuclear, Department of Genius Mechanical, School Polytechnic of Montreal, 2011

  27. Bilinear interpolation, https://en.wikipedia.org/wiki/Bilinear_interpolation; 2022

  28. U. Grundmann, U. Rohde, S. Mittag et al., DYN3D version 3.2-code for calculation of transients in light water reactors (LWR) with hexagonal or quadratic fuel elements-description of models and methods, Forschungszentrum Rossendorf (2005)

  29. B.E. Prince, S.J. Ball, J.R. Engel et al., Zero-power physics experiments on the molten-salt reactor experiment. Oak Ridge National Laboratory (1968). https://doi.org/10.2172/4558029

  30. M.W. Rosenthal, R.B. Briggs, P.R. Kasten, Molten-Salt reactor program semiannual progress report for period ending February 28, 1969. Oak Ridge National Laboratory (1969). https://doi.org/10.2172/4780471

  31. R.B. Briggs, Molten-salt reactor program semiannual progress report for period ending July 31, 1964, Oak Ridge National Laboratory (1964). https://doi.org/10.2172/4676587

  32. R.C. StefYy, P.J. Wood, Theoretical dynamic anatysis of the MSRE with 233-U fuel. Oak Ridge National Laboratory (1969). https://doi.org/10.2172/4771215

  33. M. Delpech, S. Dulla, C. Garzenne et al, Benchmark of dynamic simulation tools for molten salt reactors, in: GLOBAL 2003-Nuclear Science and Technology: Meeting the Global Industrial and R &D Challenges of the 21st Century, American Nuclear Society. pp. 2182-2187(2003)

  34. R.C. Steffy, Experimental dynamic analysis of the MSRE with 233-U fuel. Oak Ridge National Laboratory (1969). https://doi.org/10.2172/4132458

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Xian-Di Zuo, Mao-Song Cheng, Yu-Qing Dai, and Kai-Cheng Yu. The first draft of the manuscript was written by Xian-Di Zuo and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mao-Song Cheng.

Additional information

This work was supported by Strategic Pilot Science and Technology Project of Chinese Academy of Sciences (No. XD02001005).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, XD., Cheng, MS., Dai, YQ. et al. Flow field effect of delayed neutron precursors in liquid-fueled molten salt reactors. NUCL SCI TECH 33, 96 (2022). https://doi.org/10.1007/s41365-022-01084-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-01084-0

Keywords

Navigation